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Abstract: This paper focuses on the event-triggered synchronization of coupled neural networks
with reaction–diffusion terms. At first, an effective event-triggered controller was designed based
on time sampling. It is worth noting that the data of the controller for this type can be updated
only when corresponding triggering conditions are satisfied, which can significantly reduce the
communication burden of the control systems compared to other control strategies. Furthermore,
some sufficient criteria were obtained to ensure the event-triggered synchronization of the considered
systems through the use of an inequality techniques as well as the designed controller. Finally, the
validity of the theoretical results was confirmed using numerical examples.
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1. Introduction

In recent decades, as a crucial nonlinear dynamic system that can effectively imitate
the speciality of animal neurons and implement distributed parallel information processing,
neural networks (NNs) have widespread applications in many fields including character
recognition and optimal control [1–3]. In view of NNs’ high-nonlinearity and fine fault
tolerance, the dynamics of NNs of various sorts have been investigated, such as competitive
NNs [4,5], BAM NNs [6], inertial NNs [7], fuzzy NNs [8,9], memristive NNs [10,11] and
coupled NNs [12]. Therefore, coupled NNs (CNNs) can be seen as extremely special,
complex NNs composed of numerous nodes interconnected together, which have not only
the excellent properties of classical single NNs but also the abilities to perform all kinds
of intricate missions in practice. Consequently, it is of important theoretical and practical
significance to study the dynamics of CNNs, and some valuable results associated with
them have been obtained [12–15]. For example, in [12], bipartite synchronization was
investigated for CNNs with uncertain parameters by designing a discontinuous control
and a periodically intermittent one. Selvaraj et al. analyzed the synchronization control of
stochastic CNNs under the influence of Markovian switching as well as input saturation [13].
According to differential inequality and Lyapunov theory, cluster synchronization was
explored for delayed CNNs in [14]. Luo et al. dealt with the synchronization problem of
memristor-based CNNs and obtained some new criteria that are easy to complement [15].

It is worth noting that the aforementioned works about NNs only paid attention to the
time factor but ignored the space one. In other words, the reaction–diffusion mechanism
was not considered. In reality, when electrons shift in the electromagnetic field with asym-
metrically nonhomogeneous speciality, the spatial diffusion effect is inevitable. Moreover,
there are a large number of reaction–diffusion phenomena in many disciplines, especially
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in the fields of chemistry and biology. For example, reaction–diffusion phenomena occur
through the interactions of substances in various chemical reactions. Since the traditional
artificial NNs are realized by means of electronic circuits, it is of great meaning and ne-
cessity to analyze NNs with reaction–diffusion terms. Up to now, numerous remarkable
achievements with respect to reaction–diffusion neural networks (R-DNNs) have been
reported, such as in [16–22].

At present, there are some interesting results with regard to the dynamical behaviors of
coupled R-DNNs (CR-DNNs) through the combination of CNNs and R-DNNs [23–30]. For
instance, by proposing a novel passivity definition and using an inequality technique, Wang
et al. derived some valuable passivity and dissipativity criteria for CR-DNNs [23]. Lu et al.
considered the exponential synchronization of CR-DNNs and obtained some easily verified
and new conditions by developing a generalized intermittent control method [28]. By
virtue of Lyapunov’s approach, Wu et al. dealt with the synchronization issue of CR-DNNs
and yielded some sufficient criteria using an impulsive pinning approach [29]. In [30], Lin
et al. analyzed the pinning synchronization of CR-DNNs and provided some interesting
results with the help of NLEVec and a designed controller.

Among the above dynamics, synchronization is one of the most crucial and significant
ones, which can be reflected in its vital theoretical value and various kinds of potential
applications involving information processing as well as secure communication. However,
NNs cannot realize synchronization by themselves due to the influence of external distur-
bances; consequently, some effective control strategies have been proposed by scholars
for the past few years, including but not limited to feedback control [31], sample-data
control [32], quantized control [33,34], pinning control [35], impulsive control [36], adaptive
control [37,38], aperiodically switching control [39] and event-triggered control [40–43],
of which event-triggered control is a very effective control strategy; it can overcome the
high cost caused by continuous control and reduce the frequency of data updates and the
number of communications. In [44], Jin et al. investigated the finite-time synchronization
of delayed semi-markov NNs by designing an event-triggered scheme. In [45], Vadivel
et al. dealt with the strict dissipativity synchronization problem of static NNs under an
event-triggered scheme. The robust synchronization was analyzed for master–slave NNs
based on an event-triggered control method in [46]. The synchronization problem of iner-
tial NNs was addressed by means of an event-triggered control approach in [47]. To the
best of our knowledge, there is still very little work on the event-triggered control-based
synchronization of CR-DNNs so far, which motivates us to carry out further research.

Based on the above analysis and discussion, the primary task was to explore for the
event-triggered synchronization of CR-DNNs in this study. The cardinal contents and
contributions of this study are listed as follows:

(1) A class of CR-DNNs model is established, and an effective event-triggered controller
is designed based on time sampling.

(2) Some sufficient criteria are obtained to ensure the event-triggered synchronization of
CR-DNNs, which are composed of several linear matrix inequalities.

(3) The effectiveness of the event-triggered strategy and theoretical results are verified
using numerical examples.

The rest of this paper is organized as follows. In Section 2, the model of CR-DNNs
is presented, and some requisite lemmas are introduced. In Section 3, the event-triggered
synchronization criteria are provided, obtained by designing a concise controller. Some
numerical examples are presented to demonstrate the feasibility of the obtained results in
Section 4. Finally, Section 5 provides the conclusion.

Notations: Let N, R and R+ denote the sets of natural numbers, real numbers and non-
negative real numbers, respectively. AT stands for the transpose of matrix A, and ⊗ is the
Kronecker product. Rn and Rn×m represent, respectively, an n-dimensional Euclidean space
and a set of real matrices with order n × m. P > 0 means that matrix P is a positive definite
matrix, and I denotes the identity matrix with suitable dimensions. ∥ · ∥ is the Euclidean
norm, and Diag(·) stands for the diagonal matrix. Furthermore, (xi)

n
i=1=(x1, x2, · · ·, xn)T ,
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0n=(0, 0, · · ·, 0)T and Ω={x = (x1, x2, · · ·, xm)T ∈ Rm : |xl | ≤ Ml , l = 1, 2, · · ·, m}, where
Ml ∈ R+.

2. Preliminaries and Model Description

In this section, we refer to [34] to a consider CR-DNN model described by the following
partial differential equation:

∂ur(t, x)
∂t

=
m

∑
l=1

dr
∂2ur(t, x)

∂x2
l

− arur(t, x) +
n

∑
j=1

br j f (uj(t, x)) + Jr, (1)

where x = (x1, x2, · · ·, xm)T ∈ Ω is the space vector; t ∈ R+ denotes the time variable;
r = 1, 2, · · ·, n, where n represents the number of neurons; ur(t, x) is the state variable of
the rth neuron; the constant dr ≥ 0 stands for the diffusion coefficient of the rth neuron, ar
represents the rate at which the potential of the rth neuron resets to rest when the network
is disconnected from the external input; br j is the connection strength between the jth
neuron and the rth neuron; and the external bias is denoted by Jr.

The boundary and initial conditions for CR-DNN (1) are as follows:

ur(t, x) = 0, (t, x) ∈ R+ × ∂Ω.

ur(0, x) = ϕr(x), x ∈ Ω, r = 1, 2, · · ·, n.

Assumption 1. Let the activation function f j(·) satisfy the Lipschitz condition; that is, for any ξ1,
ξ2 ∈ R, there exists a constant aj such that

| f j(ξ1)− f j(ξ2)| ≤ aj|ξ1 − ξ2|, j = 1, 2, · · ·, n.

For convenience, CR-DNNs (1) can be written in the following vector form

∂u(t, x)
∂t

= D
n

∑
l=1

∂2u(t, x)
∂x2

l
− Au(t, x) + B f (u(t, x)) + J, (2)

where A = diag(a1, a2, · · ·, an), D = diag(d1, d2, · · ·, dn), B = (bij)n×n, J = diag(J1, J2, · ·
·, Jn) and f (u(t, x)) = ( fr(ur(t, x)))n

r=1.
The following linear CR-DNNs can be obtained by coupling (2) with the number of N:

∂wi(t, x)
∂t

=D
m

∑
l=1

∂2wi(t, x)
∂x2

l
− Awi(t, x) + B f (wi(t, x)) + J

+ C
N

∑
j=1

gijΓwj(t, x) + vi(t, x), i = 1, 2, · · ·, N,
(3)

where wi(t, x) ∈ Rn is the state vector of the ith node, vi(t, x) stands for the controller to
be designed; Γ ∈ Rn×n denotes the internal coupling matrix, and G = (gij)N×N ∈ RN×N

represents the external coupling matrix. If nodes i and j(j ̸= i) are connected to each other,
then gij ̸= 0, or gij = 0. In addition, the diagonal elements of G are

gii = −
N

∑
j=1,j ̸=i

gij, i = 1, 2, · · ·, N.

The boundary conditions and initial conditions of the CR-DNNs (3) are as follows:

wi(t, x) = 0n, (t, x) ∈ R+ × ∂Ω, (4)

wi(0, x) = Ψi(x), x ∈ Ω i = 1, 2, · · ·, N, (5)

where Ψi(x) is a continuous function on Ω.
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Let W̄(t, x) = 1
N

N
∑

i=1
wi(t, x). Since

N
∑

i=1

N
∑

j=1
giiΓwj(t, x) =

N
∑

i=1
(

N
∑

j=1
gii)Γwj(t, x) = 0, then

it can follow from (3) that

∂w̄(t, x)
∂t

=D
m

∑
l=1

∂2w̄(t, x)
∂x2

l
− Aw̄(t, x)

+
1
N

B
N

∑
l=1

f (wi(t, x)) + J +
1
N

N

∑
l=1

vi(t, x),

(6)

where i = 1, 2, · · ·, N.

Set ei(t, x) = wi(t, x)− w̄(t, x). Then, we have
N
∑

l=1
ei(t, x) = 0. There exist sampling

times 0 = t0 < t1 < · · · < tq < · · · such that lim
q→∞

tq = ∞, 0 < τ ≤ tq+1 − tq ≤ τ̄, where τ

and τ̄ are two positive numbers. Let ei(ti
q−1, x) be the error sample value that the ith node

sent to the controller most recently at time tq−1. If the following inequality holds, then the
latest sampled value ei(tq, x) is transmitted to the controller at time tq:

||ei(ti
q−1, x)− ei(tq, x)|| > βi||ei(tq−1, x)||, βi > 0, (7)

where

ei(ti
q, x) =

{
ei(tq, x), If (7) holds,
ei(ti

q−1, x), If (7) does not hold,

and ei(ti
0, x) = ei(t0, x).

The controller vi(t, x) was designed as follows:

vi(t, x) = −Kei(ti
q, x), i = 1, 2, · · ·, N, (8)

where K = diag(K1, K2, · · ·, Kn) is the control gain matrix. Therefore, the error system can
be expressed as follows:

∂ei(t, x)
∂t

=D
m

∑
l=1

∂2ei(t, x)
∂x2

l
− Aei(t, x) + B f (ei(t, x))

− B
N

N

∑
i=1

f (wi(t, x)) + C
N

∑
j=1

gijΓej(t, x)

+ Kei(ti
q, x) +

1
N

N

∑
i=1

vi(t, x),

(9)

where i = 1, 2, · · ·, N.

Remark 1. In order to achieve the system control goal, many effective controllers were designed,
and a great deal of valuable results were derived. For example, in [48], based on the Lyapunov
method, the sliding mode control strategy was proposed to analyze the leader-following consensus
issue. Sun et al. investigated the synchronization of nonlinear systems using an event-triggered
control method [49]. Notably, the event-triggered control can not only reduce control cost but also
decrease the communication times in the network compared with other control methods.

Define the artificial time delay τ(t) = t − tq, where tq ≤ t ≤ tq+1. Then, τ̇(t) = 1,
0 ≤ τ(t) ≤ τ̄. Let trigger error zi(tq, x) = ei(ti

q, x)− ei(tq, x). Then, one has

ei(ti
q, x) = zi(tq, x) + ei(tq, x) = zi(t − τ(t), x) + ei(t − τ(t), x).
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Furthermore, we have

∂ei(t, x)
∂t

=D
m

∑
l=1

∂2ei(t, x)
∂x2

l
− Aei(t, x) + B f (ei(t, x))

− B
N

N

∑
i=1

f (wi(t, x)) + C
N

∑
j=1

gijΓej(t, x)

+ K[zi(tk, x) + ei(t − τ(t), x)] +
1
N

N

∑
i=1

vi(t, x),

(10)

where i = 1, 2, · · ·, N.
It follows from (7) that

zi(tq, x) =

{
0, If (7) holds,

ei(ti
q−1, x)− ei(tq, x), If (7) dose not hold.

Whether (7) is true or not, the following inequality always holds:

||zi(t − τ(t), x)|| = ||zi(tq, x)|| ≤ βi||ei(tq−1, x)|| = βi||ei(t − τ(t), x)||. (11)

Let e(t, x) = (eT
1 (t, x), eT

2 (t, x), · · ·, eT
N(t, x))T, z(tq, x) = (zi(tq, x))N

i=1, w(t, x) = (wT
1 (t, x),

wT
2 (t, x), · · ·, wT

N(t, x))T , 1N = (1, 1, · · ·, 1)T
N , f̂ (t, x) = f (wi(t, x))− f (w̄(t, x)), f̂ (e(t, x)) =

c( f̂ (e(t, x)))N
i=1 and F(t, x) = B f (w̄(t, x))− B

N

N
∑

i=1
f (wi(t, x)) + 1

N + 1
N

N
∑

i=1
vi(t, x). Then, the

error system can be written as

∂e(t, x)
∂t

=
m

∑
l=1

(IN ⊗ D)
∂2e(t, x)

∂x2
l

− (IN ⊗ A)e(t, x) + (IN ⊗ B) f̄ (e(t, x)),

+ C(G ⊗ Γ)e(t, x) + (IN ⊗ K)[z(tq, x)− e(t − τ(t), x)] + 1N ⊗ F(t, x).

(12)

A block diagram of the control mechanism is depicted by Figure 1.

Figure 1. Block diagram of controller (8).
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Definition 1. If lim
t→+∞

||wi(t, x)− wj(t, x)|| = 0, i, j = 1, 2, · · ·, N, then CR-DNNs (3) and (6)

can achieve synchronization, where wi(t, x) is the solution of CR-DNN (3) satisfying boundary
condition (4) and initial condition (5).

Next, in order to obtain the main results, the following lemmas are introduced.

Lemma 1 ([50]). For any vectors x and y and positive definite matrix P with appropriate dimen-
sions, the following inequality holds

2xTy ≤ 1
γ

xT Px + γyT Py, γ > 0.

Lemma 2 ([51]). If ω(x) is a vector function, and D̂ ∈ Rn×n satisfies D̂ ≥ 0, then

∫
Ω

ωT(x)D̂ω(x)dx ≤
4l2

p

π2

∫
Ω

∂ωT

∂xp
D̂

∂ω

∂xp
dx,

where ω(x)|∂Ω = 0n.

Lemma 3 ((Jensen’s inequality) [52]). Let E ⊂ Rm and ω : E → Rn be a measurable set and a
vector function. Then, for any n-order matrix R ≥ 0, one has

µ(E)
∫

E
ωT Rωdµ ≥

∫
E

ωTdµR
∫

E
ωdµ,

where 0 < µ(E) < ∞.

Lemma 4 ([53]). For any integers m, n, ai > 0, if fi : Rm → R is a positive function, and
gij : Rm → R is positive in an open subset D of Rm, then we have

min
ai

n

∑
i=1

1
ai

fi =
n

∑
i=1

fi + max
gij

n

∑
i=1

n

∑
i=1,j ̸=i

gij,

where
n
∑

i=1
ai = 1, and [

fi gij
gij f j

] ≥ 0, where i, j = 1, 2, · · ·, n.

Lemma 5 ([54]). If there is a field U containing a distant point and a positive (negative) defi-
nite function V(x) such that dV(t)

dt is semi-negative (positive) definite, then the zero solution of
system dx

dt = f (x), f (0) = 0 is stable, and the zero solution of system dx
dt = f (x), f (0) = 0 is

asymptotically stable when dV(t)
dt is negative (positive) definite.

3. Main Results

In this section, some sufficient conditions are obtained to guarantee the synchroniza-
tion of CR-DNNs (3) and (6) based on the event-based control strategy (8).

Theorem 1. Under Assumption 1, CR-DNNs (3) and (6) can achieve synchronization if there exist
n-order symmetric matrices K̃ and P1 > 0, P2 > 0, P3 > 0 and P4 > 0 such that(

P3 K̃
K̃ P3

)
≥ 0, (13)

Λ < 0, (14)

where Λ = {Λij} is a symmetric block matrix consisting of the following matrices: Λ11 =

−
m
∑

l=1

ϕ2

4Ml
IN ⊗ (p1D + DP1)− 2(IN ⊗ A) +C(G ⊗ (P1Γ+ ΓP1)) + IN ⊗ P2 − IN ⊗ P3 + IN ⊗
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L, Λ12 = IN ⊗ (P3 − K̃ − P1K), Λ13 = IN ⊗ K̃, Λ14 = −IN ⊗ AP4 + C(G ⊗ ΓP4), Λ15 =
IN ⊗ B, Λ16 = −IN ⊗ P1K, Λ22 = [IN ⊗ (2K̃ − 2P3) + Λ ⊗ In], Λ23 = IN ⊗ (P3 − K̃),
Λ24 = −IN ⊗KP4, Λ33 = −IN ⊗ p2 − IN ⊗ P3, Λ44 = τ̄2 IN ⊗ P3 − 2IN ⊗ P4, Λ45 = IN ⊗ P4B,
Λ46 = −IN ⊗ P4K and Λ55 = Λ66 = −INn.

Proof. Firstly, we define the Lyapunov function as follows:

V(t) = V1(t) + V2(t) + V3(t) + V4(t), (15)

where
V1(t) =

∫
Ω

eT(t, x)(IN ⊗ P1)e(t, x)dx,

V2(t) =
∫

Ω

∫ t

t−τ(t)
eT(s, x)(IN ⊗ P2)e(s, x)dsdx,

V3(t) =τ̄
∫

Ω

∫ 0

−τ̄

∫ t

t+θ

∂eT(s, x)
∂s

(IN ⊗ P3)
∂e(s, x)

∂s
dsdθdx,

V4(t) =
m

∑
l=1

∫
Ω

∂eT(t, x)
∂xl

(IN ⊗ P4D)
∂e(t, x)

∂xl
.

For any t ∈ [tk, tk+1), calculating the derivative of V1(t) with respect to t along the
trajectory of CR-DNN (12) yields

dV1(t)
dt

=2
∫

Ω
eT(t, x)(IN ⊗ P1)

∂e(t, x)
∂t

dx

=2
∫

Ω
eT(t, x)(IN ⊗ P1)

{ m

∑
l=1

(IN ⊗ D)
∂2e(t, x)

∂x2
l

− (IN ⊗ A)e(t, x) + (IN ⊗ B) f (w(t, x))

− (IN ⊗ B) f (u(t, x)) + C(G ⊗ P)e(t, x)

+ (IN ⊗ K)[z(tk, x) + e(t − τ(t), x)]
}

dx.

(16)

Through using boundary condition (4), Green’s formula and Lemma 2, the following
equation can be obtained:

2
∫

Ω

m

∑
i=1

eT(t, x)(IN ⊗ P1)(IN ⊗ D)
∂2e(t, x)

∂x2
l

dx

=2
∫

Ω

m

∑
i=1

eT(t, x)(IN ⊗ P1D)
∂2e(t, x)

∂x2
l

dx

=
∫

Ω
eT(t, x)(IN ⊗ P1D)

m

∑
l=1

∂2e(t, x)
∂x2

l
dx

+ (
m

∑
l=1

∂2e(t, x)
∂x2

l
)T(IN ⊗ DT P1)e(t, x)dx

=
∫

Ω
eT(t, x)(IN ⊗ P1D + IN ⊗ DT P1)

m

∑
l=1

∂2e(t, x)
∂x2

l
dx

=
∫

Ω

m

∑
l=1

∂

∂xl
[eT(t, x)(IN ⊗ P1D + IN ⊗ DT P1)

∂Te(t, x)
∂xl

]dx

−
∫

Ω

m

∑
l=1

∂Te(t, x)
∂xl

(IN ⊗ P1D + IN ⊗ DT P1)
m

∑
l=1

∂e(t, x)
∂xl

dx,

(17)

due to ∫
Ω

m

∑
l=1

∂

∂xl
[eT(t, x)(IN ⊗ P1D + IN ⊗ DT P1)

∂Te(t, x)
∂xl

]dx = 0, (18)
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Then, we have

−
∫

Ω

m

∑
l=1

∂Te(t, x)
∂xl

(IN ⊗ P1D + IN ⊗ DT P1)
m

∑
l=1

∂e(t, x)
∂xl

dx

≤−
m

∑
l=1

ϕ2

4Ml

∫
Ω

eT(t, x)(IN ⊗ P1D + IN ⊗ DT P1)e(t, x)dx.
(19)

Owing to

eT(t, x)(IN ⊗ P1)(1N ⊗ F(t, z)) =
m

∑
i=1

ei(t, x)P1F(t, x) = 0, (20)

one has
dV1(t)

dt
≤

∫
Ω

eT(t, x)
{
−

m

∑
l=1

ϕ2

4Ml
IN ⊗ (P1D + DT P1)e(t, x)

− 2(IN ⊗ A)e(t, x) + 2(IN ⊗ B)F(e(t, x))

+ C[G ⊗ (P1Γ + ΓP1)]e(t, x)

− [IN ⊗ (2P1K)][z(tq, x) + e(t − τ(t), x)]
}

dx.

(21)

For V2(t), we have

dV2(t)
dt

=
∫

Ω
eT(t, x)(IN ⊗ P2)e(t, x)dx −

∫
Ω

eT(t − τ̄, x)(IN ⊗ P2)e(t − τ̄, x)dx. (22)

It follows from Lemmas 3 and 4 that

τ̄
∫ t

t−τ̄

∂eT(s, x)
∂s

(IN ⊗ P3)
∂e(s, x)

∂s
ds

=τ̄(
∫ t−τ(t)

t−τ̄
+

∫ t

t−τ(t)
)

∂eT(s, x)
∂s

(IN ⊗ P3)
∂e(s, x)

∂s
ds

≥ τ̄

τ̄ − τ(t)

∫ t−τ(t)

t−τ̄

∂eT(s, x)
∂s

ds(IN ⊗ P3)
∫ t−τ(t)

t−τ̄

∂e(s, x)
∂s

ds

+
τ̄

τ(t)

∫ t

t−τ(t)

∂eT(s, x)
∂s

ds(IN ⊗ P3)
∫ t

t−τ(t)

∂e(s, x)
∂s

ds

≥
∫ t−τ(t)

t−τ̄

∂eT(s, x)
∂s

ds(IN ⊗ P3)
∫ t−τ(t)

t−τ̄

∂e(s, x)
∂s

ds

+
∫ t

t−τ(t)

∂eT(s, x)
∂s

ds(IN ⊗ P3)
∫ t

t−τ(t)

∂e(s, x)
∂s

ds

+ 2
∫ t−τ(t)

t−τ̄

∂eT(s, x)
∂s

ds(IN ⊗ K̃)
∫ t

t−τ(t)

∂e(s, x)
∂s

ds,

(23)

Therefore,

dV3(t)
dt

=τ̄2
∫

Ω

∂eT(t, x)
∂s

(IN ⊗ P3)
∂e(s, x)

∂s
dx

− τ̄
∫

Ω

∫ 0

−τ̄

∂eT(t + θ, x)
∂(t + θ)

(IN ⊗ P3)
∂e(t + θ, x)

∂(t + θ)
dθdx

=τ̄2
∫

Ω

∂eT(t, x)
∂s

(IN ⊗ P3)
∂e(s, x)

∂s
dx

− τ̄
∫

Ω

∫ t

t−τ̄

∂eT(s, x)
∂s

(IN ⊗ P3)
∂e(s, x)

∂s
dθdsdx,

(24)
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Then, we have

dV3(t)
dt

≤
∫

Ω

{∂eT(t, x)
∂t

(τ̄2 IN ⊗ P3)
∂e(t, x)

∂t
− [eT(t − τ(t), x)− eT(t − τ̄, x)](IN ⊗ P3)[e(t − τt, x)− e(t − τ̄, x)]

− [eT(t, x)− eT(t − τ(t), x)](IN ⊗ P3)[e(t, x)− e(t − τ(t), x)]

− 2[eT(t − τ(t), x)− eT(t − τ̄, x)](IN ⊗ K̃)[e(t, x)− e(t − τ(t), x)]
}

.

(25)

For V4(t), we have

dV4(t)
dt

= 2
m

∑
l=1

∫
Ω

∂eT(t, x)
∂xl

(IN ⊗ P4D)
∂2e(t, x)

∂xl∂t
dx. (26)

It is easy to show that

2
∫

Ω

∂eT(t, x)
∂t

(IN ⊗ P4)
∂e(t, x)

∂t
dx

+2
∫

Ω

∂eT(t, x)
∂t

(IN ⊗ P4)
m

∑
l=1

(IN ⊗ D)
∂2e(t, x)

∂x2
l

dx

−2
∫

Ω

∂eT(t, x)
∂t

(IN ⊗ P4)
{
(IN ⊗ A)e(t, x)

−(IN ⊗ B) f̂ (e(t, x))− C(G ⊗ Γ)e(t, x)

+(IN ⊗ K)[z(tq, x) + e(t − τ(t), x)]− 1N ⊗ F(t, x)
}

dx = 0,

(27)

because of
m

∑
l=1

∫
Ω

∂eT(t, x)
∂t

(IN ⊗ P4)[IN ⊗ D]
∂2e(t, x)

∂x2
l

dx

=
∫

Ω
(

∂eT(t, x)
∂t

(IN ⊗ P4D)
∂e(t, x)

∂xl
)m

p=1 · n⃗ds

−
∫

Ω

m

∑
l=1

∂2eTt, x
∂t∂xp

(IN ⊗ P4D)
e(t, x)

∂xl
dx,

(28)

and
∂eT(t, x)

∂t
(IN ⊗ P4)1N ⊗ F(t, x) =

∂

∂t

m

∑
l=1

ei(t, x)P4F(t, x) = 0, (29)

Then, we have

− 2
∫

Ω

∂eT(t, x)
∂t

(IN ⊗ P4)
∂e(t, x)

∂exl

)dx

− 2
∫

Ω
∂eT(t, x)

∂t
{
(IN ⊗ P4)(IN ⊗ A)e(t, x)

− (IN ⊗ B) f̂ (e(t, x))− C(G ⊗ Γ)e(t, x)

+ (IN ⊗ K)[z(tq, x) + e(t − τ(t), x)]
}

dx

− 2
∫

Ω

m

∑
l=1

∂2eT(t, x)
∂xl∂t

(IN ⊗ P4D)
∂e(t, x)

∂xl
dx = 0.

(30)

It can follow from (8) that

zT(tq, x)z(tq, x) ≤ eT(t − τ(t), x)(Λ ⊗ IN)e(t − τ(t), x), (31)

Then,
eT(t − τ(t), x)(Λ ⊗ IN)e(t − τ(t), x)− zT(tq, x)z(tq, x) ≥ 0. (32)
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According to Assumption 1, one has

f̂ T(e(t, x)) f̂ (e(t, x)) ≤ eT(t, x)(IN ⊗ L)e(t, x), (33)

That is
− f̂ T(e(t, x)) f̂ (e(t, x)) + eT(t, x)(IN ⊗ L)e(t, x) ≥ 0. (34)

Setting

Ψ(t, x) = (eT(t, x), eT(t − τ(t), x), eT(t − τ̄, x),
∂eT(t, x)

∂t
, f̂ T(e(t, x)), zT(tq, x))T , (35)

and combining (16)–(35) yields

dV(t)
dt

=
∫

ΩΨT(t, x)ΛΨ(t, x)ds ≤ 0.

Therefore, it follows from Lemma 5 that lim
t→∞

V(t) = 0, which is to say that the zero

solution of error system (12) is asymptotically stable, i.e., lim
t→∞

||ei(t, x)|| = 0. Then, CR-

DNNs (3) and (6) can realize synchronization.

Remark 2. The synchronization criteria were obtained in the form of a linear matrix inequality,
which makes calculation more convenient and concise.

4. Numerical Simulations

In this section, an example is provided to verify the feasibility of the synchronization
criteria and event-triggered strategy.

Example. Consider the following CR-DNN with five nodes:
∂wi(t, x)

∂t
=D

m

∑
l=1

∂2wi(t, x)
∂x2

l
− Awi(t, x) + B tanh(wi(t, x)) + J

+ C
N

∑
j=1

gijΓwj(t, x) + vi(t, x), i = 1, 2, · · ·, N,
(36)

where each node contains three neurons, t ∈ [0,+∞), x ∈ (−5, 5), wi(t, x) = (wij(t, x))3
j=1,

tanh(wi(t, x)) = (tanh(wij(t, x)))3
j=1, vi(t, x) = (vi1(t, x), vi2(t, x))T ,

J =

 1.2 0.7 −4
−1.6 2.8 0.5
1.5 1.7 1

, G =


−0.1 0 0 0.1 0

0 −0.2 0 0.2 0
0 0 −0.4 0 0.4

0.1 0.2 0 −0.5 0.2
0 0 0.4 0.2 −0.6

,

and the values of the other parameters are shown in Table 1. vi(t, x) is event-triggered
controller (8). Obviously, Assumption 1 is satisfied.

Let zi(t, x) =
1
5

5

∑
i=1

wi(t, x) and ei(t, x) = wi(t, x)− zi(t, x). The boundary conditions

and initial conditions of CR-DNN (36) are as follows:

φ1(x) =(−0.6 cos(0.4πx), cos(0.4πx), sin(0.4πx) + 0.6)T ,

φ1(x) =(−0.2x2 + 0.4,−0.2x2 − 1, 0.2x2 − 1)T ,

φ1(x) =(−3, 3,−3)T ,

φ1(x) =(−1,−1, 1)T ,

φ1(x) =(0, 0, 0)T , x ∈ (−5, 5).
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Remark 3. According to the value of G, the coupling topology of CR-DNN (36) is shown in
Figure 2, which reveals that (36) is connected. For when the control gain matrix K is a zero matrix,
that is, without external control, the dynamic trajectories of errors ei(t, x) and ei(t, 0) are shown
in Figures 3 and 4, which show that CR-DNN (36) cannot realize synchronization. In order to
realize the synchronization goal, the sampling moment is selected as tq = 0.3q, q = 0, 1, 2, · · ·, n,
β = 0.5 and control gain matrix K = 6I3. K̃, P1, P2 and P3 can be obtained using the FEASP
function in MATLAB. After simple calculations, the conditions of Theorem 1 are satisfied. Therefore,
based on Theorem 1, CR-DNN (36) can achieve event-triggered synchronization, which is shown
in Figures 5 and 6.

Figure 2. The coupling topology of CR-DNN (36).

Figure 3. The dynamic trajectory of ei(t, x) when there is no control.

Table 1. The values of some parameters.

Parameter Value Parameter Value

A diag(0.2,0.2,0.2) D diag(0.5,0.4,0.3)
Γ diag(1,1,1) L diag(1,1,1)
C 1
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Figure 4. The dynamic trajectory of ei(t, 0) when there is no control.

Figure 5. The time curves of ei(t, x) under event−triggered controller (8).

Remark 4. Currently, some interesting works have been conducted to discuss the influence of the
parameters on synchronization [38,55,56]. For instance, Luo et al. [55] explored the influences
of different triggering parameters and impulsive delays on the convergence rate. Chen et al. [38]
considered the connection between the settling time and controller parameters. The research in [56]
found that the faster the control gain, the faster the synchronization speed. Thus, in application, the
values of the parameters can be adjusted according to actual needs.
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Figure 6. The time curves of ei(t, 0) under event−triggered controller (8).

5. Conclusions

In order to realize the event-triggered synchronization target of CR-DNNs, an effective
event-triggering control strategy was designed in this study. At the same time, for the sake
of avoiding the zero phenomenon, time sampling was conducted for the state variables
of the CR-DNNs before judging the validity of the triggering conditions. In addition, in
constructing appropriate Lyapunov functions, some sufficient conditions were obtained
to ensure the synchronization of the CR-DNNs. In the end, numerical examples were
provided to illustrate the feasibility of the obtained results.

The dynamics of a system with delay and stochastic effects have aroused widespread
concern since they are unavoidable in practical application [57,58]. Therefore, the dy-
namical behaviors of CR-DNNs with delay and stochastic effects may be our future
research priorities.
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