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Abstract: This study evaluated the utility of incorporating deep learning into the relatively novel
imaging technique of wide-field optical coherence tomography angiography (WF-OCTA) for glau-
coma diagnosis. To overcome the challenge of limited data associated with this emerging imaging,
the application of few-shot learning (FSL) was explored, and the advantages observed during its
implementation were examined. A total of 195 eyes, comprising 82 normal controls and 113 patients
with glaucoma, were examined in this study. The system was trained using FSL instead of traditional
supervised learning. Model training can be presented in two distinct ways. Glaucoma feature
detection was performed using ResNet18 as a feature extractor. To implement FSL, the ProtoNet
algorithm was utilized to perform task-independent classification. Using this trained model, the
performance of WF-OCTA through the FSL technique was evaluated. We trained the WF-OCTA
validation method with 10 normal and 10 glaucoma images and subsequently examined the glaucoma
detection effectiveness. FSL using the WF-OCTA image achieved an area under the receiver operating
characteristic curve (AUC) of 0.93 (95% confidence interval (CI): 0.912–0.954) and an accuracy of
81%. In contrast, supervised learning using WF-OCTA images produced worse results than FSL,
with an AUC of 0.80 (95% CI: 0.778–0.823) and an accuracy of 50% (p-values < 0.05). Furthermore,
the FSL method using WF-OCTA images demonstrated improvement over the conventional OCT
parameter-based results (all p-values < 0.05). This study demonstrated the effectiveness of applying
deep learning to WF-OCTA for glaucoma diagnosis, highlighting the potential of WF-OCTA images
in glaucoma diagnostics. Additionally, it showed that FSL could overcome the limitations associated
with a small dataset and is expected to be applicable in various clinical settings.

Keywords: deep learning; image processing; glaucoma; diagnostic ability; few-shot learning

1. Introduction

Glaucoma refers to a disease that involves specific morphologic changes in the optic
nerve resulting in functional changes in the visual field due to loss of the retinal nerve
fiber layer (RNFL) [1,2]. Disc photography, optical coherence tomography (OCT) [3–9], and
OCT angiography (OCTA) are among the various imaging devices used for diagnosing
glaucoma. The diagnostic data are presented as images or numerical values, depending on
the instrument used. Among these techniques, OCTA is a non-invasive imaging method
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that assesses the vasculature of the retina and optic nerve without the need for dye in-
jection [10,11]. Changes in vessel density in OCTA align with functional and structural
alterations detected through visual field exams and OCT scans, providing good consistency
and effectively distinguishing between the glaucomatous and the normal eyes.

Wide-field OCTA (WF-OCTA), which overcomes the limited field of view in traditional
OCTA, is emerging as one of the new diagnostic imaging approaches for retinal disease and
glaucoma [12–16]. WF-OCTA’s scanning capabilities have been improved with technical
advancements, such as swept-source OCT (SS-OCT), now allowing the examination of large
areas of the posterior pole, encompassing both the optic nerve head and macula. Notably,
when examining pathologic eyes with structural distortion of the optic disc, such as high
myopia or retinal diseases, including epiretinal membrane and peripapillary retinoschisis,
errors may occur in measuring conventional RNFL thickness maps. Additionally, WF-
OCTA displays broader angiographic data in comparison to conventional imaging. This
could potentially enhance the accuracy of glaucoma diagnosis, especially when other
pathological alterations in the eyes complicate the process.

This study evaluates the accuracy of a deep-learning (DL) algorithm using WF-OCTA
for identifying glaucoma. DL image classification is being assessed as a pre-diagnostic tool
before human diagnosis. Sufficient data are crucial for effectively training DL networks
for image classification in medical imaging diagnosis. Insufficient data can result in is-
sues like overfitting and underfitting. Collecting sufficient medical data for training is a
challenge due to limited data availability and privacy concerns. Furthermore, the clinical
stage of WF-OCTA—the technology utilized in this study—creates difficulties in obtaining
adequate data.

In recent years, few-shot learning (FSL) has emerged as a promising approach in DL,
particularly in scenarios where limited annotated data are available. Unlike traditional
supervised learning methods, which rely on large, labeled datasets for training, FSL enables
models to generalize to new tasks with only a small amount of annotated data, mimicking
human learning processes with limited examples [17]. The relationship between dataset
size and accuracy in machine learning, including FSL, is complex. While larger datasets
typically offer more diverse examples for model training, several factors impact this rela-
tionship. High-quality, well-annotated data are crucial for training accurate models, and
task complexity and model architecture also influence performance [18]. Imbalanced data
distributions and the use of regularization techniques further shape the interplay between
dataset size and accuracy [19]. In the context of FSL, dataset size plays a crucial role in
model performance. Although FSL techniques can handle limited data scenarios, increasing
the dataset size can significantly enhance performance, especially if the additional data
includes rare cases or provides greater diversity [20]. It is essential to understand these
dynamics to optimize model performance and effectively utilize available data resources.

In such situations, implementing the FSL [21–23] approach may be a way to overcome
this challenge. FSL methodology permits machine learning from a small number of samples,
usually less than 10. Therefore, this study assessed the diagnostic potential of WF-OCTA
for detecting glaucoma using an FSL approach to overcome data scarcity.

2. Materials and Methods

This study’s protocol was approved by the Institutional Review Board (IRB) of
Hanyang University Hospital, Seoul, Republic of Korea (IRB number: HYUH 2021-07-
036). This study was designed in accordance with the tenets of the Declaration of Helsinki
for biomedical research. The need for participant consent for retrospective data assessment
was waived by the ethics committee.

2.1. Study Design and Participants

In this retrospective, comparative study, a total of 195 eyes were examined at Hanyang
University Seoul Hospital Glaucoma Clinic between December 2021 and December 2022.
Of these, 82 eyes were affected with glaucoma, and 113 controls were without glaucoma.
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All participants underwent WF-OCTA imaging with the same SS-OCT device (Topcon,
DRI OCT Triton), and the glaucoma was diagnosed by a glaucoma specialist. Diagnosis of
glaucoma and selection of the control group were performed similarly to that in previous
studies (Supplementary Materials) [24,25]. To eliminate ambiguity, this study excluded
patients with high myopia (sph < −6.0D), retinal diseases, and glaucoma suspect states
without definite visual field impairment or RNFL defects.

2.2. WF-OCTA

The wide-field 12 × 12 mm OCTA scan generates an en-face image of retinal vessels
through various segmented layers. The SS-WF-OCTA scans volumes centered on the retina
within a 12 × 12 mm field of view at a scan rate of 100,000 A-scans per second, offering
a lateral resolution of 20 um. The device’s built-in software corrects actual refraction to
prevent refractometric degradation. The report of the WF-OCTA scan for the 12 × 12 area
overlaps with the RNFL or ganglion cell–inner plexiform layer (GCIPL)/ganglion cell
complex (GCC) thickness map on the WF-OCTA image.

Figure 1 displays (A) the OCT RNFL thickness map used in pre-training and the three
types of WF-OCTA images in the FSL, (B) a combination of WF-OCTA and RNFL thickness
map (Combi 1), (C) a combination of WF-OCTA and GCC thickness map (Combi 2), and
(D) WF-OCTA itself (black and white). Apart from the WF-OCTA, this work evaluated the
vessel density using optic disc OCTA (4.5 × 4.5 mm). The vessel density of the superficial
capillary plexus (SCP) was assessed in four groups, superior, nasal, inferior, and temporal,
to determine whether the vessel density had decreased.
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Figure 1. Dataset examples for pre-training and FSL: (A) SS-OCT RNFL thickness map (12 × 9 mm)
used in pretraining, (B) WF-OCTA-RNFL Combi, (C) WF-OCTA-GCC Combi, and (D) WF-OCTA
used for FSL.

2.3. DL Techniques: Image Classification on Medical Diagnosis

Medical image classification is pivotal in clinical treatment and early diagnosis. How-
ever, traditional methods have demonstrated limited performance and often require sig-
nificant time and effort to identify and select features for classification. DL methods have
surpassed the performance of some existing models and streamlined the design process
through a data-driven approach. In particular, the supervised learning (SL) method using
DL networks has achieved great success in various image classification tasks [26–28]. As
the parameters of DL networks for image classification tend to be large, a large amount of
training data is required to train networks. However, when it comes to medical image classi-
fication, the preparation of extensive training datasets demands costly and time-consuming
manual annotations by medical professionals. Moreover, the distribution of medical data
can be significantly imbalanced. Acquiring a vast amount of normal data might be easy;
however, obtaining negative samples is challenging due to the rarity of certain disease cases.
To address this issue, a training approach capable of accurately diagnosing diseases with
a very limited amount of data was required. FSL aims to make predictions in situations
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where only a few examples are available for each class [29]. This study presents an effective
glaucoma detection method leveraging the FSL method.

Data used in FSL can be broadly classified into three categories: training set, support
set, and query set [30] (Figure 2). Additionally, the ‘class’ used in FSL refers to the group of
objects that the model is trying to learn and distinguish from other classes. FSL initially
learns how to distinguish between classes through the training set with a large amount
of data. Then, through the support set, FSL learns from only a small amount of data for
each class that is not present in the training set. When a query sample is input, the system
compares which class of the support set is most similar to the answer.

Biomedicines 2024, 12, x FOR PEER REVIEW 4 of 11 
 

in situations where only a few examples are available for each class [29]. This study pre-

sents an effective glaucoma detection method leveraging the FSL method. 

Data used in FSL can be broadly classified into three categories: training set, support 

set, and query set [30] (Figure 2). Additionally, the ‘class’ used in FSL refers to the group 

of objects that the model is trying to learn and distinguish from other classes. FSL initially 

learns how to distinguish between classes through the training set with a large amount of 

data. Then, through the support set, FSL learns from only a small amount of data for each 

class that is not present in the training set. When a query sample is input, the system com-

pares which class of the support set is most similar to the answer. 

 

Figure 2. Categorization of datasets in FSL. The training set is used to train a deep-learning network 

to extract task-specific features from images. The support set is a small set of data points (e.g., 1, 2, 

5, 10, etc.) used for training an FSL model for a new task. The query sample is data to evaluate the 

effectiveness of a network trained on a limited dataset. 

ProtoNet [31] is an FSL method that uses a prototype that represents each class or 

concept as a central reference point in the feature space. During training, the model learns 

to create a prototype from a few labeled examples, using DL networks such as convolu-

tional neural networks to extract meaningful features from the input data. The prototype 

is computed as the average feature vector of the supporting examples belonging to each 

class, and during the inference step, the model compares the query example to the proto-

type and assigns it to the class with the closest prototype. ProtoNet utilizes a metric learn-

ing objective function, enabling effective learning with limited data. This capability allows 

the model to differentiate between various classes and apply to new instances. 

2.4. DL Techniques: Proposed Method 

This study proposes a ProtoNet-based network for predicting WF-OCTA through 

DL. The ProtoNet-based network comprises a feature-extracting backbone network and a 

true/false classifying clustering module. The backbone network varies based on the size 

and type of data in both networks. Moreover, ResNet18 was deployed as our backbone 

network [27]. 

ResNet18 is trained on a very large dataset, such as ImageNet [32] (1.2 million images 

stored in 1000 categories), using a pre-trained model [33]. We can utilize the pre-trained 

model as an initialization or a fixed feature extractor and employ the transfer learning 

method [34]. Transfer learning is a DL method in which a model trained for one task is 

repurposed for a related second task. We utilized the weight of the backbone network by 

applying this fine-tuning of the transfer learning method with SS-OCT images [24,25] us-

ing ResNet18 pre-trained with ImageNet (Figure S1). For pre-training, the SS-OCT RNFL 

thickness map (12 × 9 mm) of glaucoma and normal groups was used (Figure 1). The data 

from the patient group in our existing study (Journal of Glaucoma) was used [25], and a 

total of 417 eyes with glaucoma and 258 normal eyes were included. 

From this point forward, this discussion focuses on the process of acquiring 

knowledge about ProtoNet’s clustering module through training and testing. To train the 

clustering module, Mini-ImageNet [35], a modified version of ImageNet for FSL, was uti-

lized. Training with WF-OCTA introduces a potential risk of overfitting, as the model may 

Figure 2. Categorization of datasets in FSL. The training set is used to train a deep-learning network
to extract task-specific features from images. The support set is a small set of data points (e.g., 1, 2,
5, 10, etc.) used for training an FSL model for a new task. The query sample is data to evaluate the
effectiveness of a network trained on a limited dataset.

ProtoNet [31] is an FSL method that uses a prototype that represents each class or
concept as a central reference point in the feature space. During training, the model learns to
create a prototype from a few labeled examples, using DL networks such as convolutional
neural networks to extract meaningful features from the input data. The prototype is
computed as the average feature vector of the supporting examples belonging to each class,
and during the inference step, the model compares the query example to the prototype
and assigns it to the class with the closest prototype. ProtoNet utilizes a metric learning
objective function, enabling effective learning with limited data. This capability allows the
model to differentiate between various classes and apply to new instances.

2.4. DL Techniques: Proposed Method

This study proposes a ProtoNet-based network for predicting WF-OCTA through
DL. The ProtoNet-based network comprises a feature-extracting backbone network and a
true/false classifying clustering module. The backbone network varies based on the size
and type of data in both networks. Moreover, ResNet18 was deployed as our backbone
network [27].

ResNet18 is trained on a very large dataset, such as ImageNet [32] (1.2 million images
stored in 1000 categories), using a pre-trained model [33]. We can utilize the pre-trained
model as an initialization or a fixed feature extractor and employ the transfer learning
method [34]. Transfer learning is a DL method in which a model trained for one task is
repurposed for a related second task. We utilized the weight of the backbone network
by applying this fine-tuning of the transfer learning method with SS-OCT images [24,25]
using ResNet18 pre-trained with ImageNet (Figure S1). For pre-training, the SS-OCT RNFL
thickness map (12 × 9 mm) of glaucoma and normal groups was used (Figure 1). The data
from the patient group in our existing study (Journal of Glaucoma) was used [25], and a total
of 417 eyes with glaucoma and 258 normal eyes were included.

From this point forward, this discussion focuses on the process of acquiring knowledge
about ProtoNet’s clustering module through training and testing. To train the clustering
module, Mini-ImageNet [35], a modified version of ImageNet for FSL, was utilized. Train-
ing with WF-OCTA introduces a potential risk of overfitting, as the model may become too
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specialized in WF-OCTA data. As each patient demonstrates different glaucoma symptoms
in the data, overfitting the training data increases the risk of incorrect predictions for new
patients. To mitigate this, we trained ProtoNet on Mini-ImageNet to establish a general
understanding of the difference between similarity and dissimilarity.

Finally, the network’s performance on WF-OCTA data was evaluated in the test or
inference phase. We trained the neural network on WF-OCTA data from 10 patients with
glaucoma and 10 normal individuals, forming a support set. Few-shot training, in this
case, refers to the adaptation of a pre-existing network to a new task with minimal input,
specifically for glaucoma. Subsequently, we supplemented the set with 100 unseen data
points, referred to as the query set, and evaluated whether each data point represented
glaucoma or not. The schematic diagram is presented in Figure 3.
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Figure 3. Implementation of FSL for WF-OCTA integration. This study employed FSL to integrate WF-
OCTA into an AI algorithm. ResNet18 served as the backbone network, trained on ophthalmic images
to capture relevant features. The ProtoNet algorithm facilitated feature clustering and classification.
Training utilized the Mini-ImageNet benchmark dataset. The WF-OCTA data were split into support
and query sets for validation.

2.5. Statistical Analysis

This study compared the diagnostic performance between FSL conducted with pre-
training on different images and Mini-ImageNet and conventional SL using a limited
number of WF-OCTA images. Furthermore, this study extended the comparison to evaluate
the diagnostic capabilities of numerical values (parameters) commonly used in traditional
OCT and OCTA.

To assess the diagnostic capability for detecting the presence or absence of glaucoma,
we computed the area under the receiver operating characteristic curve (AUC) and accuracy.
Additionally, AUC with a 95% confidence interval (95% CI) was employed while varying the
cutoff value for the probability of glaucoma. The method described by DeLong et al. [36] was
utilized to compare AUC values among different parameters. Accuracy served as a metric for
the precision in classifying the stages of glaucoma. The proportion of correctly classified data
from the entire dataset used for testing was also estimated. p-values < 0.05 were considered
statistically significant. Values are presented as mean ± standard deviation. Statistical tests
were conducted using SPSS version 24 (IBM Inc., Armonk, NY, USA), MedCalc Version 19.1.3
(MedCalc Software, Ostend, Belgium), and the PyTorch Version 1.12.0 in Python (Facebook AI
Research Lab, Menlo Park, CA, USA) [37].

3. Results

Demographics and ocular characteristics of the support set and query set are summa-
rized in Table S1. The median age was 58.4 ± 15.8. No statistically significant differences
were observed in spherical equivalent, axial length, and intraocular pressure, regardless of
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the presence of glaucoma. Both glaucoma and control groups were evenly composed with
similar numerical values of other ocular characteristics such as MD (dB), VFI (%), RNFL,
GCIPL, and GCC thickness (µm).

In the experiment, 20 WF-OCTA images, consisting of 10 glaucoma and 10 normal
datasets, were examined. Additionally, 100 WF-OCTA images of 50 glaucoma and 50 nor-
mal datasets were classified in FSL experiments with 1, 2, 5, and 10 shots by default. Shot
refers to the number of data points used to adapt training to a new task. For example, if it
is one shot, it means that the model only looks at one glaucoma data and one normal data
and fits 100 data. Table S2 demonstrates the WF-OCTA image accuracy value and the AUC.
The results clearly display that as the number of shots increases, so does the accuracy. The
comparison was based on 10 shots.

We were interested in the feasibility of using SL to predict WF-OCTA even with a
limited amount of data. To investigate this point, we conducted a performance verification
and comparison between the existing SL method using ResNet18 and the proposed method
with the WF-OCTA data. For SL, we trained with a total of 20 WF-OCTA data and tested
with 100 WF-OCTA data. Therefore, Figure 4 and Table 1 demonstrate that SL does not
learn with an accuracy of 50%. Additionally, the accuracy and the AUC value are high for
FSL, and the p-value is set at 0.05 for all results, which is significant.
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Figure 4. Receiver operating curves for glaucoma diagnostic methods. Left is FSL vs. SL with
WF-OCTA images. FSL shows a higher AUC. The right is a classification of glaucoma vs. normal
cases. FSL WF-OCTA RNFL Combi and FSL WF-OCTA GCC Combi achieve the highest AUC (0.930
and 0.881). These outperform conventional thickness values (RNFL, GCC, and GCIPL thickness AUC:
0.870, 0.863, and 0.782).

Table 1. Comparison of accuracy and area under the receiver operating characteristic curve between
few-shot learning and supervised learning.

FSL SL FSL vs. SL: p-Value

WF-OCTA RNFL
Combi

GCC
Combi Alone RNFL

Combi
GCC

Combi Alone RNFL
Combi

GCC
Combi Alone

Accuracy (%) 81 80 68 50 50 50 <0.05 <0.05 <0.05
AUC 0.930 0.881 0.701 0.802 0.799 0.640 <0.05 <0.05 <0.05

FSL = few-shot learning; SL = supervised learning; WF-OCTA = wide-field optical coherence tomography
angiography; AUC = area under the receiver operating characteristic curve; RNFL = retinal nerve fiber layer;
GCC = ganglion cell complex.
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This study also compared our method with existing methods based on peripapillary
RNFL, macular GCIPL, and macular GCC thickness values, which are widely used in the
glaucoma field.

As displayed in Table 2, the AUC values demonstrate that the performance of WF-
OCTA Combis adopting FSL is significantly higher than those of thickness values, and the
respective p-values are significant at 0.05 or less.

Table 2. Comparison of accuracy and area under the receiver operating characteristic curve between
few-shot learning and conventional thickness value (p-values are expressed in the table below).

FSL Thickness Value

WF OCTA_
RNFL Combi

WF OCTA_
GCC Combi WF-OCTA RNFL GCC GCIPL

AUC 0.930 0.881 0.701 0.870 0.863 0.782

FSL

WF OCTA_RNFL
Combi NA <0.05 <0.05 <0.05 <0.05 <0.05

WF OCTA_GCC
Combi <0.05 NA <0.05 <0.05 <0.05 <0.05

WF-OCTA <0.05 <0.05 NA <0.05 <0.05 <0.05

Thickness
Value

RNFL <0.05 <0.05 <0.05 NA 0.83 0.49
GCC <0.05 <0.05 <0.05 0.83 NA 0.37

GCIPL <0.05 <0.05 <0.05 0.49 0.37 NA

FSL = few-shot learning; AUC = area under the receiver operating characteristic curve; WF-OCTA = wide-field
optical coherence tomography angiography; RNFL = retinal nerve fiber layer; GCC = ganglion cell complex;
GCIPL = ganglion cell–inner plexiform layer.

4. Discussion

In this study, the effectiveness of WF-OCTA as an image diagnostic modality for
glaucoma diagnosis is investigated using DL algorithms, and an FSL method is also
introduced to overcome the difficulties of data collection for WF-OCTA. Although many
previous studies have applied artificial intelligence (AI) to images such as OCT and SS-OCT
to diagnose glaucoma, no studies have been conducted on WF-OCTA images. Therefore,
the application of DL to WF-OCTA images is the first of its kind.

In the field of ophthalmology, various attempts have been made to use small-shot
learning as an automatic diagnostic evaluation method for images. Quellec et al. applied
FSL to the detection of rare conditions such as papilledema or anterior ischemic optic
neuropathy from the OPHDIAT diabetic retinopathy screening program [38]. Kim et al.
introduced a novel approach for the development of an effective computational model
for early diagnosis of glaucoma, relying solely on a single type of image (high-resolution
fundus images) using FSL, employing a matching network older than ProtoNet [39]. Han
et al. used FSL for ophthalmic disease screening, focusing primarily on enhancing data
by fusion or aggregation of various data types rather than relying on a small amount of
data [40].

First of all, comparing FSL and SL, the diagnostic power of FSL demonstrated better
performance. The reason SL does not perform is because of an error called underfitting that
occurs due to the small amount of image data (like WF-OCTA). This means that to examine
the effectiveness of using AI in this situation, FSL, rather than the existing methodology
SL, must be used as another methodology that can improve performance. This does not
serve as a comparison to establish the superiority of SL over FSL; instead, it underscores
the importance of FSL as a fitting methodology in specific circumstances. FSL was utilized
to construct models by incorporating various data sources, including open benchmark data,
to verify its effectiveness for WF-OCTA data.

This study conducted experiments on the FSL method utilizing an algorithm called
ProtoNet, which transforms data into prototypes and clusters them, making them suitable
for displaying particularity distributions. To adjust the ProtoNet for the FSL algorithm for
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this study, we identified two stages. The first step involves extracting features, which cap-
ture critical image elements to be evaluated, followed by classification, which determines
whether results are positive or negative. The feature extractor was trained using RNFL and
the transfer learning method [41], which utilized an existing ophthalmic medical image.
This resulted in an effective feature extractor for ophthalmic medical images. To reduce
potential task dependence, the model was trained on ImageNet during the classification
process. Additionally, the use of distinct datasets for training both sections of the network
aimed to maximize its benefits.

The FSL method employed in this study has the potential to significantly impact
real-world medical applications. We think this is the result of improving FSL’s capabilities
through the aforementioned efforts. FSL can be useful in cases where there are not enough
images available for training due to the rarity of the disease or the release of new image
types in the future. As new images will continue to be introduced with the development of
technology, incorporating FSL will help research and evaluate the diagnostic power at the
time of introduction of such images.

This study also compared the FSL of WF-OCTA with existing methods based on peri-
papillary RNFL, macular GCIPL, and macular GCC thickness values, which are widely used
parameters in glaucoma. Application of WF-OCTA data to FSL, especially in WF-OCTA
Combi data, demonstrated that this method surpasses conventional numeric parameter-
based diagnosis. Nevertheless, WF-OCTA (not combi, alone, grayscale) exhibits decreased
performance compared to the other two images. The reason for this discrepancy lies in the
fact that the RNFL image used for feature training is in RGB format, while the other two
images are in RGB format, and WF-OCTA is a grayscale image, thus degrading the feature
extraction performance due to different channels. To enhance the efficiency of WF-OCTA
(grayscale), acquire enough grayscale glaucoma images to train the feature extractor or
use additional shots to increase the accuracy of the network. We expect that increasing the
number of attempts beyond 10 may potentially enhance the algorithm’s performance in
future research.

WF-OCTA offers several distinct advantages in detecting RNFL defects for glaucoma
diagnosis [42]. First, WF-OCTA visualizes a wider area (12 × 12 mm) compared to the
existing OCT RNFL thickness map (12 × 9 mm). This may also be useful in assessing
peripheral regions and detecting abnormalities that can be missed in conventional imaging.
Second, visualization of blood flow dynamics improves the accuracy of glaucoma diagnosis
in cases with other ocular pathologies where the existing thickness map is compromised
by retinal diseases such as ERM or peripapillary retinoschisis. Particularly in cases of
high myopia, where RNFL defects may not be clearly observed in the red-free fundus
photo, WF-OCTA can be helpful [15,43]. By providing angiographic information across a
broader field than conventional imaging, WF-OCTA has the potential to enhance glaucoma
diagnosis.

However, the current active clinical utilization of WF-OCTA can be limited due to some
disadvantages. WF-OCTA takes a long time to acquire, requires cooperation, and can make
imaging difficult for older patients, especially those with tremors. Moreover, deviation
maps cannot be created, and the current embedded software only offers a combination map
with RNLF, GCC, and GCIPL thickness maps since the normative database of OCTA values
has not been established yet. These may make the active clinical utilization of WF-OCTA
challenging.

Nevertheless, when diagnosing glaucoma becomes challenging due to other patholog-
ical changes in the eye, such as high myopia or retinal diseases, WF-OCTA can serve as a
valuable adjunctive imaging technique. This study’s findings demonstrate that WF-OCTA
could offer a valuable alternative to the current RNFL method for diagnosing glaucoma,
especially in patients with co-existing ocular conditions. Therefore, we believe that it can
be readily applied in clinical settings, particularly in cooperative patients who can endure
relatively long examination times. With the assistance of FSL, the accuracy of WF-OCTA
for glaucoma diagnosis could further improve, leading to significant advancements in the
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diagnosis and treatment of glaucoma. Moreover, FSL could be clinically applicable not
only in glaucoma management but also in relatively less prevalent conditions like inherited
retinal diseases or neuro-ophthalmic diseases.

This study has certain limitations. First, the advantages of FSL could have been
demonstrated more accurately if we had used a wide fundus photo or OCT RNFL thickness
map instead of WF-OCTA. However, this study tried to demonstrate the advantages of
both FSL (new DL algorithm) and WF-OCTA (newly introduced imaging method). Second,
100 OCT RNFL thickness map images were used for feature extraction, which is still too
small for pre-training. Third, it would have been more intriguing if we could compare the
accuracy between diagnosis by the physician and the FSL. Fourth, OCT RNFL thickness
maps were used for the training set, which are very similar to the images used in the
support set (WF-OCTA). Our future studies plan to address the accuracy when using
images with lower similarity as the training set.

5. Conclusions

This study demonstrated the effectiveness of applying DL to WF-OCTA for glaucoma
diagnosis, highlighting the potential of WF-OCTA images in glaucoma diagnostics. Addi-
tionally, the application of FSL was shown to overcome the limitation of small dataset size.
Utilizing FSL with imaging techniques characterized by limited data can be effective, and
its applicability in various clinical settings is anticipated.
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