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Abstract: Understanding the intricate relationships between diseases is critical for both prevention
and recovery. However, there is a lack of suitable methodologies for exploring the precedence
relationships within multiple censored time-to-event data, resulting in decreased analytical accuracy.
This study introduces the Censored Event Precedence Analysis (CEPA), which is a nonparametric
Bayesian approach suitable for understanding the precedence relationships in censored multivariate
events. CEPA aims to analyze the precedence relationships between events to predict subsequent
occurrences effectively. We applied CEPA to neonatal data from the National Health Insurance
Service, identifying the precedence relationships among the seven most commonly diagnosed diseases
categorized by the International Classification of Diseases. This analysis revealed a typical diagnostic
sequence, starting with respiratory diseases, followed by skin, infectious, digestive, ear, eye, and
injury-related diseases. Furthermore, simulation studies were conducted to demonstrate CEPA
suitability for censored multivariate datasets compared to traditional models. The performance
accuracy reached 76% for uniform distribution and 65% for exponential distribution, showing
superior performance in all four tested environments. Therefore, the statistical approach based on
CEPA enhances our understanding of disease interrelationships beyond competitive methodologies.
By identifying disease precedence with CEPA, we can preempt subsequent disease occurrences and
propose a healthcare system based on these relationships.

Keywords: precedence analysis; multivariate survival analysis; nonparametric Bayesian; neonatal;
disease diagnosis

1. Introduction

In the realm of medical research, understanding the multifaceted relationships between
diseases is pivotal for both prevention and recovery. Current investigations leverage
probabilistic models to decode interactions between diseases and symptoms and employ
genetic analyses to construct disease networks [1–6]. Additionally, the dynamics between
viruses, notably those responsible for the common cold and flu, are scrutinized to unravel
epidemiological trends [7]. Such correlations, like the well-documented link between
respiratory infections and otitis media, underscore the importance of identifying disease
connections [8,9]. These are not mere statistical ventures but clinical imperatives that guide
the development of preventive and therapeutic strategies.

This study focuses on the precedence relationships among diseases, which is an aspect
continually explored in medical science. Active research into the temporal relationships
between diseases or between diseases and health states is shedding light on how diseases
can emerge and influence one another [10–14]. Therefore, understanding the precedence
relationships among diseases not only enhances our grasp of disease epidemiology but
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also significantly impacts medical practices, including the development of prevention and
treatment protocols.

In this study, we applied the survival analysis theory to statistically analyze the rela-
tionships between diseases [15–17]. Survival analysis is a statistical analysis and forecasting
technique that considers the probability of an event along with the variable of time [18–21].
Univariate and multivariate inference methods are employed for survival analyses. Uni-
variate survival analysis is the analysis of a dependent variable, and multivariate survival
analysis is applied when an event occurs for several variables.

Current research grounded in clinical outcomes predominantly involves multivariate
analysis, where unraveling the intricate relationships between events stands as a significant
challenge in the field of biology. However, most clinical outcome datasets consist of cen-
sored data, complicating the application of such analyses to understand the relationships
between clinical outcomes. Consequently, although various methods have been proposed
to handle censored datasets, analyzing censored multivariate event data remains challeng-
ing [22,23]. The analysis of such data necessitates considering the complex interrelations
among multiple variables, which can be efficiently explored using nonparametric multi-
variate approaches [24,25]. These efforts have provided unprecedented opportunities to
systematically study the relationships between diseases.

This paper introduces the Censored Event Precedence Analysis (CEPA), which is a
statistical approach that calculates the precedence probability of events in multivariate
datasets inclusive of censored events based on nonparametric methodology. CEPA demon-
strates enhanced performance in datasets containing censored events, offering a clearer
understanding of the sequence in which diseases occur. When applied to data from the
National Health Insurance Service, containing a significant amount of censored information,
this methodology identified the precedence among diseases. This enables the prediction
of subsequent disease occurrences following an initial diagnosis, providing a basis for
preemptive measures against potential future diseases.

Our discoveries suggest a link between the order in which diseases are diagnosed
and the occurrence of multiple diseases at the same time, enhancing our understanding of
how diseases are connected. By integrating the strengths of statistical analysis with clinical
knowledge, we are forging a more robust approach to patient care. This opens up new
paths for research and the development of better treatment methods. By bringing together
clinical expertise and sophisticated analysis methods, this research highlights the value of
working across different fields to improve health outcomes. This sets the foundation for
future studies that can be both clinically relevant and based on solid statistical evidence,
making complex ideas more accessible.

Our contributions in this paper can be summarized as follows:

• We propose the CEPA approach, a statistical method that demonstrates improved
performance over existing methods for analyzing censored multivariate event datasets.

• Through CEPA, we enable the analysis of precedence relationships among censored
events. In this study, we apply it to the National Health Insurance Service dataset to
derive precedence among diseases.

• CEPA allows for the identification of associations between occurrences of diseases,
enhancing our understanding of their interactions.

2. Material and Methods
2.1. Data Sources

In this study, we utilized a publicly accessible dataset that was free from any licensing
constraints. The primary data source was the diagnosis history from the National Health
Insurance Service, archived in the repository of the Ministry of the Interior and Safety,
Republic of Korea (https://www.data.go.kr/en/data/15007115/fileData.do, accessed on
10 March 2023) [26]. This dataset consists of anonymized clinical details of patients, system-
atically categorized according to disease codes, and was applied to the study. The dataset
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utilized in this research encompassed 1,089,605 patient IDs, ages, 2231 disease codes, and
the times that each patient was diagnosed with diseases corresponding to these codes.

The disease classification for this study adheres to the International Classification
of Diseases (10th Revision) (ICD-10), which is a system developed and published by the
World Health Organization (WHO) [27]. This system uses a combination of letters and
numbers to categorize diseases and health-related conditions, with each letter representing
a specific category of diseases or conditions. Supplementary Table S1 provides the disease
codes, incidence rates among neonates, and descriptions for the 27 disease categories
classified according to the ICD-10 major classification. The ‘D’ and ‘H’ disease groups are
further subdivided based on the ICD-10 disease categories and specific conditions. More
detailed information on this classification can be found on the WHO’s official website
(https://icd.who.int/browse10/2019/en, accessed on 10 March 2023).

To avoid left-censoring data, our study focused on neonatal data. The dataset, derived
from the National Health Insurance Service of South Korea, spans from 2002 to 2016 and
comprises a random selection of one million citizens [26]. Given that 2002 had the highest
birth rate within our data timeframe, it was chosen as the experimental year, focusing on
9565 newborns.

Our research selected the top seven disease categories with the highest incidence rates
among neonates from groups named under the same disease description in Supplementary
Table S1, which were classified according to the ICD-10 major categories. Diseases with
lower diagnosis rates were excluded from the analysis due to difficulties associated with
studying their precedence and disease network analysis, thereby focusing our research on
those with a diagnosis rate of over 70%. Along with the top seven diseases, for analytical
convenience, the disease groups in the ICD-10 are categorized as infection, eye, ear, respi-
ratory, digestive, skin, and injury diseases based on their descriptions. The ICD-10-based
disease groups, their names, and the number of diagnosed cases and diagnosis rates can
be found in Table 1. Patients diagnosed with more than two diseases within a year were
then selected, yielding data for 9533 patients. The date of the first onset was defined as the
earliest occurrence of a similar disease. A total of 4343 individuals constituted the group
that experienced all seven diseases with a high incidence rate. A flowchart of the data
collection and organization process is shown in Figure 1. Building on this data foundation,
we analyzed the relationships between various censored events, employing advanced
statistical methodologies, as detailed below.

Table 1. This table presents the results for the seven disease groups with the highest diagnosis rates
categorized based on the ICD-10 classification. For ease of analysis, the names of the disease groups
are assigned based on the descriptions in the ICD-10, and the table displays the number of diagnosed
cases and diagnosis rates for each disease group.

ICD-10

A00-B99 H00-H59 H60-H95 J00-J99 K00-K93 L00-L99 S00-T98

Disease Infection Eye Ear Respiratory Digestive Skin Injury
Number of patients 9053 8326 7767 9521 7824 8843 7261
Diagnosis rate (%) 94.96 86.39 81.47 99.87 82.07 92.76 76.17

https://icd.who.int/browse10/2019/en
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Figure 1. Flowchart for data collection and organization process with 9533 patients and 4343 ob-
served patients overall. 
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Figure 1. Flowchart for data collection and organization process with 9533 patients and 4343 observed
patients overall.

2.2. Applying Methodology for Joint Probability Density Estimation

The proposed CEPA method identifies significant correlations based on the two-
time-to-event data within datasets containing censored occurrences, thereby determining
precedence. The CEPA utilizes a nonparametric estimation approach based on the optional
Pòlya tree (OPT) to estimate the joint PDF, which is crucial for analyzing precedence in
event data. This method can be used for handling censored time-to-event data in survival
data analysis [28]. Before discussing the methodology, it is necessary to first define the
variables as follows: for sample i, T1 and T2 indicate the occurrence times of two events,
whereas C1 and C2 represent the censoring times for these events, respectively. An event is
considered censored if its censoring time precedes its occurrence time. In such cases, the
data are represented as Xi1 and Xi2 instead of Ti1 and Ti2, where Xi1 = min(Ti1, Ci1) and
Xi2 = min(Ti2, Ci2).

The OPT determines the likelihood Φ(A) across regions in a recursively partitioned
sample space Ω by dividing a region A into sub-regions and calculating their likelihoods.
When a region A is divided along the Ti axis into sub-regions Aij, the likelihood function
simplifies as follows:

Φ(A) =
1
2

Φ0(A) +
1
4

2

∑
i=1

B′(N(Ai1), N(Ai2))Φ(Ai1)Φ(Ai2), (1)

where Φ0(A) represents the likelihood for samples uniformly distributed within A, and B′

simplifies the adjusted Beta function ratio, with B′(x, y) matching the ratio B(x+0.5, y+0.5)
B(0.5,0.5) .

N(A) indicates the count of samples within A and the OPT seeks a uniform distribution
across partitions, with the sample count defining the density of each.
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To accommodate censored data, which cannot be directly counted within A, sample
numbers are inferred via the joint distribution f (T1, T2), denoted as N(A| f ) , as follows:

f (T1, T2) = OPT(N(A| f )), (2)

enhancing the analysis of censored observations in survival data studies.

2.3. Censored Event Precedence Analysis

Using traditional OPT analysis to estimate precedence in scenarios with censored data
turns out to be challenging. Therefore, this research introduces CEPA, an analytical method-
ology for precedence among censored events derived from OPT, capable of calculating the
PDF in censored multivariate data, as demonstrated in Equation (2). CEPA is designed
to estimate the precedence relationships between events, incorporating censored data by
evaluating the conditional probability values between two events. A significant difference
in these conditional probabilities signifies the potential for one event to precede another.

CEPA estimates precedence relationships by calculating the joint probability of bi-
variate events in censored datasets. However, extending beyond bivariate analysis to
multivariate data leads to practical limitations in terms of computational capacity and
sample size. Therefore, for multivariate data, rather than applying CEPA directly, the
approach constructs sequences through combinations of all pairs in bivariate datasets,
calculating the likelihood of these sequences. The likelihood L(·) of a sequence involving n
time-to-event data [T1, T2, T3, · · · , Tn] can be expressed as follows:

L(T1 → T2 → T3 → · · · → Tn) = Pr[T2|T1 ]Pr[T3|T1, T2 ]· · ·Pr[Tn|T1, T2, · · · , Tn−1]. (3)

Here, T1 → T2 represents the sequence where event 1 occurs first, followed by event
2. Based on the methodology of Equation (3), the likelihood of a comparison of sequences
in multivariate data facilitates the estimation of precedence relationships.

2.4. Multivariate Survival Analysis with CEPA

The CEPA methodology presented in this research is an approach for inferring prece-
dence analysis within the analysis of correlations among multivariate data. We conducted
comparisons of the median time-to-event and determined the likelihood of sequences com-
posed of multivariate data using CEPA, facilitating the inference of precedence relationships
among events.

The median time-to-event represents the time by which half of the sample experienced
the event. In a dataset composed of time-to-event data, events not occurring within the
maximum observation period are considered censored. Accordingly, we define the median
considering censored data as the overall median and the median without considering
censored data as the observed median. The overall median time includes the maximum
observation day, while the observed median time encompasses events estimated to have
occurred within the maximum observation period. For event A, represented as TA, in
univariate analysis, the overall median time to the event is calculated as the latest time
when the marginal survival probability exceeds 0.5, as follows:

medianoverall(TA) = sup{t : Pr[TA ≥ t] ≥ 0.5}. (4)

For all events, T, the observed median time accounts only for cases where events occur
within the maximum observation time, as follows:

medianobserved(TA) = sup{t : Pr[TA ≥ t|TA ≤ Tmax] ≥ 0.5}. (5)

The method for calculating the likelihood of sequences can be derived from Equa-
tion (3). In our study, we applied a scoring method to the likelihood of sequences, allowing
for the easier comparison of likelihoods between sequences through a scored likelihood.
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For a dataset with n time-to-event occurrences [T1, T2, T3, · · · , Tn], the likelihood L(·) can
be transformed into a score as follows:

Score(T1 → T2 → T3 → · · · → Tn) = − log(L(T1 → T2 → T3 → · · · → Tn)). (6)

2.5. CEPA Simulation Setting

To demonstrate the validity and utility of the proposed CEPA method, we generated a
simulation dataset with 500 samples. These samples were used to compare CEPA with a
control group model. The data generation process was guided by three criteria concerning
the relationships between events: (1) one event must occur before another, (2) the timing
between two events should be dependent, and (3) the time interval between two events
should be independent of the timing of the preceding event. We considered three events
and generated three censored time-to-event data, in which T1 preceded T2, and T2 pre-
ceded T3. Each time-to-event comprised three event times (T1, T2, T3). The event times
were generated using uniform, lognormal, and exponential distributions, as well as the
Clayton model, respectively [29]. Each censored event time comprised three censored times
(C1,C2,C3). Each censored time was generated from uniform, lognormal, or exponential
distributions, respectively. The sample distributions are shown in Table 2. After generating
500 samples for each distribution, we compared the actual event times with the censoring
points. The censored time points, Xi, were given as follows:

Xi = min(Ti, Ci), i = 1, 2, 3. (7)

In addition, censoring indicators, ∆i, were given as follows:

∆i = I(Ti ≤ Ci), i = 1, 2, 3. (8)

where I(·) is an indicator function. Finally, the data were preprocessed in the form of
{X1, ∆1, X2, ∆2, X3, ∆3} metrics to apply to the simulator for this study.

Table 2. Sample distributions followed when generating the time-to-event (T) and censored time
(C) of the simulation data. These were generated to satisfy the three conditions for establishing a
dependency between two events. N(µ, Σ) is a trivariate normal distribution where µ is the mean and
Σ is the covariance. S(·) represents the bivariate survival function, i.e., S(t1, t2) = Pr[T1 > t1, T2 > t2].

Distribution T C

Uniform

T1 ∼ Uni f (1)
T2 ∼ T1 + Z1
T3 ∼ T2 + Z2

Zn ∼ Uni f (1), Zn ⊥ TN

C1 ∼ Uni f (1)
C2 ∼ Uni f (2)
C3 ∼ Uni f (3)

C1 ⊥ C2, C2 ⊥ C3, C1 ⊥ C3

Log-normal log

T1
T2
T3

 ∼ N

 0
0.5
1

,

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 log

C1
C2
C3

 ∼ N

0
0
0

,

1 0 0
0 1 0
0 0 1


Additive
Exponential

T1 ∼ Exp(1)
T2 ∼ T1 + Z1
T3 ∼ T2 + Z2

Zn ∼ Exp(1), Zn ⊥ TN

C1, C2, C3 ∼ Exp(0.5)
C1 ⊥ C2, C2 ⊥ C3, C1 ⊥ C3

Clayton T1, T2~S(t1, t2) =
{

et1/θ + et2/θ − 1
}−θ

, where
θ = 1 T3 ∼ T2 + Exp(1)

C1, C2, C3 ∼ Exp(0.5)
C1 ⊥ C2, C2 ⊥ C3, C1 ⊥ C3
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3. Results
3.1. Simulation Experiments and Results

Each simulation involved generating 500 data points, with the overall comparison
drawn from the results of 100 simulations. Based on the simulation data generated, the
performance of CEPA was compared with that of a control group model. The comparison
utilized the methods developed by Dabrowska, Lin-Ying, and a simple computational
model for analysis [30,31]. We adopted a naive approach using a simple computational
model. This naive approach disregards censoring, focusing solely on the comparison of
time-to-event data. A lower time-to-event indicates an event that occurred earlier. The
method of assessing likelihood was by ordering the time-to-event data and then comparing
the sequence of actual events to this order to evaluate consistency.

Figure 2 showcases the boxplot comparisons of the results across four estimation
models based on different data generation distributions. From Figure 2A, it is observed that
the CEPA model demonstrated the highest likelihood, 76%, for the uniform distribution.
Furthermore, Figure 2B–D illustrate how CEPA outperformed the comparative models by
margins of 65%, 36%, and 33% for the exponential, lognormal, and Clayton distributions,
respectively. Additionally, while some models exhibited a performance that was only
marginally better than the naive model, the model proposed in this study demonstrates
similar or superior performance. These results highlight CEPA’s superior likelihood scores
and stable performance across various distributions compared to the control groups.
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3.2. Application Studies for Cohort

Application studies were performed using disease diagnosis time data from the Na-
tional Health Insurance Cohort in Korea. We selected 9533 newborn patients from one
million samples. The disease diagnosis data included infectious, ear, respiratory, digestive,
skin, and injury diseases. The data period was 1 year, and preprocessing was performed to
scale it from 1 to 52 so that it could be easily applied to the analysis. After scaling, each
point represented 1 week in real-time. We assigned a value of 53 to the unobserved event
from each patient, assuming that it was a censored event.

The censoring rates and median times of the seven disease diagnosis events for the
patients are listed in Table 3. Respiratory diseases were the most frequently occurring
diseases in the neonatal population, with a censoring rate of 0.126%. Digestive, ear, and
injury diseases had late onset and relatively high censoring rates compared to those for
other diseases. The overall patients with censored data had a longer median onset date than
the observed patients without censored data. However, the censoring rate for respiratory
diseases was low, resulting in similar median values. We estimated the joint probability
distributions for all the possible univariate and bivariate sets of disease diagnostic events
following the aforementioned example. We estimated that there were seven univariate and
twenty-one bivariate joint distributions from the seven investigated disease events.

Table 3. Event summary for the disease diagnosis events. Median days of event occurrences were
estimated from all the events, including censored events (overall), as well as those from the observed
events (observed).

Event Censoring Rate Overall Median Day Observed Median Day

Infection 5.04% 9.7 9.4
Ear 18.5% 15.9 13
Eye 13.61% 20.5 16.7
Respiratory 0.126% 5.4 5.4
Digestive 17.9% 17.3 13
Skin 7.24% 10 9.4
Injury 23.8% 26.9 19.6

3.3. Univariate Survival Analysis

The univariate survival curves estimated by CEPA for the 9533 patients are plotted in
Figure 3. These curves were consistent with Kaplan–Meier estimates [32,33]. According
to the probability mass analysis conducted by CEPA, infectious, ear, respiratory, and
skin diseases had high incidence rates in the early stages, and these rates decreased over
time. However, digestive, eye, and injury diseases were evenly distributed over time. For
respiratory diseases in the patient population, the probability of onset within 10 weeks
was approximately 98%, with a very high initial incidence rate. The disease systems had
extremely different censoring rates and median diagnosis times. As shown in Table 3
and Figure 3, respiratory diseases had an early onset and relatively low censoring rates
compared with other diseases. The univariate survival curves estimated by CEPA for the
observed 4343 patients are plotted in Supplementary Figure S1. These curves were also
consistent with the Kaplan–Meier estimates. In the patient population without censored
events, the initial incidence rates of infectious, respiratory, skin, injury, and ear diseases were
high but decreased over time. Eye and digestive diseases were evenly distributed over time.
Respiratory diseases with low censored rates are shown in Figure 3 and Supplementary
Figure S1.
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Figure 3. Univariate analyses of single events for the 9533 patients. The probability of the event
occurrence was estimated for each disease diagnosis event by CEPA (blue) and the well-known
Kaplan–Meier (black) method. The dashed red vertical lines represent the CEPA partitions within
which the probability density was expected to be uniform. The green lines represent the probability
masses assigned to the CEPA partitions.

3.4. Precedence Relations for Disease Pairs

We studied the disease diagnosis precedence to determine the substantial difference
in median disease diagnosis times. First, we examined the precedence between two events.
For the 9533 patients, we measured the joint probability density distributions of all possible
twenty-one pairs of times to the seven disease diagnosis events by CEPA (Figure 4). When
comparing the joint probability densities between diseases, certain diseases had very strong
precedence; for example, respiratory diseases were diagnosed before injury with a 98%
chance. The diagnosis of skin, infectious, digestive, and ear diseases frequently preceded the
onset of other diseases. The onset of eye diseases frequently occurred after other diseases,
whereas injury followed other diseases. Interestingly, no substantial precedence was
observed between the skin and infectious diseases; the same was observed for the ear and
digestive diseases. Supplementary Figure S2 shows the bivariate joint probability density
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distribution for the seven diseases by applying CEPA to the 4343 observed patients. The
results are similar to those shown in Figure 4, and the joint probability density difference
did not exceed 1%. Among the patients diagnosed with all seven diseases, 53% were
diagnosed with respiratory diseases first, and 17% were diagnosed with injury after the
other diseases.
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Figure 4. Pairwise precedence of the disease diagnosis events for the 9533 patients. The joint
distribution of bivariate time-to-events was estimated by CEPA for each pair of events. The considered
events were the diagnoses of infectious disease (INFE), eye disease (EYE), respiratory disease (RESP),
digestive disease (DIGE), skin disease (SKIN), injury (INJU), and ear disease (EAR). Each top-left
panel shows the observed or censored days of the bottom and right-side events. Each bottom-right
panel shows the precedence chance of the top-side events to the left-side events (top-right %) and the
opposite case (bottom-left %) when both events occurred at different times. For example, respiratory
diseases preceded digestive diseases and were diagnosed 89% of the time.

3.5. Precedence Analysis for Seven Disease Categories

Due to computational limitations when directly applying CEPA to multivariate datasets
for precedence analysis, we calculated the likelihoods based on Equation (3) and assigned
scores through Equation (6). The joint probability density distribution for the bivariate data
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was determined using the CEPA method introduced in this study, corresponding to the
numerical values shown in Figure 4. A lower likelihood sequence score indicates a higher
probability of the sequence occurring. Table 4 lists the six sequences that exhibit the most
favorable likelihood sequence scores. The most probable sequence was the onset of the
diseases in the order of respiratory, skin, infectious, digestive, ear, eye, and injury diseases,
with a score of 6.90. The second most probable sequence was similar to the first, with only
a switch for the skin and infectious diseases, with a score of 6.93. In the top six events,
respiratory diseases ranked first. Based on the best sequence (score: 6.90) in Table 4, there
was a probability difference of 1.37 times from a sequence with a score difference of two
percent and 1.17 times from a sequence with a score difference of 1 percent. Because the
difference between probabilities is large, the standard for valid sequences among many
event sequences was defined as two percent. Based on the defined valid sequence range,
only four-event sequences above the borderline in Table 4 were valid. The valid sequences
for the patients were the onsets of respiratory diseases, followed by skin and infectious,
digestive and ear, and eye and injury diseases. Supplementary Table S2 shows the event
sequence scores of the observed patients. There were five valid sequences for the observed
patients compared with those for the overall patients. The valid sequences for the observed
patients were the onsets of respiratory diseases, followed by skin and infectious, digestive,
ear, eye, and injury diseases. The top six most probable sequences followed the same
configuration as the sequences for the overall patients.

Table 4. Top six frequent sequences of events based on the precedence and sequence analysis
score function for the 9533 patients. The most probable sequence order with the lowest score was
respiratory, skin, infectious, digestive, ear, eye, and injury diseases. Sequences with scores no more
than 2% higher than the best score were above the borderline as valid sequences.

Event Sequence Score Rate

Respiratory → Skin → Infectious → Digestive → Ear → Eye → Injury 6.90 0.00
Respiratory → Infectious → Skin → Digestive → Ear → Eye → Injury 6.93 0.50
Respiratory → Skin → Infectious → Ear → Digestive → Eye → Injury 6.93 0.50
Respiratory → Infectious → Skin → Ear → Digestive → Eye → Injury 6.97 1.01

Respiratory → Skin → Infectious → Digestive → Eye → Ear → Injury 7.04 2.03
Respiratory → Skin → Infectious → Digestive → Ear → Injury → Eye 7.04 2.03

3.6. Precedence Networks

Figure 5 shows the diagnosis sequence network of the observed and overall patients
based on the CEPA method results. Respiratory diseases occurred first, followed by skin
and infectious diseases. The prior probabilities can be found in Figure 4 and Supplementary
Figure S2. Skin and infectious diseases were expressed as bidirectional diseases because
the preceding probability of skin diseases was 52%, which had no practical priority. For the
ear, digestive, and eye disease networks, different patient populations exhibited different
results. For the overall patients, ear and digestive diseases preceded eye diseases according
to the valid sequence definition. The prior probability of ear and digestive diseases was
52%, expressed in both directions. For the observed patients, eye and ear diseases exhibited
bidirectionality according to the valid sequence definition. Digestive diseases preceded eye
diseases, and ear and digestive diseases were expressed in both directions with a 52% prior
probability. Ear diseases preceded injury because there was a sequence in which injury
occurred after ear diseases in the top five valid sequences (Supplementary Table S2).
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Figure 5. Predicted order of diagnosis of a disease based on valid sequence scores. The left and right
panels show the sequences of the overall and observed patients, respectively. RESP, SKIN, INFE, EAR,
DIGE, EYE, and INJU represent the disease diagnoses of respiratory, skin, infectious, ear, digestive,
eye, and injury diseases, respectively.

Figure 6 shows the period from the date of the respiratory disease diagnosis to the
onset of infectious, eye, digestive, skin, ear, and injury diseases. Digestive, ear, and skin
diseases were consistent, regardless of the time of the respiratory disease diagnosis. Within
the wide range of the respiratory disease diagnosis times, spanning approximately 150 days,
the digestive, ear, and skin disease onset gaps showed no strong increase or decrease from
2 to 3 weeks. Based on the consistency of the interval time, it was observed that digestive,
ear, and skin diseases had a significant dependent relationship with respiratory diseases.
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Digestive, skin, and ear diseases were diagnosed at a certain time after diagnosing respiratory
diseases. However, there was no relationship between infectious, eye, and injury diseases.
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4. Discussion

The CEPA methodology introduced in this study serves as a robust framework for an-
alyzing precedence relationships between events within censored datasets. Demonstrating
superior performance over traditional methodologies like those developed by Dabrowska
and Lin-Ying, CEPA validates its efficacy and reliability, particularly in contexts where data
censorship significantly complicates the analysis [30,31]. Unlike naive methods that do not
consider the censoring of datasets, CEPA effectively captures the censorship or complexity
of event precedence. This enables a clearer analysis of the correlations between diseases.
Consequently, CEPA was proven to be a more valid methodology for analyzing disease
progression compared to the current methods employed by Dabrowska, Lin-Ying, and
other naive approaches.

In leveraging the CEPA methodology, this study applied it to the disease diagnosis time
data from the National Health Insurance cohort, notably prone to censorship issues. This
study focused on the seven diseases with the highest diagnosis rates based on reclassified
disease codes. The remaining codes not used in this research represented conditions in
newborns with an incidence rate of less than 70%, which are insufficient for constructing a
reliable disease diagnosis network.

By applying the CEPA methodology to the top seven diseases, we were able to ana-
lyze the temporal relationships between diseases effectively. This approach facilitated a
comprehensive exploration of precedential disease relationships, yielding significant find-
ings within the National Health Insurance dataset. The analysis of temporal relationships
between diseases through CEPA allowed for a comprehensive exploration of antecedent
disease relationships. The sequence of disease occurrence for the highest likelihood was
found to be respiratory disease, followed by skin, infectious, digestive, ear, eye, and finally,
injury disease. Constructing a disease sequence network structure based on these findings
highlighted a clear distinction between datasets that included censored events and those
that did not, showcasing CEPA’s ability to analyze precedence within censored datasets
effectively. This underscores the CEPA methodology as a robust approach for analyzing
censored multivariate datasets. This capability is crucial for predicting subsequent disease
groups based on existing diagnoses, significantly aiding in disease prevention efforts. The
adoption of this methodological approach not only enhances our understanding of disease
epidemiology but also has a profound impact on medical practice by providing insights
that can inform the development of targeted preventive and treatment strategies.

Furthermore, research into the correlations between diseases or health conditions has
been ongoing, emphasizing the necessity of such analyses in medical research. According
to a study by Heikkinen, T. and Chonmaitree, T., an understanding of the correlation
between acute otitis media and respiratory viruses was developed, offering insights into
reducing the incidence of acute otitis media [8]. Similarly, Ruuskanen, O. et al. have shown
clear associations between acute otitis media and respiratory infections, highlighting the
interconnections facilitated by respiratory viral infections [9]. Research by De Nunzio, C.
et al. has explored the correlation between metabolic syndrome and prostate conditions,
suggesting potential clinical implications for prevention and treatment [34]. Moreover,
Nesto, R.W. analyzed the relationship between cardiovascular diseases and diabetes, detail-
ing preventive measures in his findings, underscoring the importance of understanding
these correlations [35]. Such studies persistently demonstrate the crucial role of analyzing
disease correlations, which are not only imperative for further research but also provide
valuable insights for disease prevention and medical practices [36,37]. However, to obtain a
clearer understanding of disease correlations, it is essential to consider overlooked disease
systems. Moreover, the current complex medical approaches require significant time and
resources to expand and analyze overlooked disease networks. Therefore, by implementing
the statistical methodology of CEPA proposed in this study to analyze disease networks,
we can quickly grasp the correlations that exist among overlooked disease groups or health
states. This approach integrates simple statistical methods into existing complex medical
approaches, providing a comprehensive understanding of an expanded network of disease
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correlations. By applying the CEPA approach, it becomes possible to extend the application
to a broader range of diseases than currently researched, statistically uncovering corre-
lations among previously overlooked disease groups. This can lead to the development
of more varied prevention and treatment strategies, enhancing our capability to manage
health outcomes effectively.

Research focusing on the temporal relationships between diseases or between diseases
and health conditions is actively progressing. For instance, Hollinger, S.K. et al. focused on
uncovering the precursory conditions of amyotrophic lateral sclerosis (ALS) and exploring
its correlations with other diseases [38]. Our methodology diverges from traditional medical
approaches by analyzing censored time-to-event data to detect disease precedents. This
approach uncovers new interpretations that have been previously overlooked. Additionally,
Matthews, K.A. and Kuller, L.H. utilized cohort data to analyze the relationship between
psychological risk attributes in women and metabolic syndrome [39]. Numerous studies
based on cohort research have been providing valuable insights into medical practice by
focusing on the temporal relationships between diseases or health states [10–14]. However,
most of these studies are conducted with censored datasets, and many cohort studies have
not adequately considered the implications of data censoring. Thus, in studies of disease
correlations that rely on censored datasets, applying the CEPA methodology proposed in
this study enables a more accurate analysis by taking time-to-event censoring into account.
Consequently, the CEPA methodology serves as a foundation for significantly advancing
research into disease relationships.

As a result, the application of CEPA to real-world data underscores the versatility of
the methodology and its potential to enhance healthcare delivery. By providing a clearer
picture of disease dynamics, CEPA supports healthcare professionals in making informed
decisions, ultimately contributing to improved patient outcomes. Our findings, through the
application of CEPA, highlight its potential to inform clinical decision-making processes
by offering a deeper understanding of disease progression, which is crucial for the early
detection and management of comorbid conditions. Through this comprehensive approach,
the study not only addresses the technical challenges posed by data censorship but also
aligns with the broader objective of advancing healthcare provision.

The CEPA methodology is anticipated to establish itself as a suitable approach within
the clinical research landscape, serving as a fundamental tool for analyzing the intricate
network of disease relationships. Its application in this study highlights the potential for
significant advancements in understanding disease progression and in the formulation of
effective healthcare strategies, marking a step forward in the quest to leverage big data for
the betterment of patient care and health outcomes.

5. Conclusions

Understanding the intricate relationships between diseases is essential not only for
targeted prevention but also for effective patient recovery strategies across the healthcare
spectrum. Our study introduces a methodology that goes beyond traditional patient
monitoring, aiming to anticipate and prevent subsequent diseases through a nuanced
recognition of the interdependencies between diseases. The CEPA method capability to
perform non-parametric estimations enables the utilization of diverse data types, such
as demographic and genomic data, to provide a comprehensive analysis of the potential
associations and explore preceding events within complex medical events. We hope that
the proposed method can be effectively utilized by researchers and that future work will
extend this approach to a broader and more detailed understanding of diseases.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/healthcare12090939/s1, Table S1: This table illustrates
the categorization of diseases into groups based on similarities, as defined by the major classifications
of the ICD-10. Supplementary Table S1 presents the disease codes, incidence rates, and descriptions
for the 27 disease categories classified according to the ICD-10 major classification; Table S2: Top six
frequent sequences of events based on the precedence and sequence analysis score function for the
observed 4343 patients. The most probable sequence order with the least score was respiratory, skin,
infectious, digestive, ear, eye, and injury diseases. Sequences with scores not more than 2% higher
than the best score were above the borderline as valid sequences; Figure S1: Univariate analyses of
single events for the observed 4343 patients. The probability of the event occurrence was estimated
for each disease diagnosis event by CEPA (blue) and the well-known Kaplan–Meier (black) method.
The dashed red vertical lines represent the CEPA partitions within which the probability density
was expected to be uniform. The green lines represent the probability masses assigned to the CEPA
partitions. Figure S2: Pairwise precedence of the disease diagnosis events for the observed 4343
patients. A joint distribution of bivariate time-to-events was estimated by CEPA for each pair of
events. The considered events were the diagnoses of infectious disease (INFE), eye disease (EYE),
respiratory disease (RESP), digestive disease (DIGE), skin disease (SKIN), injury (INJU), and ear
disease (EAR). Each top-left panel shows the observed or censored days of bottom and right-side
events. Each bottom-right panel shows the precedence chance of the top-side events to the left-side
events (top-right %) and that of the opposite case (bottom-left %) when both events occurred at
different times. For example, respiratory diseases preceded digestive diseases and were diagnosed
88% of the time.
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