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Abstract: We propose a stochastic algorithm for global optimisation of a regular function, possibly
unbounded, defined on a bounded set with regular boundary; a function that attains its extremum
in the boundary of its domain of definition. The algorithm is determined by a diffusion process
that is associated with the function by means of a strictly elliptic operator that ensures an adequate
maximum principle. In order to preclude the algorithm to be trapped in a local extremum, we add a
pure random search step to the algorithm. We show that an adequate procedure of parallelisation
of the algorithm can increase the rate of convergence, thus superseding the main drawback of the
addition of the pure random search step.

Keywords: global optimisation; stochastic algorithms; pure random search; rate of convergence;
parallelisation of algorithms

1. Introduction

If we consider the partition of random type algorithms for global optimisation between
those that are adaptive, that is, those that have a search distribution, at a given step, to
depend on the distributions of previous steps (see [1-3] for comprehensive approaches
and, for yet another example, [4]) and those algorithms with steps being independent
distributed search variables, it seems that only with those of the second class can we
expect to escape the curse of being trapped in local extrema. This curse is surely related
to the well known slogan global optimisation requires global information first proposed by
Stephens and Baritompa (see [5] and illustrated in [6]). One obvious way to counteract the
pernicious effect of adaptivity of the algorithms is to include an intermediate pure random
search (PRS) step (see [7]) that will overcame the proclivity of the algorithm to be trapped
on a possible local extremum. However, this introduction comes with a price, namely the
slowing down of the rate of convergence of the adaptive algorithm. As a countermeasure,
we can consider the parallelisation of the algorithm at the pure random stage. Let us
briefly state our main objectives in order to give some context to the remainder of this
introduction. Our first objective in this work is to study the effect of parallelisation on
the rate of convergence of a parallelizable stochastic algorithm for global optimisation
with no constraints in the search for the maximum of a function. Our second objective is
to study a random adaptive algorithm for global optimisation of functions that may be
assumed to attain its extremums at the border of the bounded set where these functions
are defined. Thorough and fundamental expositions on the general subject of random
algorithms requiring familiarity with probability theory, as well as some knowledge of
deterministic and stochastic differential equations and Markov chains, are found in [8,9].
A broad introduction to stochastic algorithms for global optimisation is found in [10]. An
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excellent reference treaty on stochastic methods for global optimisation is found in [11]; the
authors lay a solid ground for further studies, for instance, in detailing extreme value theory
and its applications to statistical inference in some stochastic optimisation algorithms. The
quest for better performing algorithms for stochastic optimisation continues to develop
newer approaches aiming at more general applicability, provable convergence, and stability
in regard to small changes in the parameters. An interesting example of such a work
is [12], where the objective functions are supposed to be weakly convex, having as a
particular case compositions of convex losses with smooth functions seen in machine
learning algorithms. Another example may be found in the recent work [13]; the algorithm
proposed is akin to the zig-zag algorithm first introduced in [14]—further studied in [15] and
with its convergence also studied in [6]—and a thorough comparison of the performance
of the introduced algorithm with other well known stochastic optimisation algorithms is
detailed. Further results on the convergence of global stochastic optimisation algorithms
using perturbed Liapunov function methods are presented in [16]. Let us stress that the
subject of stochastic optimisation is broad, encompassing many different types of algorithms
such as simulated annealing, genetic algorithms, and tabu search; a review of these different
types is provided in [17], detailing advantages and disadvantages and summarising the
literature on optimal values of the inputs. There are many instances of the idea that
the algorithm may; in itself, guide the search into more promising regions; for instance,
in [18], modifications of the pure random search algorithm are proposed following this
idea—implemented using the regularity of the function to determine the more promising
regions—and we quote, ...We think that if the objective function satisfies some conditions such
as continuity, the Lipschitz condition or differentiability etc., the regions containing the minimal
points are easy to be determined. If the algorithm generates many points in the regions of this kind,
the probability of success will be large.

Fruitful ideas to build global optimisation algorithms with stochastic differential
equations were previously published in, for instance, [19-26]. For numerical methods in
stochastic differential equations, a fundamental reference is [27]. The splendid book [19]
provides a well-founded approach to the convergence of algorithms either using functional
compactness arguments or weak convergence results; some of the algorithms studied are
taken as perturbations of ideal deterministic algorithms by an additive noise, not necessarily
Gaussian, satisfying regularity properties. The idea of defining the intensity of the additive
noise, the volatility of the stochastic differential equation by an annealing rate decreasing to
zero with increasing time, is proposed in [21], and weak convergence is studied. In [25], the
convergence of the studied algorithm for global optimisation with constraints is established
for general nonconvex, smooth functions; the stochastic differential equation underpinning
the algorithm has as a drift the symmetric of the gradient of the function—a well known
approach for obtaining a solution to an unconstrained optimisation problem considering
the ordinary differential equation—and for the volatility, the square root of a positive
function denominated annealing schedule with a parameter to be chosen according to the
problem under analysis. This approach was already studied in [20], where a detailed
justification for the choice of the stochastic differential equation is given, alongside many
interesting related results. In [26], the authors use Euler discretisation of a stochastic
differential equation with mean reversion, in which the volatility is suitably modified in
order to reduce the Gaussian noise contribution as the number of iterations increase; the
method is tested against 14 classical functions, and the results indicate that the random
search guided by the trajectory of a discretised diffusion perform well. The fine study
of stochastic algorithms based on stochastic differential equations can be read in [28],
where, using perturbed Liapunov function methods, stability results of the algorithms are
established. Furthermore, in [16], an algorithm of simulated annealing-type procedure is
studied and the following recommendation is stated: ...whenever possible, one can and should
use parallel processors....

In this work, we do not need much of a theoretical background on parallel computing,
as we use a standard computation tool to take advantage of the processors being able
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to compute either with the specification of working independently or not. Some general
references for the study of parallel algorithms are [29-31]. Early efforts on the parallelisation
of those stochastic algorithms that may be called by the random search type can be read
in [32], where a particular structure of the algorithm is designed using several units capable
of processing data independently, notwithstanding communication with the units during
the computation. In [29], a collective work, there is an excellent review of the main ideas of
parallelisation techniques for global optimisation algorithms. More recently, in [33], the
authors propose a framework to estimate the parallel performance of a given algorithm
by analysing the runtime behaviour of its sequential version; the goal is achieved by
approximating the runtime distribution of the sequential process with statistical methods,
and then the runtime behaviour of the parallel process can be predicted by a model based
on order statistics. The method we develop in this work bears some resemblance with this
general idea.

As we previously observed, some fundamental random search algorithms for global
optimisation built using discretised stochastic differential equations have as volatilities—
that is, variances—parametrised quantities derived from simulated annealing principles.
Parallelisation of simulated annealing type algorithms were studied by several authors.
A precursor work is [34], where the simulated annealing algorithm is mapped onto a
dynamically structured tree of processors; the algorithm presented achieves speedups
between log, N and (N +1log, N)/2, N being the number of processors. Another important
work is a volume edited by Robert Azencott, from which [35] is a paradigmatic chapter.
In [36], five parallel algorithms for global optimisation are studied; these algorithms are
categorised by the amount of information exchanged among the different parallel runs
with the asynchronous approach, being such that no information is exchanged among
parallel runs. The parallelisation we propose is asynchronous, and the parallel runs
are independent. In [37], there are three proposals of parallel algorithms for simulated
annealing that fall in a similar categorisation for the the amount of information exchanged
among the different parallel runs leading to independent, semi-independent, and co-
operating searches. An important reference on the same vein is [38], reporting on five
conversions of simulated annealing algorithm from sequential-to-parallel forms on high-
performance computers and their application to a set of standard function optimisation
problems. In the algorithm proposal of [39], a common feature of simulated annealing
algorithms, that is, adaptive cooling based on variance, is abandoned; instead, the algorithm
resamples the states across processors periodically, and the resampling interval is tuned
according to the success rate for each specific number of processors.

We now present in greater detail the contents and main contributions of this work.
The first one is to develop and study a novel formal description of parallelisation of
random algorithms for global optimisation with no constraints, and the second one is to
introduce and study a novel stochastic differential equation-based algorithm suited to
functions attaining the extremum at some points of the border of the domain of definition,
for instance, unbounded functions. On the first contribution, in Theorem 1, we detail a
proof of the convergence of the pure random search algorithm for measurable functions,
using simple results of martingale theory in discrete time, with the main purpose of
highlighting the perspective used in this work, to wit, a stochastic algorithm may be
seen as a sequence of random variables. With this perspective, in Theorem 2, we show
that two convergent pure random search algorithms associated with the same function
converge to random variables with the same law. We define, in Definition 3, the rate of
convergence of a random algorithm and, in Definition 4, the parallelisation of such an
algorithm, following the MPI standard, which is designed for distributed memory with
multiple kernels of computation. Theorem 3 is another of the main contributions of this
work, since we prove an estimate showing the improvement of the rate of convergence
of a parallelised algorithm measured with respect to the nonparallelised version of the
algorithm. We show that the parallelisation of the pure random search algorithm behaves in
conformity with the results of Theorem 3 with examples of standard test functions for global
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optimisation. For the second main contribution of this work, in Section 4, we introduce
a novel algorithm using stochastic differential equations based on a maximum principle,
which is specially suited for unbounded functions; we consider an example that we treat
both in the parallelised and nonparallelised versions of the algorithm, thus showing again
the advantage of parallelising a random algorithm. The proposed algorithm is different
from the algorithms proposed in the literature, in particular, in the works referred above in
the paragraph on global optimisation algorithms with stochastic differential equations, and
we intend to further explore the properties of this new algorithm in future work. Broadly
stated, the main difference stems from the fact that the stochastic differential equation
is built in order for the algorithm to be a martingale and for a maximum principle to
be applied.

2. On the Parallelisation of Random Algorithms

The introduction of a pure random search step in an adaptive stochastic algorithm for
global optimisation is an auxiliary device to avoid missing the global extremum. However,
keeping in mind that adaptive algorithms are introduced to increase the convergence rates,
the pure random search step is counterproductive, since it slows down the whole algorithm.

Thus, we propose parallelisation of the algorithm at the pure random search step level
in order to improve the global rate of convergence of the algorithm. For completeness,
we first describe a martingale approach to pure random search. Next, in Section 2.2, we
show that, with an appropriate definition of the rate of convergence, parallelisation of a
stochastic algorithm improves the global rate of convergence.

2.1. Pure Random Search Revisited

A probabilistic description of the pure random search may be defined as follows.

Definition 1 (Pure random search for global optimisation). A pure random search algorithm
for the global maximisation of a function f on a compact set K is a sequence (f(Yy))n>0 of random
variables, such that:

(i)  The function f : K C RY — R, defined on K a compact set of R¥, is measurable.

(i)  The sequence Xo, X1, ... Xn, ... is a sequence of independent and identically distributed (IID)
random variables with X —~ U(K), that is, X is uniformly distributed in K. We recall that,
with A denoting the Lebesgue measure over RY we have—with the symbol ~ denoting with
probability law—that:

XAL{(K)@VBEB(K),]P[B]:/\(110/311/\. (1)

(1ii) The sequence Yy, Y1, ... Yy, ... is a sequence of random variables with values in K defined for
almost all w € QY by Yy = Xg and for n > 1:

Y1 (w) = {X”+1(w) if f(Xpi1(w)) > f(Yu(w)) o

Yo(w)  if f(Xpa(w)) < f(Ya(w)),
with the consequence that (f(Yy))n>0 is a nondecreasing sequence for almost all w € Q).

Four our purposes, we recall an essential definition.

Definition 2 (The essential supremum of a function over a compact set). The essential
supremum o of the function f over K is given by:

ap:=inf{t: A({x € K: f(x) > t}) =0} =
=inf{t: f(x) <t, Aalmost everywhere on K} = (©)]
=sup{t: A({x € K: f(x) > t})>0}.
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We next single out Hypothesis 1 with the purpose of focusing on the most interesting
cases for our study. In Remark 1, we identify the extension of Theorem 1 to the excluded
cases of this hypothesis.

Hypothesis 1. We will suppose that ay € R. This hypothesis implies that, for all p > 1, we have
that f is of p-power integrable (see for instance ([40], p. 190)).

We now present the convergence result for the random algorithm of pure random
search for global optimisation.

Theorem 1 (On the convergence of the pure random search algorithm). Under Hypothesis 1,
we have that, for the pure random search algorithm in Definition 1:

1. The sequence (f(Yyn))n>0 is a submartingale with respect to its natural filtration F =
(Fn)nzo, that is, with: F, := o (f(Y0), f(Y1), ..., f(Yn)).

2. The sequence (f(Yy))n>0 converges almost surely to a random variable YL, such that, with
as the essential supremum of f over K in Definition 2,

]P[\y{;zaf} —-1, )

that is, the random variable Y{; is a strong solution of the global optimisation problem of f
over K.

Proof. We first observe that the random variables of the sequence (f(Y)),>0 are integrable.
In fact as we have, by Formula (2) and by the righthand side of Formula (1), that:

E[|f(Yus1)]] = IEHf (Kt )W p(x, 00> vy T L) (000 < £} H <

1 ®)
< Bl X+ BIS0] = 5 LA+ BIFO),

and we may conclude by induction. Now, since the conditional expectations are well
defined and the sequence (f(Y3)),>0 is a nondecreasing sequence for almost all w € Q),
we have that:

0 < E[f (Yar1) = fF(Y)| Ful = BIf (Yar1) [ Fu] = f(Ya)

and so we have the first statement in Theorem 1. In order to prove that the submartingale
(f (Yn))n>0 converges, we will take advantage of Hypothesis 1 to obtain an uniform bound
on the terms in the furthest left-hand side of Formula (5). Since we have that:

ap =inf{t: f(x) <t, A almost everywhere on K} < +co,

we have that, for every € > 0, there exists t¢, such that a F<te<agte, and such that
f(x) < te almost everywhere on K with respect to A. This implies the uniform bound:

supE[|f(Yn)]] < te < 400. (6)
n>0

As a consequence of the bound in Formula (6), we have, by a standard result on
martingale theory (see ([41], p. 50)), that the submartingale (f(Yy)),>0 converges almost
surely to a random variable that we denote by Y. In order to prove that vl isa strong
solution of the maximisation problem for f over K—defined to be a solution such that
Formula (4) is satisfied—we consider, for an arbitrary € > 0, the fixed set defined by:

Eyj—e = {xGK:f(x) >zxf—e}, (7)
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and we proceed with the following sequence of observations. Without loss of generality,
we may assume, as an Hypothesis 2, that « > 0, since, by Hypothesis 1, if it is otherwise,
we can always consider a translation of f.

§)

Gj)

Gj)

For e < ay we have that:
P {limsupq Xy € Eq,— }—1. 8)
|: n~)+oop{ ! (Xf 6}
We first observe that, by the fact that af = sup{t : A({x € K: f(x) > t}) > 0}, and as

a consequence of a standard supremum argument, we have that

]P[Xn € Eaf,e} = IP{f(x) > ap —e} > /\(1K) /{f(X)>afe} f(x)dA(x) >

A({x: f(x) > af —€})
A(K)

©)

> (a5 —€) >0.

Now, since the sequence ( Xn)nZO is an IID sequence, by the converse of Borel-Cantelli
lemma, as a consequence of Formula (9), Z;Z% P [Xn € E, f*e} = o0, and so the

announced result in Formula (8) follows.
Almost surely, we will have Y}, € E, e for some integer n > 0, that is, more precisely,

40 € ./T,IP[Q()] =1, Ywy € Oy Iny = 1’10((,00) , Yno(a)o) € Etxffe .
Let us suppose the contrary, that is,
Vo € F,P[Qo] =1, Jwo € Qo V1, Yu(wo) & Exj—e - (10)

Consider, for e < « s the set,

Qp := limsup{Xy € Ea;—e} = (| J {Xn € Eaj—c}, (11)

n—r+o00 m>0n>m

which we know, by Formula (8), to have full probability and select wy € ()y according
to the condition in Formula (10). Now, by the definition of (g in Formula (11), there
exists n9 > 1, such that Xy, (wo) € Ea;—e, that is such that f(Xy,(wo)) > af — €.
However, by the condition in Formula (10), we have that f(Y,,—1(wo)) < & — €, and
so, by the definition of the sequence (Y ),>o in Formula (2), we should have that
Yo (o) = Xy (wo) and so f (Y, (wo)) > a5 — €, thatis, Yy, (wo) € En;—e, a statement
that contradicts the condition in Formula (10).

We have the final conclusion of the second statement in the theorem, Formula (4), that
is:

Pl >af] =1.

Take € < ayand Q) € F satistying Observation (jj), that is, a set of full probability
and such that,
Ywg € Qo dng = no(wo) , Yno (CUQ) S Eaf—e .

Now, since the sequence (f(Yy))n>0 is almost surely nondecreasing, for all wy € Qg
and the adequate ng = ng(wy), we can write:

Vn >no, f(Ya(wo)) > f(Yny(wo)) > ay —€,

a condition that implies limy, 1o f(Yn(wp)) =: Y{o(wo) > ay — €. We have thus
shown that
W <e<ar, Pl >ap—¢| =1,
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a condition that, by a standard argument, implies Formula (4).

Being so, the proof of the theorem is now complete. []

Remark 1 (On the case of an infinite essential supremum). In order to extend Theorem 1 to
the case w F = o0, we may consider that

Sl;}glE[f+(Yn)} < o0,

a condition that, for any submartingale, is equivalent to sup,,~o E[| f(Yn)|] < +oo, that is, the
sequence (f(Yy))n>o is bounded in L' (see ([41], pp. 50-51)). Furthermore, by observing that, if

ap =sup{t: A({x € K: f(x) > t}) > 0} = +o0,

we have for arbitrary M > 0 that A({x € K : f(x) > M}) > 0, and so we can consider, instead
of Enj—e, the set Ex, m = {x € Kz f(x) > M}. We then show that P {Y{o > M] = 1witha
f =

similar proof, a condition that, in turn, implies that Y —+o0 almost surely.
We now state a remark and an important result on the laws of the solution of the

global optimisation problem by means of pure random search that we will use in the sequel.

Remark 2 (On the laws of the variables of the algorithm). Comnsider the two sequences
Xo, X1,... X, ..., and X, X}, ... X}, ... of IID random variables with X ~ U(K), and let
fX0), f(M1), .- f(Yn), ... and f(X}), f(Y]),...f(Yy,),... be the corresponding pure random
search algorithms according to Definition 1. Then, for all n > 0, we have that f(Yy) and f(Y})
have the same law. In fact, a simple proof by induction shows that, for every n > 0, the law of
Y,,—and consequently, the law of f (Y, )—only depends on the law of (Xo, X1, ... Xn).

Theorem 2 (On the unicity of the global optimisation solution of pure random search).
Suppose that ag, the essential supremum of f over the compact K, is finite. Let (f(Yx))n>0
and (f(Y},))u>0 be two pure random search algorithms associated with Xo, X1, ... Xy, ... and
Xy, X4, ... Xy, ..., two sequences of IID random variables with X —~ U(K), as in Remark 2.
Suppose that these random algorithms converge to Yoo and Y, respectively. Then, we have that
P(Ye # Y}| =0, and so Yoo and Y, have the same law.

Proof. We can consider the sequence defined for n > 0 by:

7 {Yn if £(Ya) > £(¥;) 12
Yi () < (V)

Now, we may observe the following. Firstly, we have that, almost surely for n > 0,
f(Zn) = max(f(Yn), f(Y;)) as an immediate consequence of the definition in Formula (12).
Then, we have that, almost surely, (f(Z,)),>0 is a nondecreasing sequence, as it is defined
as the pointwise maximum of two nondecreasing sequences. Lastly, since, for all n > 0, we
have that Y, and Y}, have the same law (see Remark 2), and since, by Formula (2), we have
that:

_ [Xunw@) i fXa @) > fYalw) :

D b {Yn«u) i (@) < S, OIS
"y _{X;H(w) i £ (@) > F0@) s
@) A (@) < f(Y(@), "

then (f(Z))n>0 is a pure random search algorithm for global optimisation of f over K that,
by Theorem 1, converges almost surely to some random variable X. Since we have that,
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for almost all w € Q, the sequences (f(Yy(w)))n>0 and (f(Y},(w)))n>0 are subsequences of
(f(Zn(w)))n>0, we immediately have that Yo, = Xoo = Y/, almost surely, as claimed. [

2.2. On the Rate of Convergence of a Parallelisation of a Random Algorithm

In this section, we use the Ky Fan distance to define the rate of convergence of a
generic random algorithm, and we obtain natural bounds for the rate of convergence of a
parallelisation of this random algorithm. The pure random search developed in Section 2.1 is
a basic algorithm, to which the following results apply.

Consider a stochastic algorithm for global optimisation—for instance, on what follows,
maximisation—of a measurable function f on a regular domain D € B(RY) given by the
sequence of random variables (f(Y)),>0. We will suppose that (f(Y;))n>0 converges, at
least in probability, to some random variable Y. We recall that dxr, the Ky Fan metric
(see ([42], p. 289)), is defined for two random variables X and Y to be:

dgp(X,Y) :=inf{e > 0: P[|X - Y| > €] <€},

and that this distance is the distance of the convergence in probability. Furthermore, we
have that lim,— 4o dgr(f(Yn), Yoo) = 0.
We now introduce a quantitative notion for the rate of convergence of an algorithm.

Definition 3 (The rate of convergence of a random algorithm). Suppose that the random algo-
rithm (f (Yy))n>0 converges in probability to some random variable Y . The rate of convergence
of the algorithm is given by the numerical sequence:

(dke(f(Yn), Yoo)) 50 -

that is, the rate of convergence of the algorithm is the rate of convergence to zero of the numerical
sequernce (d%ﬁf’n) w with, by definition, d%@"n = dgr(f(Yn), Yeo).
)y ,

We now consider a definition of parallelisation of a random algorithm.

Definition 4 (Parallelisation of a random algorithm). Given a random algorithm (f(Yy))n>0
for global optimisation of a measurable function f on a reqular domain D € B(RY), converging
in probability to some random variable Yo, we say that this algorithm is parallelisable if, for
every integer r > 1 and for every n > 0, there exist r independent copies of the terms f(Yy) of

the algorithm sequence (f(Yy))n>0 and of the random variable Y cs—namely f(Y},) and Y, for
j=1,...,rand every n > O—such that the following two conditions are verified:

1.  Forallj=1,...,r, we have that limy, de(f(Y,]ql),Y{;o) =0.
2. Forallj=1,...,r, the random variable Y, is a solution of the weak optimisation problem
for fon D, thatis, ay < |E [Yéo} , with a g the essential supremum of f (see Definition 2).

Remark 3 (PRS as an example of a parallelizable algorithm). The pure random search of a
measurable function f on a compact set K studied in Section 2.1 is parallelisable. In fact, given any
two samples of X —~ U(K), as in Remark 2 and Theorem 2, the correspondent terms of the two
algorithms generated by the two samples are independent as a consequence of the fact that, as seen
in Remark 2, the law of f(Yy) only depends on the law of the initial segment (Xo, X1, ... Xy) of the
sample of X —~ U(K) used to define it. It thus follows firstly that the limit random variables are
independent, because almost sure limits of term-by-term independent sequences are independent by
an application of a standard reasoning using characteristic functions. Moreover, as by Theorem 2,
both limits of the two algorithms are equal almost surely if one of these limits is a solution of the
(strong) optimisation problem.
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We now state the result that compares the parallelisation of a random algorithm with
the version of the algorithm without parallelisation. This result can be used to determine
stopping criteria for parallelised random algorithms, as detailed in Remark 5.

Theorem 3 (On the rate of convergence of a parallelised random algorithm). Let (f(Yy))n>0
be a parallelizable random algorithm for global optimisation of a measurable function f on a reqular
domain D € B(RY) and let the limit in probability of the algorithm and solution of the global
optimisation problem be the Yo random variable. Let r > 1 be an integer and let (f(Y3}))n>0
and Yk, for j = 1,...,r, be the independent copies of the algorithm and of the solution of the
optimisation problem according to Definition 4. We then have for all n > 0:

P | min
1<j<r

£ - Y| 2 diz, | < (d7,) 14
and also, for all n > 0 such that d%ﬁi"n <1,

P | max
1<j<r

Fyh) - Y{,o‘ > d}fgn] <1- (1 - d%;on) <r-dgg, . (15)

Proof. For the proof, we will use Lemma 1, which is well known, but which we reproduce
next for the reader’s convenience. Since we have, by definition, that:

dyp, =inf{e > 0: P[|f(Yy) — Yoo > €] <€}, (16)

we also have that, for every integer k > 1,

e > 0, dyf, < e <dgi, + ¢ and Pf(Ya) — Vol > e] < e

k

Without loss of generality, we may assume that the sequence (€ );>1 is nondecreasing.
Now, the algorithm being parallelisable, by Definition 4, we have the necessary conditions
to apply the estimate in Formula (a) of Lemma 1, and so we obtain

P | min
1<j<r

£(0h) - Y| > ek] =P[|f(Ya) = Yeo| > " < (&) < (d%sz ,1() '

The bound in Formula (14) now follows by taking the limit as k goes to infinity, since
limy_, oo € = dgF The proof of Formula (15) is a consequence of applying the estimate
in Formula (b) of Lemma 1 to obtain

P [max

max () = WL | > @ =1 (1= Pf(0) ~ Vel > &),

and then by taking the limit as k goes to infinity. [

For the reader’s convenience, we recall the following well known elementary result
that was used in the proof of Theorem 3.

Lemma 1. Let (Z;)1<i<, be a sequence of non-negative, independent and identically distributed
with a random variable Z. We then have, for all €:

(@) Plminj<i<, Z; > €] =P[Z > €]
(b) Plmaxi<ij<,Z; >€|=1—(1-P[Z > ¢€])

Proof. We have that

U {z <e}_{mmZ <e} N {Z >€}—{mer >€}

1<i<r 1<i<r
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and so it follows, by the independence and the identical distributions of Z;, that:

IP[mm Zi > e] =P
1<i<r

N {Zi>e}1 =[] PlZi>e]=P[Z>¢]".

1<i<r 1<i<r

The proof of the second assertion is similar by observing that

{maxZ <e} N {Z <e}:>lP[maxZ <€}=1P[Z§e]’,

1<i<r 1<i<r 1<i<r
which is equivalent to the second stated formula. O

Remark 4 (On the rate of convergence of a parallelised random algorithm). The rate of
convergence of an algorithm (f(Yy))n>0, as in Definition 3, is the rate of convergence to zero of the

sequence (d KE n) o with the terms of the sequence being as in Formula (16). In this formula, the

infimum is attained (see again ([42], p. 289)), and so we have that:
P[If(Ya) = Yool > diz,| < iz, (17)

If this random algorithm is parallelisable, as in Theorem 3, we may consider that the gain in
performance with this parallelisation is observed on the behaviour of

min
1<j<r

FYh) -

(18)
a behaviour that can be assessed in Formula (14), that is,

P | min
1<j<r

£ = Y| = dm} < ()

As a consequence, we should compare this behaviour with the behaviour of the original
algorithm in Formula (17). It is clear that, when d < 1, there is, for the parallelised algorithm,
a remarkable improvement in the probability of a dewatzon from zero of the random variable in
Formula (18) that measures the gain in performance with the parallelisation.

Remark 5 (On the actual implementation of a parallelisation of a random algorithm). One
way for an actual implementation of a random algorithm to take advantage of the improvement in
the performance gained with the parallelisation, observed in Remark 4, is the following. Let M]" for
j=1,...,r be the current maximum at step n for each one of the parallel runs of the algorithm.
Let n 4+ m be such that m > 1 is the smallest integer, such that at least one of the current maxima
changes. Let MZ*’" forj=1,...,5 <rbe the changed current maxima at step n + m. Applying

the stopping criteria to M = max;_

.....

s M;’j*m will accelerate the algorithm stopping.

3. Some Parallel Computations with the Pure Random Search Algorithm

This section is devoted to present a computational study aiming at exhibiting the
effects of parallel computing with the pure random search algorithm. Intuitively, asyn-
chronous parallelisation of an algorithm with the parallel runs running independently is
tantamount to performing the evaluations of the algorithm in several different machines,
not necessarily simultaneously; with this perspective, it seems equivalent to perform four
thousand search steps in a single machine or one thousand search steps in each one of
four similar distinct machines and then collect the results. It may be observed that, in
order to consider the possible performance improvements with the parallelisation of an
algorithm, we have to account for the execution times. Moreover, there is evidence of an
upper limit for the gain obtained by the parallelisation of an algorithm, namely Amdhal’s
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Law (see ([43], p. 65)) or the latter refined Gustafson’s Law (see [44]). In Remark 5, we
suggested a procedure to take into account the execution time of the best performing copy
of the parallelised algorithm in order to stop the algorithm. In the following, we will not
stop the algorithm whenever there is a copy of the algorithm satisfying the stopping criteria.
Instead, we will stop the parallelised algorithm only when all the copies satisfy the stopping
criteria and take the result of the copy—both in the variables time of execution and value
attained—having the value attained when stopped that is closest to the maximum. This
approach also allows us to study the improvement in the time variable in a simple way.
From Formula (14), in Theorem 3, we have a theoretical upper bound on a tail prob-
ability of the parallelised algorithm and the rate of convergence of the nonparallelised
algorithm that depends on r, the number of independent copies of the algorithm in the
parallelisation. In the study presented in the following, we intend to illustrate a determined
quantitative improvement with the parallelisation of the pure random search algorithm.
The proposed method for the study is described in the following steps.

1.  For each of the functions of two real variables studied (see Appendix A for additional
information on these functions)—Ackley’s, drop-wave, Keane’s, Goldstein-Price’s,
Himmelblau'’s, and a nearly unbounded function—we determined, by Monte Carlo
simulation, two lists of pairs of numbers, UU and VV. The list VV has 400 pairs of
numbers, the first number of the pair being the time in seconds that the nonparallelised
PRS algorithm overcomes 95% of the known maximum of the function, at which point
the simulation stopped, and the second number being the value attained at the
moment the algorithm stopped. The list UU is similar to the list VV, but it contains
the pair corresponding to the best performing kernel—among the four kernels of
the machine used in the parallelised algorithm—regarding the value attained. In
Appendix B, we detail the machine characteristics as well as the main code used in
the computations both of the parallelised and the simple algorithms.

2. Wefitted a continuous bivariate distribution to both samples UU and VV, truncated to
exact intervals of both time, the first marginal variate, and value, the second marginal
variate. Then, using the probability density functions (PDF) of the marginals, denoted

U and fyv for the first marginal and f2° and fY"_for the second marginal of each of
the two samples UU and VV, we determined two values of reference one tref the time
reference and the other v, the value reference, such that:

time

f\}i}i\e (vref) = fx‘g\ge (Uref) and tg:e (tref) = f;;’n:]e(tref) . (19)
We observe that, in some cases, .o¢ and v,.¢ were not unique solutions of the equations
W (v) = f¥¥ (v) in the variable v and f2V(¢) = f¥V(t) in the variable ¢; whenever

this situation occurred, we chose the solutions closest to the medians of the two
distributions. Furthermore, in at least one of the cases, there was no solution of the
equations with the PDF, and we used a solution of a similar equation but with the
cumulative distribution functions.

3. With the determined values of t..¢ and v ., we can immediately compute the
conditional probabilities given by P |[V > v,¢|T < t o] for the parallelised al-
gorithm, V being the value variable and T the time marginal variable, and similarly,
P|[V > vyof|T < toof] for the nonparallelised algorithm. By analogy with Formula (14)
in Theorem 3 and due to the choice of tref and Uypefr WE would expect to have:

PV = vpef| T < tref] PV 2 0l T < el

where 7 is the number of copies in the parallelised algorithm. As a consequence, with:

. log(IP” [V 2 0T < tref])
log (IPl [V > Z)ref|T < tref])

, (20)
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we expect to have 7 = r in the examples given.

In Table 1, we present the results of the computations just described, with » = 4 kernels,
using the machine and code both presented in Appendix B. A first observation is that the
result for the nearly unbounded function is the best among all functions tested. This kind
of function will be the object of the results presented in Section 4. A second observation
is that the median time values come from samples of repetitions of the algorithm both in
the parallelised and nonparallelised versions; in the parallelised version, there are four
times more repetitions than in the nonparallelised version, and being so, it is possible for
the median times obtained with parallel algorithms to be sometimes worse than with the
nonparallelised version.

Table 1. Results comparing the parallelised and the nonparallelised algorithms.

Function tref Med. Time UU; VV Vref Med. Value UU; VV 7
Ackley 1.01974 2.315; 0.320748 22.1859 22.3949; 22.0619 3.2257
Drop-wave 1.09633 0.791884; 0.67545 0.981912 0.990949; 0.974948 3.65206
Keane 0.0121573 0.0114686; 0.00892817 0.659555 0.66714; 0.656837 3.35966
Nearly unbounded 2.97751 1.35259; 6.05625. 9784.74 9901.14; 9746.28 3.89735
Goldstein-Price 3.52532 1.25178; 6.00467 6.87869 6.93984; 6.82673 3.34803
Himmelblau 0.25 0.0163107; 0.0135014. 9.82452 9.91097; 9.73618. 3.45038

Remark 6 (Quantitative experimental validation of the advantage of a parallelisation of a
pure random search). The results presented in Table 1 seem to substantiate the claim presented
in Theorem 3, in Formula (14). In fact, it seems clear that, both for the examples of slightly
modified well known test functions having several local maximums—Ackley’s, drop-wave, and
Keane's—and the functions attaining their maximums on a plateau-like surface—Goldstein—Price’s
and Himmelblau's—we obtain estimates of r = 4, given by 7, that can be considered acceptable,
taking into account that, in the parallelised algorithm, efficiency losses occur in the distribution of
tasks among kernels.

Remark 7 (Simulated data representations for examples of two types of functions). The
simulated data that allowed us to determine the values of Table 1 can be visualised to provide a
better insight of their characteristics. In Figures 1 and 2, we compare the same data for functions
that clearly differ in the maximum localisation characteristics. As already mentioned, the drop-wave
function presents several local maxima, with some of these local maxima agglomerated together
with the global maximum, and the Himmelblau's function has its maximum—uwith four distinct
maximisers—in a surface plateau.

There is a noticeable similarity between the parallelised data of both functions, as well as
between the nonparallelised data of both functions.

However, there is a noticeable difference, for each function, between the parallelised data and
the nonparallelised data. The parallelised data for both functions show a concentration on the upper
left corner—less accentuated for Ackley’s function—that is, surrounding the best values in a way
that can be described as: closest to the true maximum and smallest times—more noticeable for
Himmelblau’s function—uwhile the nonparallelised data, for both functions, appear to be uniformly
distributed in the interval [95% max, max|, also being more scattered in the time variable.
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Ackley's function data parallelized: Time vs. Value
Ackley's function data NON parallelized: Time vs. Value

Ackley's UU data
Ackley's VV data

Figure 1. Smoothed histograms and simulation data for Ackley’s function.

Himmelblau's function data parallelized: Time vs. Value Himmelblau's function data NON parallelized: Time vs. Value

Himmelblau's UU data Himmelblau's VWV data
San A
1 .

99
0818
orls
. 96

002 0.04 006 0.08
J100

Figure 2. Smoothed histograms and simulation data for Himmelblau’s function.

4. On a Martingale Diffusion Type Algorithm for Global Optimisation

In this section, we propose an algorithm for global optimisation based on the maxi-
mum principle for strictly elliptic operators. Let us take as an example a harmonic function
on an open and bounded domain with regular boundary; this function belongs to the
kernel of the Laplacian operator. It is well known that such a function attains its maximum
on the boundary. Consider the diffusion naturally associated with the Laplacian. The
algorithm we propose consists of running the diffusion on the domain until it touches
the boundary; then, by a Feynman-Kac-type result, we can obtain the maximum value of
the function. This algorithm is suited for nearly unbounded functions. We next detail the
general idea of our approach.

4.1. On the Maximum Principle for Strictly Elliptic Operators

Consider a function f : D C R? — R, where D is a bounded open set with a regular
boundary dD. We consider the following two global optimisation goals for the function f
over the compact D.

(@@ Determination of sup,, .\ .p f(x1,%2) =2 M D

(b) Determination of the set of maximisers {(xl, x2) €ED: f(x,x0) = M fﬁ}‘
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We will consider the following regularity hypothesis of f over D.

(A1) f € C?(D) (f is twice differentiable on D, and the second differential is continuous)

and f € CY(D) (f is continuous in D).

We consider (Q), F,P) a complete probability space and B! = (B});>o and B? =
(B?)i>0 two independent Brownian processes on (Q, F,P). Let F = (F;);>0 be the
natural filtration generated by both B! and B2, which we assume to be complete and right-
continuous. The first ingredient in the elaboration of our algorithm is a two-dimensional
diffusion process (Y¢);>0 = (Y}, Y?)i>o, that is, a strong solution of the following system of
stochastic differential equations:

{ ay}! = m(V)dt + o1 (V1)dB} , Yy € R -

dYtz = ‘uz(Yt)di' + (Tz(Yt)de , Yg cR.

We will suppose that the coefficients py, 01 and py, o2 have the necessary regularity to
ensure the existence of a strong solution (see Remark 9 on validity of this hypothesis).

In order to guarantee some useful convergence properties, we assume the following
hypothesis.

(A2) The process (f(Yt))s>0 is a F-martingale.
As a result of an application of Ito’s formula (as in ([45], pp. 32-33)), we can identify a

partial differential operator that will impose further constraints on the coefficients of the
diffusions in Formula (21). In fact, we have:

2 2
a5() = {mmi{;(m 400 5E 00+ 3 (gém)vfm + gémnﬁm) a+

(22)
0 0

+ (L mamast + 3L eaast)

and in order for (f(Y;))t>0 to be a martingale, the sum of the terms that constitute the dt

coefficient in Formula (22) has to vanish. Furthermore, if we consider the operator defined
forh : (xl,xz) €D — h(xl,xz) e€R,h e CZ(D), by

2
L(h)(x1,x2) := Zﬂi(xlfxz)gl(xlfxz) +%

2, 0%h
1 7 N 0 7 7 23
L m Z o (% xz)axz (x1,x2) (23)

i=1 i

we should have £(f) = 0in D; a condition denominated f is £ harmonic on D (see [46], p. 47).

Now, in order to ensure a Feynman-Kac-type representation result, we assume the
following hypothesis:

(A3) The operator L is strictly elliptic on D, that is,

2 2
Vx = (x1,x) € DIA(x) >0Vz;,z0 € R, ) oi(x)oj(x)zizj > A(x) ZZZ . (29)

1

ij=1 i=1
The following result, which we quote from ([46], p. 46), gives a representation of the
solutions of a well posed problem with operator £ using the diffusion (Y});>o.

Theorem 4 (A Feynman—Kac-type representation of the solution of a Dirichlet problem).
Let u be a solution of the Dirichlet problem for the operator L in Formula (23) associated with the
function f in D, that is:
e ueC?D)andu e C’(D).
e L(u)=0inDandu = findD.

Then, with tp, the exit time of (Y})>o from D, that is, Tp := inf{t > 0:Y; & D}, we have
the following representation:
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(a) Tp < +ooalmost surely (see also ([47], p. 324)).

(b) Forall x € D, we have that u(x) = E*[f(Yz, )], with E* being the expectation with respect
of the law of (Yt)s>0 given as a solution of the diffusion system in Formula (21) with initial
condition x.

As a consequence of the statement (b) of Theorem 4, we have the following maximum
principle that is crucial for our algorithm proposal.

Theorem 5 (A maximum principle application). Consider the notations and conditions of
Theorem 4, and suppose that f is L harmonic in D, and moreover, that f is a solution of the
Dirichlet problem for the operator L, associated with the function f in D, that is:

e feC%D)and f € C°(D).
e L(f)=0inD,and obviously, f = f in dD.
We then have, by the conclusion of Theorem 4:

Vx €D |f(x)] < sup|f(y)| .
ycoD

Proof. Since, by the representation formula, we have for all x € D that f(x) = E*[f(Yz,)],
we can conclude that:

[f()] = [Ef (Yop)]| < BY|f (Yop)[] < B

sup f(y)ll = sup |f(y)],

ycoD ycoD
and the conclusion now follows the hypothesis f € C°(D). O

Remark 8. Let us summarise the main ideas we are pursuing. We link the function f to a two-
dimensional diffusion by means of a strictly elliptic differential operator of second order having
as coefficients the diffusion coefficients, for which f is a solution of a Dirichlet problem. The
representation Theorem 4 shows that, if we start the diffusion anywhere on the domain of f, and
then we wait until the diffusion hits the boundary, we will have that the value of the function f at
this point is a candidate to the maximum of the function in the closure of its definition domain.

4.2. The Practical Implementation of the Algorithm

Following the main idea exposed in Remark 8, we need to determine the coefficients of
the diffusions in such a way that we have £(f) = 0. For that purpose, we do the following.

1.  We assume that, as f grows, the volatilities of the diffusions should decrease, and so
we consider, for instance,

gi=e " i=1,2;a, >0, (25)

with «; and B; to be chosen appropriately depending on f, its domain of definition D,
and possibly also in an adaptive way in the algorithm.
2. We consider two functions g; : (x1,x2) € D +— gi(x1,x2) € R, g € CYD),fori=1,2,
such that: of
a8 if - (26)
1
We observe that, by Schwarz’s theorem, we have that dg; /dx, = dgp/dx;.
3. Inorder to determine the drift coefficients of the diffusions, we may observe that, for
f # 0, we have that £(f) = 0if and only if:

981 2 ‘712 982 2 ‘722_
H181 + H282 + <8x1 +g1) > + ax2+gz 2 =0,
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as a result of Formula (23) and of the previous determinations. This equality can be
achieved by taking, for instance, fori = 1,2,

L g . o\ 77
Vz—_(agci+gi>;gi/ (27)

an expression that is determined as soon as the functions g; are determined.
4. We can consider the equally spaced Euler-Maruyama discretisation (see ([48], p. 305)
or ([49], p. 152)) of the diffusions in Formula (21), that is, fori = 1,2,
{ml = Vi il (8, Y2) At 4 i (Y4, Y2)VARZ, n >0 28)
Yi = x;
0 [

At being the discretisation step, with Y, = Y}, and the sequence (Z},),>0 being a
sequence of independent and identically distributed random variables with a standard
Gaussian random variable, that is, Z ~ N'(0,1).

The effectiveness of the practical implementation of the algorithm is conditioned to
the existence of strong solutions of the system of SDE given in Formula (21), having the
drifts given by Formula (27) and volatilities given by Formula (25). A first observation is
that, as a consequence of Formula (26) and of Formula (27), we have, for i = 1,2, that:

I
0x2 O

Ui = — afl 71 . (29)
ox;

Thus, if % is bounded away from zero, that is, if % > a > 0, and if % € C'(D),
we have that y; is a continuous function over the compact D and so is both uniformly
continuous and bounded in D. A second observation is that, with the choice o4 = 05 >

€ > 0in Formula (25) we have that, for

2
Y zizjojo; = (2101 + 2002)* = 07 (21 + 22)* > 07|z + 2 > 02||z1| — || > >
ij=1

N

2
og €
> of max(|z1 %, [22*) 2 5+ (2] + 8) 2 S (2 +3),
and so the operator defined in Formula (23) is strictly elliptic—even uniformly strictly
elliptic—according to Formula (24). We now need an existence result for the system of
stochastic differential equations given in Formula (21) having the drifts given by For-
mula (27) and volatilities given by Formula (25). For that purpose, we quote the following

version of the celebrated Yamada—Watanabe theorem (see ([50], pp. 40-41)).

Theorem 6 (Yamada and Watanabe 1971). Suppose that y and o are progressively measurable
and bounded and satisfy the following hypothesis.

(1) There exists py : [0, +oo[— [0, +-00[, an increasing continuous function, such that p1(0) =
0, such that:

du
Vt, x, o(t,x) —o(t, < X — and 1 —  =+4o0c0.
y llott,x) ~o(ty)ll < pa(lx—yl) and limy [ 5

(2) There exists py : [0, +00[— [0, 400, an increasing concave function, such that p,(0) = 0,
such that:

du

Vhxy (utx) = pty)) < palx —yl) and limy | s = oo
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Then, for any random variable Z, where ty € [0, T], the following stochastic differential
equation

(30)

dXy = u(t, X¢)dt + o (t, X¢)dBy, t€ [to, T],
Xto =Z,

has a strong solution and uniqueness in law holds.

Remark 9 (On the existence and unicity of the process (Y;)¢>o defining the diffusion
algorithm). Despite the fact that, in general, we do not have the sub-linear growth of the coefficients
that, together with the Lipschitz character of these coefficients, ensures existence and unicity of
a strong solution in the context of the classical Ito’s theorem, we may nevertheless conclude that
the system of stochastic differential equations given in Formula (21), having the drifts given by
Formula (27) and volatilities given by Formula (25), has a strong solution that is unique in law;
this happens as long as we force the solution process to stay on a compact set contained in D. In
fact, by the regularity properties imposed on f, we have that o; € C*(D) and 0; € C°(D); thus,
by the mean value theorem, on any compact set contained in D, we have that o; has a bounded
derivative, and so it verifies a Lipschitz condition, which implies that it satisfies hypothesis (1) of
Theorem 6. Moreover, as pointed out above, the regularity properties imposed on f also imply that
the term not containing o; in Formula (27) is bounded, and so the drifts are also Lipschitz on any
compact set contained in D by virtue of the same property that the term o;—in Formula (27)—has.
The practical implementation of the algorithm in Section 4.3 considers that the diffusion process is
restrained to a compact set contained in the maximal open set where the function f is defined.

Remark 10 (On the convergence of the Euler-Maruyama discretisation). The equally spaced
Euler—Maruyama discretisation that we propose in Formula (28) converges weakly under a very
general hypothesis, as stated in Proposition 4.58 in ([49], p. 146). This is a consequence of the
reqularity of the coefficients—y; is continuous, and o; has the same regularity as f—and the
fact that the strong solution of a SDE given by an Ito integral, with continuous coefficients, is a
continuous function of the Brownian process. Nevertheless, the question of the strong convergence
and of the rate of convergence of the Euler—Maruyama discretisation should be addressed for each
particular case of the function f studied.

Remark 11 (The martingale diffusion type algorithm). A simplified scheme describing the
martingale diffusion-type algorithm is the following. The actual implementations in Mathemat-
ica ™(see [51]) for both the parallelised and nonparallelised versions are presented in Listing A4
and Listing A3, respectively.
STEP 1:
CHOOSE Tolerance error € > 0 and upper bound A.
STEP 2:

CHOOSE (x1,x;) € D at random uniformly ;
DO: Y} = x;, fori =1,2and M; = f(x1,x,)
STEP 3:

DO: compute iteratively (Y;}, Y2) for n > 1 according to Formula (28);
IF f(Y},Y2) > M; DO: My = (Y}, Y2) > M;
UNTIL either one of the following stopping criteria is verified:

stop at n = ng such that: (Y;} ,Y2) & D or,

ng’ - n
stop at n such that: | Y} — Yil‘ Ji Y2-Y2 ;| <eand
either |[f(Yy) — f(Yy—1)| <eor [f(Yn)| > A;
STOP or GO TO STEP 2 with new M, that must be compared with M;.
We observe that STEP 2 in the algorithm is of the pure random search kind. Being so, if the
algorithm is parallelisable, the results of Section 2.2 can be applied. In the parallelised version, there
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will be an extra step added to the above pseudo-code for collecting the times and values of each of the
four copies of the algorithm.

We now prove that the algorithm we just described in the simplified scheme above is
parallelizable according to Definition 4.

Theorem 7 (Parallelisation of martingale diffusion-type algorithm). Let the process (Y)>0
be given by the set of two diffusions in Formula (21). Suppose that the process (f(Yt))¢>o is such
that Hypothesis (A1), (A2), and (A3) hold. Then, the process (f (Yt))s>o is a uniformly integrable
martingale, and so it converges, almost surely and in LY, to a random variable Y{;. Moreover, if
f > 0, we have that:

(a)  the well defined random variable f(Y<,) is a weak solution of the global optimisation problem
for f inD;
(b) the algorithm described in Remark 11 is parallelizable.

Proof. It is clear that, as f € C°(D) that for every p > 1, we have that:

stggE[lf(Yt)\"] < +oo,

and so the process (f(Y:))>0 is uniformly integrable (see, for instance, ([41], p. 29));
moreover, this process being a martingale in continuous time it converges almost surely
and in L! to a random variable that closes the martingale (see, for instance, ([41], p. 88)).
From statement (b) in Theorem 4, it follows that the random variable f (Y, ) is well defined.
Now, without loss of generality, we may suppose that f > 0. Now, again by Theorem 5
and its proof, we have that:

Vx €D f(x) < sup f(y) = E¥[f(Yrp)] -
y€dD

Since D is bounded, we recall Definition 2 of the essential supremum of f over the
compact set D,

ayp = inf{t : f(x) <t, Aalmost everywhere on 5} ,

from which is clear that

0 < ay <= sup f(y) = sup £(y) = B*[f(¥sy)], @1
yeD y€aD

and so Assertion (a) of the theorem is proved. From Formula (28), it is c}ea; that, for
i =1,2, thelaw of Y] ; depends only on the law of the random variable (Zy,2%,...,2y),
and so the same happens with the law of the integer valued hitting time of dD, that is,
5 :=inf{n > 0: (Y}, Y?) € D}; we observe that, almost surely, we have:
lim 0 = 1p . 32
ARy TP T TP (52)
In fact, since we have that 7p = inf{t > 0: Y; € 0D}, we may state:

L Vt < ™, Y; € D;
e and for almost all w € ), we have that:

VAt >0, dnpy = np(w) , mp(w) € [naAt, (npy +1)At] . (33)
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Since T4 = inf{m > 1: Y,;p; D}, we now have for the hitting time of 9D by the
discretised process that T < (n + 1)At by force of Formula (33); moreover, the following
dichotomy applies:

if p(w) = npAt, then A(w) = p(w),
if Tp(w) > npAt  then TA(w) > npAt,

and in any case, we have |tp(w) — TA(w)| < At, as claimed. Now, if we redefine the

discretised algorithm (Y,,),>0 by:

n =

- {Yn forn < 4

YT% forn > Té ,
we will have N
lim dKF(f(Yn)/f(YT%)) =0. (34)

n— 400

Moreover, we observe that:

B [£ ()] | - B (o)l | < B
<EF|

(X)) = f(¥p)]] <
fra)) = F(T)]] + B

f(Fa) = f(¥ep)|] -
We have that (f(Y,))u>0 is a uniformly integrable martingale, and so the stopped

process (f(Yn))n>0 is a uniformly integrable martingale converging in probability to the
random variable f (YT%) by reason of Formula (34). As a consequence, we have that:

)-o

f(Xy) = f(Yop)|] =0,

lim ( lim ]Efo(YT%))—f(?n)

At—0 \n—>+00

Furthermore, using Formula (32), we then have that:

lim ( lim IE"[

At—0 \n—>+0

() = £(Yey)|]) = tim, x|

At—0

and, as a consequence, we may state that

Jlim B [£(Y8)]| = EXf(Ys,)],

Finally, as a consequence of Formula (31), we have, for sufficiently small At, that

0 < f(x) = EX[f (Yop)] ~ E¥ [ f(Yey)]
and so the algorithm is parallelisable. [

4.3. An Example of an Application of the Diffusion Optimisation Algorithm with Parallelisation
In order to consider an example of a function to apply the diffusion algorithm, we
start with

2+ cos?(7x + 11y)

(x,y) €] - 1,1[x] -1, 1]~ € {+oo}UR™\ {0},
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a function that is unbounded at the point (0,0). The function f that we analyse may be
considered an example of the type of nearly unbounded functions, such as the one studied in
Sections 4.1 and 4.2 if we consider it to be defined in the open set given by:

D= - L1\ {(xy) 2 + 97 <2108},

represented in Figure 3 for (x,y) € D, such that |f(x,y)| < 18 for a better visualisation. It
is clearly a function that will attain its maximum at a point of the boundary of D, more
precisely on the set { (x,) : x2 + y*> = 2 x 1078 }. We observe that the point (0.0001,0.0001)
belongs to this circle, and that £(0.0001,0.0001) = 21213.2; this value will be used in the
implementation of the algorithm. We observe also that numerically, that is, using a
standard maximiser function of the software, we have:

max_f(x,y) = 21213.037869117255 =
(xy)eD

= £(0.00013974449759483935, —0.00002172050421622352) ,

with a unique maximiser in the set {(x,y) : x> +y*> = 2 x 1078}, that is, a point in the
boundary of D.

The computation of the coefficients according with the Formulas (25)—-(27), allows
the determination of the coefficients of the two diffusions. The function g, computed
according to Formula (26), is given by:

R _ x(cos?(7x+11y)42)  14sin(7x+11y) cos(7x+11y)
) Vg

(*+y?
cos?(7x +11y) + 2

gi(x,y) =

An inspection of Figure 4 and the Taylor series of order one in a neighbourhood of the
point (0,0)

saton) = (~57+0(2) ) +3(~32 - 5 +0() ) +o ()

show that there is a singularity at the point (0,0), and that the function g; is well defined
in the domain D. Similarly, the function g, given by:

/x2 112 _y(cosz(7x+lly)+2) _ 22sin(7x+11y) cos(7x+11y)
Y (x2+2)°" Vit

cos?(7x + 11y) + 2

g(x,y) =

7

and the correspondent Taylor series of order one in a neighbourhood of the point (0,0),

(x,y) = (—]1/ - 2432y+0<y2)> +x<—1§4—|—0(y2)> +O(x2) ,

also show that the function g is well defined in the domain D.
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cos?(7Tx+11y)+2

Figure 3. A nearly unbounded function having several local maxima.

91(xy) 92(xy)

Figure 4. The functions g7 and g».

We now detail some aspects of the coefficients y1, y2, and 07 = 07 used in the numeri-
cal computations. Using Formula (25) and Formula (27), we determined the coefficients ji;
and jip, as presented in Formula (35) and in Formula (36), respectively.

pa(xy) =
_ 5(y* —2x%) — 28x(x? + y?) sin(14x + 22y) + (196x* + x?(392y2 — 2) + 196y* + y?) cos(14x 4 22y) y
N 2(x2 4+ y2)(14(x% + y?) sin(14x + 22y) + x cos(14x + 22y) + 5x) (35)
cos? (Z7x+11y)+2
—0.84) ——=—
4 4 Vil ,
and
o (x,y) =
5(x? — 2y%) — 44y (x* + y?) sin(14x + 22y) + (484x* + x?(968y> + 1) + 484y* — 2y?) cos(14x + 22y)
(36)

- 2(x% 4+ y?)(22(x% + y?) sin(14x + 22y) + y cos(14x + 22y) + 5y)

084 cos?(7x+11y)+2
X e Vi
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An immediate inspection of Formula (35) and of Formula (36) shows that there is a
possibility of large values that will render the Monte-Carlo simulation unstable. So, for
computational purposes, we considered, instead of ji; and jip, the following coefficients
with v, = 0.8.

11 (x, if |77 (x, <v 1o (x, if |75 (x, < vy,
m(w)_{m( v) iyl <o m(x,y)_{m v) ()] <o (37)
Op if [i1 (x,y)| > oy Op if [j2(x,y)| > vy -

The coefficients of the first diffusion are shown in Figure 5 for v, = 5. The value of
vy, to be taken when applying the method is linked both to the discretisation step and the
number of steps of the diffusions, as well as to steepness of the function close to the border
where the maximum is attained.

cos?(7x+11y)+2
exp|-0.8 4 ——————
x2+y?

miul[x,y]

W\

0.0
0.0

-0.5

-05 _490

Figure 5. The coefficients of the first diffusion y; and o7.

We considered the algorithm prescribed to run on only one kernel, described in
Listing A3, and the parallelised algorithm running in four kernels, described in Listing A4.
In the study presented in Section 3, we compared, for the pure random search algorithm,
the four kernel parallelised algorithm, with the algorithm being processed without the
specification of parallelisation, that is, in its normal usual mode. We also performed a trial
running the pure random search algorithm parallelised on one kernel only, as done for the
diffusion algorithm, but there were no appreciable changes in the results, for instance, for
Himmelblau'’s function, the estimate of 7 changed from the already reported 3.45038 to the
new value 3.60881 if the parallelisation was run with one only kernel specification. The
results for the diffusion algorithm are presented in Table 2. We recall that the parallelisation
performance indicator 7'is defined in Formula (20) and that we compare 7 to 4, the maximum
number of kernels used in the parallelisation of the algorithm.

Table 2. Diffusion algorithm example: comparing the parallelised and the nonparallelised versions.

Function tref Med. Time: UU; VV Uref Med. Value: UU; VV 7
2tcos’(7x+11y) 458033 44.0009; 39.91 21246.4 21268.0; 21239.8 5.87919

The smoothed bivariate distribution of simulated data for the example function and
the diffusion algorithm is presented in Figure 6.

Remark 12 (Some conclusions on the application example of the diffusion algorithm). It
is clear from the analysis of the median execution times for both the algorithm running in only
one kernel and running in parallel with four kernels, reported in Table 2—rvespectively, 39.91 s
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and 44.0009 s—that the implementation of the diffusion algorithm presented is not efficient when
compared with the available implementations of global optimisation algorithms that can find the
optimum in less than two seconds. Further studies are required to ascertain if there is some specific
class of functions for which the proposed diffusion algorithm presents some noticeable advantages
over other algorithms. The estimate 7 = 5.87919 in Table 2 clearly shows the advantage of running
a parallelised algorithm, especially whenever the algorithm is computationally demanding, as is the
diffusion algorithm. The possibility of a substancial gain of efficiency in highly time-consuming
algorithms by the proposed parallelisation method of the algorithm requires further study.

Diff. Test funct. data NON parallelized: Time vs. Value

Diffusion Test data parallelized: Time vs. Value Diffusion Test VV data
bttt sl

Diffusion Test UU data
O e ’

.....-...
iy Ay

21250

200 71200

Figure 6. Smoothed distribution of parallelised and nonparallelised simulated data.

5. Conclusions

In this work, we developed and studied a novel formal description of parallelisation
of random algorithms for global optimisation with no constraints and we presented a
preliminary study for a novel stochastic differential equation based algorithm suited to
functions attaining the extremum at some points of the border of the domain of definition,
for instance, unbounded functions. There are many practical applications for which this
algorithm may be well suited. For instance, it may be used for the study of the temperature
in a mathematical model of the heath diffusion in the core of a nuclear reaction in case of
a meltdown as in [52]. The full testing of an improved implementation of the algorithm
proposed will be the object of future work, encompassing further testing against well-
known and well-performing algorithms and against higher dimensional problems.

We introduced a performance indicator defined in Formula (20) motivated by two
reasons: the first reason is the parallelisation method and the implementation of this
method used. We chose to study the method of parallelisation consisting of sending the
algorithm, simultaneously and independently, to the four kernels available in our computer
and stopping each kernel as soon as the running maximum was in a previously prescribed
neighbourhood of the known maximum of the function recording both the value and the
time taken to attain this value. These recorded values were used to define a sample, from
which the indicator of Formula (20) was computed. The second and most important reason
is the goal of practically verifying the result in Formula (14) of Theorem 3. The study of
the variations of performance, measured by the performance indicator of Formula (20),
whenever there is an increase in the number of processors/cores used, will also be a subject
of future work. The practical work presented confirms the usefulness of this performance
indicator, and this conformation, in turn, confirms the advantages of parallelisation, even
with a reduced number of processors.
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Appendix A. The Test Functions for the Pure Random Search Parallelisation Study

In this appendix, we provide information on the test functions studied in Section 3.
There are very well-known references on test functions for unconstrained optimisation
methods, where a large set of functions—displaying a wide spectrum of features creating
obstacles for efficient global optimisation algorithms—can be found (see [53], or [54]).
Since our goal is to provide an illustration of the quantitative approach proposed to
establish differences with parallelised and nonparallelised random search, we opt to select
a set of six functions with essentially three characteristic features: oscillating with several
local maxima, a maximum in a plateau like surface, and nearly unbounded. Additional
information on this functions is presented in Table Al.

Table A1l. Some characteristics of the slightly modified test functions used.

Function Expression Maximisers 95%max
Ackley 2(e—0-1414214 /x> +y? + £0-5(cos(27tx)+cos(27y)) (0/ o) 21.5824
drop-wave cos (12/5+2) +1 (0,0) 0.95
0.5(x24y2)+2
) 2
Keane sin” (x—y) sin” (x-+y) 1.39324,0)&(0,1.39324 0.639984
e ( )& )
nearly unbounded m (0,0) 9500
Goldstein-Price for(x,y) (0,-1) 6.65
Himmelblau 10— (2+y—11)° = (x+2-7)° (3,2)&(—2.8,3.13)& ... 95

Remark A1 (Complements to Table 1). Himmelblau's function has the following two more
maximisers than the ones that fiqure in Table 1 (—3.77, —3,28)&(3.58, —1.85). The modified
Goldstein—Price’s function we used is given by the following expression.

fon(x,y) =10 — ((3x2 + 6xy — 14x 4 3y% — 14y + 19) (x+y+1)7%+ 1) x
x (1262 — 36xy — 32x + 27y + 48y + 18) (2 — 3y)* + 30
We stress that these functions are modified versions of the homonymous functions in

the references mentioned above; the modifications are of two sorts: change of sign in order
to have critical points as maximums and adding a constant in order to have an essentially
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nonnegative function. The graphical representation of these functions is displayed in
Figure Al.

0.5(x2+y2)+2
[ ——

200141421 \x?4y? 0.5 (cos(2 m x)scos(2 7)) cos(12 VX2 +y? )+1

-

sin?(x - y) sin?(x +y)

Y x2+y?

10-((6x y+3x* ~14x+3y* -14y +19) (x +y+ 1) +1)((-36x y +12x* ~32x +27y* +48y +18) (2 x -3y)* +30)

10 4

1
x2 +y? +0.0001

20000
%

-0 e

Figure Al. Test functions, from left to right and top to down: Ackley’s, drop-wave, Keane’s,
Goldstein-Price’s, Himmelblau’s and nearly unbounded.

Appendix B. Mathematica ™ Code for Parallel Computation

The details on the machine having four kernels, and on the corresponding operating
system (OS), used to perform the parallel computations studies of Section 3, are detailed in
Table A2.

Table A2. Machine, OS and some of the 4 kernel characteristics.

KernelID Machine (08} Version Processor TimeUsed Memory
1 Mac Mini M1 2020 8 Gb MacOSX-x86-64 12.3 1289 0.809547 49401008
2 Mac Mini M1 2020 8 Gb MacOSX-x86-64 12.3 1290 0.809104 49401232
3 Mac Mini M1 2020 8 Gb MacOSX-x86-64 12.3 1291 0.773256 49401048
4 Mac Mini M1 2020 8 Gb MacOSX-x86-64 12.3 1292 0.828269 49403112
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The determination, in a parallel computation with four kernels, of the table

of val-

ues UU for the best performing kernel was performed using the code in Listing A1.

Listing A1. Code for UU table: timing and value of the best performing kernel.

uu = {};

For[i = 1, i < 400, i++,

UU = Append[UU,

MaximalBy [

ParallelEvaluate[

AbsoluteTiming [

Function [{eM, Maximz, en},

Module [{eMe = eM, Maximzr = Maximz, ene = en},

While [True,

ene = ene + 1;

eMeT = eMe; MaximzrT = Maximzr;

RdmPtl1=RandomVariate [UniformDistribution [{-10, 10}], 11[[11]1;
RdmPt2 = RandomVariate[UniformDistribution[{-10, 10}], 11[[1]];
If[ f[RdmPt1, RdmPt2] > eMe, (eMe = f[RdmPtl1, RdmPt2])

&& (Maximzr = {RdmPt1, RdmPt2})];

If[(eMe > ptmr), Break[]];]; eMe

]

J[0, {RandomVariate[UniformDistribution[{-10, 10}], 1J([[1]],1},
RandomVariate [UniformDistribution[{-10, 10}], 11[[1]]1]

1 1, Last][[1]]

11; Uuu

The definition domain of all numerical valued functions being maximised was

[—10,10] x [—10,10] (see lines 12, 13, 18 and 19 of the code in Listing A1).

The determination of the values VV of the nonparallelised computation was per-

formed using the code in Listing A2.

Listing A2. Code for VV table: timing and value of the nonparallelised computation.

v o= {};

For[i = 1, i < 400, i++,

VV = Append[VV, AbsoluteTimingl[

Function [{eM, Maximz, en},

Module [{eMe = eM, Maximzr = Maximz, ene = en},

While [True,

ene = ene + 1;

eMeT = eMe; MaximzrT = Maximzr;

RdmPt1l = RandomVariate[UniformDistribution[{-10, 10}], 11[[1]];
RdmPt2 = RandomVariate[UniformDistribution[{-10, 10}], 11[[1]];
If[f[RdmPt1, RdAmPt2] > eMe, (eMe = f[RdmPtl1, RdmPt2])

&& (Maximzr = {RdmPtl1, RdmPt2})];

If [(eMe > ptmr), Break[]];

]; eMe

]

][0, {RandomVariate [UniformDistribution[{-10, 10}], 1J([[1]1]1, 13},
RandomVariate [UniformDistribution [{-10, 10}], 11[[1]1]1]

]

]

1; Vv

The code function AbsoluteTiming returns the absolute number of seconds in real
time that have elapsed and measures only the time involved in actually evaluating the
expression in its argument that is being determined not time involved in formatting the

result.
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The implementation of the diffusion algorithm with parallelisation restrained to only
one kernel, which is tantamount to an algorithm with no parallelisation, is presented in
Listing A3.

Listing A3. The diffusion algorithm with one only kernel.

Delt=0.0001;ene=100000;

Vvv={};

For[i=1,i<200,i++,

Clear [M,Minit ,miul ,miu2];
miu1=Compile[{x,y},Clip[—termol[x,y],{—0.8,0.8}]*sig1[X,y]A2];
miu2=Compile [{x,y},Clip[-termo2[x,y],{-0.8,0.8}]*sig2[x,y]1"2];
VVV=Append [VVV,

ParallelEvaluate [

AbsoluteTiming [

Function [{Minit},

Module [{M=Minit},

Clear [Y1,Y2,Startl,Start2];

brptsi=RandomPoint [dom,1];
Startl=brpts1[[1,1]];Start2=brpts1[[1,2]];

Y1 [0]=Startl1;Y2[0]=Start2;

M=f [Y1[0] ,Y2[0]]; The initialization of the Maximum

eme=30;

For[r=1,r<eme,r++,

brptFulene_]:=RandomPoint [dom,ene];

brpts=brptFulenel;

Z1=Table [brpts[[k,1]] ,{k,1,Length[brpts]}];

Z2=Table [brpts [[k,2]] ,{k,1,Length[brpts]}];

Y1 [0]=Startl;Y2[0]=Start2;
Yi[n_Integer]:=Y1[n]=Y1[n-1]+miul[Y1[n-1],Y2[n-1]]*Delt+
sigl1[Y1[n-11,Y2[n-111*%Z1[[n]1]*Delt"0.5;
Y2[n_Integer]:=Y2[n]=Y2[n-1]+miu2[Y1[n-1],Y2[n-1]]*Delt+
sig2[Y1[n—1],Y2[n—1]]*22[[n]]*De1tAO.5;

Table [{Y1[k],Y2[k]},{k,1,ene}];

k=1;

While [And [++k<eme-1,-1<Y1[k]<1,-1<Y2[k]<1],

If[M>f[0.0001,0.0001] ,And[r=eme,Break[],Returnlr]]l];
If[£[Y1[k],Y2[k]]1>M,And[M=£f[Y1[k],Y2[k]],Start1=Y1[k],Start2=Y2[k]]]
13

Clear [Y1,Y2]

1M

]
J[o]

i

First [Kernels []1]]
]
18
A

The parallelised diffusion algorithm with four kernels was implemented according to
Listing A4. We recall that the computations were achieved with the four kernels running
independently, by force of the algorithm, and the result given correspond to the output of
the kernel for which the achieved value was higher.
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Listing A4. The diffusion algorithm with result given by the best of 4 kernels.

1 |Delt=0.0001;ene=100000;

2 | UU={};

3 For[i=1,i§200,i++,

4 [Clear[M,Minit ,miul ,miu2];

5 miu1=Compile[{x,y},Clip[—termol[x,y],{—0.8,0.8}]*sig1[x,y]A2];
6 miu2=Compile[{x,y},Clip[—termoQ[x,y],{—0.8,O.8}]*sig2[x,y]A2];
7 | UU=Append [UU, MaximalBy [

8 |ParallelEvaluate [

9 |AbsoluteTiming [

10 | Function [{Minit},

11 |Module [{M=Minit},

12 |Clear[Y1,Y2,Startl,Start2];

13 | brpts1=RandomPoint [dom,1];

14 | Startl=brpts1[[1,1]];Start2=brpts1[[1,2]];

15 | Y1 [0]=Startl;Y2[0]=Start2;

16 [M=f[Y1[0],Y2[0]]; The initialization of the Maximum

17 | eme=30;

18 |For [r=1,r<leme,r++,

19 |brptFulene_]:=RandomPoint [dom,enel];

20 |brpts=brptFulenel;

21 |Z1=Table[brpts[[k,1]],{k,1,Length[brpts]}];

22 | Z2=Table [brpts [[k,2]] ,{k,1,Length[brpts]}];

23 | Y1 [0]=Startl;Y2[0]=Start2;

24 |[Yi[n_Integer]:=Y1[n]l=Y1[n-1]l+miul[Y1[n-1],Y2[n-1]]*Delt+
25 |sig1[Y1[n-1],Y2[n-111*Z1[[n]]*Delt"0.5;

26 |Y2[n_Integer]:=Y2[n]=Y2[n-1]+miu2[Y1[n-1],Y2[n-1]]*Delt+
27 | sig2[Y1[n-1],Y2[n-111*%Z2[[n]]1*Delt"0.5;

28 | Table [{Y1[k],Y2[k]1},{k,1,enel}];

29 | k=1;

30 |While[And [++k<ene-1,-1<Y1[k]<1,-1<Y2[k]<1],

31 |If[M>f[0.0001,0.0001] ,And[r=eme,Break[],Return[r]l]];

3 |Tf[£[Y1[k],Y2[k11>M,And[M=£[Y1[k],Y2[k]],Starti=Y1[k],Start2=Y2[k1]]
33 |1

34 |Clear [Y1,Y2]

35 |1;M

36 | 1]

37 | 1[0]

38 |1

39 |1,Last][[1]]

40 |1

41 |1;U0U
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