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Abstract: A series of experiments has been conducted to investigate the tribological properties of a
TiN film sliding against GCr15 steel balls in ambient air, low vacuum and high vacuum environments.
Various friction loads and sliding velocities were also applied. The TiN film displays a steady-state
friction stage after the running-in stage in all the above environments, while the durations of running-in
stages are different. The steady-state friction coefficients of the TiN film were around 0.56 in ambient
air and 0.3 in the high vacuum environment (1 × 10−5 mbar). In the low vacuum (1 × 10−2 mbar)
environment, a low friction coefficient (around 0.19) was attained for all the friction tests on TiN film,
irrespective of the applied load and sliding velocity. In the meantime, it was noticed that the applied
loads and the sliding velocities would change the duration of the running-in stage before reaching
the low friction coefficient. It is revealed by the analysis of wear tracks that the metal oxides induced
by the tribo-chemical effect at the friction interface play an important role in affecting the tribological
behaviors of the TiN films in different environments. The Raman results show that the main component
of the metal oxides is hematite (α-Fe2O3), and the amount of iron oxide is related to the friction
environment. The composition and quantity of iron oxides produced by the interfacial tribo-chemical
effect affect the tribological behavior. The results also show that the mechanical wear process at the
friction interface displays a polishing effect, which would reduce the surface roughness. The mechanical
wear performance varies under different loads and velocities. The tribological tests results indicate that
the interfacial tribo-chemical effect and mechanical wear process should be considered together rather
than individually to interpret the tribological behaviors of TiN films in different environments.

Keywords: TiN film; vacuum tribology; tribo-chemical reaction; mechanical wear

1. Introduction

Reducing friction and wear has an important impact on energy consumption, economic
expenditure, and CO2 emissions [1,2]. The most typical method for reducing friction and
wear is to apply a solid lubricating film on the component surface. With the development of
aerospace, metallurgy, electronics and semiconductors, components are required not only
to serve in atmospheric environments but also to have excellent service lifespan in vacuum
environment [3,4]. Generally, a solid lubricating film deposited on a component’s surface
can effectively reduce friction and wear. Solid lubricating films such as diamond-like
carbon (DLC) and molybdenum disulfide (MoS2) exhibit excellent tribological properties
under vacuum conditions and ambient atmospheric conditions, such as ultra-low friction
coefficients and low wear rates [4–6]. However, low hardness, poor thermal stability
and sensitivity to the service environment limit its application. Titanium nitride (TiN)
coatings were the first hard film to be industrialized and have been widely applied in
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industrial applications [7,8], such as cutting tools, decorative materials and integrated
circuits, due to their unique combination of high hardness, wear resistance, excellent
corrosion resistance and unique golden color [9]. Many studies have been conducted on the
friction of TiN films, such as dry friction in ambient air [10], high-temperature friction [11]
and oil lubrication [12].

The tribological properties of the TiN film were studied in ambient air, and several friction
mechanisms involving abrasive wear, adhesive wear and oxidation wear were proposed to
interpret the tribological behavior [10]. The friction mechanism of the TiN film in an atmospheric
environment is complicated and depends on friction heat, the tribo-chemical reaction and the
relative mechanical action of the friction pair on the interface. The vacuum environment, on the
other hand, considerably eliminates the impact of gas and humidity in the atmospheric envi-
ronment on friction and wear and provides a way of investigating the fundamental properties
of materials that determine tribological characteristics. In our previous study, a TiN film was
used to slide against a steel ball under ambient air and vacuum conditions, and the friction
tests’ results revealed that the friction coefficient in a vacuum was substantially lower than that
in ambient air. After detailed characterization and analysis, it was determined that the low
friction coefficient is due to the passivation of dangling bonds at the interface, as well as the
prevention of the oxidation process and the electrostatic repulsion of N atoms in a vacuum
environment [13]. To date, TiN films have been investigated mainly on microstructures for their
mechanical properties [14–16], but their tribological behaviors and mechanisms in the vacuum
environment are still rarely reported.

To gain a fundamental understanding of the friction of the TiN film in the vacuum
environment, it is important to consider the tribo-chemistry and mechanical wear to-
gether. The friction pair is subjected to mechanical and chemical activity at the same
time. The chemical action is caused by active chemicals in the environment, while the
mechanical action is caused by the motions of the friction couple as a result of the applied
stresses. Guo et al. investigated the friction and wear properties of Ta/Ti/TiN/Ti/DLC
and Ta/Ti/TiN/TiCuN/Ti/DLC thin films in sodium bicarbonate and lactic acid solutions.
They discovered that different intermediate layers of thin films and different solutions have
a significant impact on friction and wear performance [17]. Cui et al. studied the influence
of applied loads and gaseous atmospheres on the tribological behaviors of diamond-like
carbon (DLC) films and then found that the passivation of carbon dangling bonding at the
sliding interface was the primary lubrication mechanism for DLC films [18,19]. Under air
conditions, the adsorption of vapor molecules from surrounding gases on the solid surface
can have a significant effect on adhesion and friction [20–22]. Further, the tribological
properties of a sliding surface are greatly affected by the water molecules, the active gas
and the inert gas in the test environment [23,24]. Conversely, under vacuum conditions,
the gas and water molecules in the vacuum environment should be greatly reduced. It was
also reported that severe adhesive wear occurred on the friction surface under vacuum
conditions [25,26]. On the other hand, from the perspective of mechanical action, the
tribological behavior of the TiN film can be influenced by the applied load as well as the
testing environment. Umair Manzoor et al. investigated the size, crystallinity and optical
properties of ZnO nanoparticles (NPs) synthesized via the coprecipitate method. It was
found that the synthesis temperature, nucleation time and post-synthesis heat treatment
of ZnO nanoparticles all affect the sensing performance [27]. Therefore, a comprehensive
tribo-chemical and mechanical analysis of the friction interface is important for understand-
ing the tribological properties of the TiN film under a vacuum environment. The outcome
will also provide significant support and scientific basis for the design, optimization and
application of novel coating materials used in aerospace and harsh conditions.

In this study, a series of tribological tests for TiN films were designed in different envi-
ronments, including ambient air, low vacuum and high vacuum conditions. We also applied
various normal loads and sliding speeds to investigate their effects on the friction behaviors of
the TiN films, which will help us to dive deeply in understanding the friction performance of
TiN films in different environments. In short, this paper aims to illustrate how the environmental
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atmosphere, the applied normal load and sliding speed affect the friction properties of the TiN
film. The underlying tribological mechanism has also been studied.

2. Experimental Details
2.1. Film Deposition

The TiN films used in this study were deposited on 304 stainless steels (flat coupons,
size 30 × 30 × 2 mm, Feiyue Precision Machinery Co. Ltd., Suzhou, China) via a multi-arc
ion plating machine (Flexicoat 850, Hauzer Co. Ltd., Venlo, The Netherlands). Prior to
deposition of the TiN film, the 304 stainless steel substrates were ultrasonically cleared by
anhydrous alcohol and acetone (Kelong Chemical Co. Ltd., Chengdu, China) and then
placed on the sample holder. During the deposition of the TiN film, the chamber was
evacuated up to a pressure of 4 × 10−5 mbar. To remove the oxide layer and contaminants,
the substrates were cleaned by argon plasma etching for 30 min at a bias voltage of −750 V.
The TiN films were deposited under a N2 atmosphere (Ar and N2 gas were supplied by
Yulong gas Co. Ltd., Lanzhou, China), the Ti target current was 60 A, and the substrate bias
was −30 V. The deposition parameters of the TiN films are shown in Table 1.

Table 1. Deposition parameters of the TiN film by multi-arc ion plating.

Item Parameter

N2 flow 300 sccm
Ti target current 60 A
Deposition time 3 h
Substrate bias −30 V

2.2. Tribological Tests

The tribological tests of the TiN film were carried out by a reciprocating ball-on-disk
tribometer (HVTRB vacuum tribometer, Anton Paar Co., Ltd., Graz, Austria). Sensors
were applied to monitor and record the motion status and experimental parameters of the
friction pair over time and, thus, to obtain accurate experimental data. The tribological
experiments were conducted under air conditions, low vacuum (1 × 10−2 mbar) and high
vacuum (1 × 10−5 mbar). The TiN films were slid against a GCr15 steel ball (Kangda Steel
Ball Co., Ltd., Yuncheng, China) with a diameter of 6 mm. In this work, the following
parameter values were used: the applied normal loads were 1 N, 3 N and 5 N; the yielding
initial Hertz contact stress values were 805.8 MPa, 1162 MPa and 1378 MPa; the sliding
frequencies were 1 Hz, 3 Hz and 5 Hz; the corresponding sliding velocities were 1.75 cm/s,
4.71 cm/s and 7.85 cm/s; and the stoke length was set at 5 mm. All the dry friction tests
were conducted at room temperature (23 ± 2 ◦C) and the humidity was approximately
28 ± 3%. All the tests were repeated three times. The wear scar diameter of the GCr15 steel
ball after the friction test was measured using an optical microscope, and the wear volume
and the wear rate (K) of the GCr15 steel ball were calculated using the following formula:

h = r −
√

r2 − d2

4
(1)

V =

(
πh
6

)(
3d2

4

)
+ h2 (2)

K = V/(FL) (3)

where d is the diameter of the wear scar, r is the radius of the GCr15 steel ball, V is the wear
volume, L is the total sliding distance, F is the applied load and K is the wear rate.
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2.3. Characterization Methods

The surface morphology of the TiN film was observed using scanning electron mi-
croscopy (SEM, Mira3, Tescan Co., Ltd., Brno, Czech), and the phase analysis of the TiN
film was analyzed using the X-ray diffraction (XRD, Bruker Co., Ltd., Karlsruhe, Germany)
technique with Cu-Kα radiation (λ = 1.5418 Å) in the 2θ range of 10~90◦. The hardness
and elastic modulus of the TiN film were determined using a nanoindentation tester (TTX-
NHT2, Anton Paar Co., Ltd., Graz, Austria) with a load of 50 mN, and nine individual
tests wereconducted to calculate the hardness, modulus and standard deviation. The wear
tracks on the TiN film after the tribological test were studied using SEM equipped with an
energy dispersive X-ray spectrometer (EDS) detector.

3. Results
3.1. General Characteristics of the Titanium Nitride (TiN) Films

The surface morphology of the as-deposited TiN film is illustrated in Figure 1a. The
pits and micro particles are dispersed on the surface of the TiN film, which results from the
molted droplets deposited on the TiN film during the deposition process [28]. The X-ray
pattern of the TiN film with 2θ scans from 10 to 90 is shown in Figure 1b, and the diffraction
pattern contains five broad peaks at 36.7, 42.6, 61.8, 74.1 and 77.9, corresponding to (1 1 1),
(2 0 0), (2 2 0), (3 1 1) and (2 2 2) of TiN, respectively [13]. A nanoindentation test was used
to measure the hardness and modulus of the coatings. The load–displacement curve of the
TiN film is shown in Figure 1c, and the hardness and elastic modulus of the TiN film were
28.2 GPa and 467.6 GPa, respectively.
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3.2. Friction Behavior under Ambient Air

Figure 2 shows the friction curves of the TiN film sliding against the GCr15 steel ball
in ambient air with a variety of loads and sliding velocities. The friction coefficient curves
of the TiN film revealed a similar trend under different experimental conditions; the friction
coefficient dropped to a minimum during the running-in stage and then gradually increased
throughout the test. In addition, the normal load and sliding velocity should be taken into
account while analyzing the tribological behavior of the film. According to the results in Figure 2,
the friction coefficient of the TiN film is affected by the sliding velocity. With the increase in the
sliding velocity from 1 N–1 Hz to 1 N–5 Hz, the friction coefficient substantially decreases from
approximately 0.52 to 0.41. Similarly, the friction coefficient of the TiN film was also affected
by the normal load. With the increase in the load from 1 N–1 Hz to 5 N–1 Hz, the friction
coefficient slightly increases from 0.52 to 0.56. Therefore, the influence of sliding velocity on the
friction coefficient was greater than that of the load of the tribological properties of the TiN film
in ambient air.
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Figure 2. The friction curves of the TiN film sliding against the GCr15 steel ball under ambient air:
(a) under various normal loads at a sliding velocity of 1 Hz (1.75 cm/s), (b) under various normal
loads at a sliding velocity of 3 Hz (4.71 cm/s) and (c) under various normal loads at a sliding velocity
of 5 Hz (7.85 cm/s).

The SEM micrograph and element distribution of the corresponding area of the wear
tracks after the friction test are shown in Figure 3. The hardness of the TiN film (28.2 GPa)
was greater than that of the counterpart GCr15 steel ball (HRC62-66). The difference in
the hardness between the TiN film and GCr15 steel ball caused the material transfer of the
GCr15 steel ball onto the TiN film in the friction process. As the EDS results showed, the
transferred material at the friction interface was mainly composed of Fe and O elements.
Moreover, it should be noted that the wear was mainly the wear of the steel balls, while
the wear of the TiN film was little after the friction test. It is clear that the wear tracks on
the TiN film surfaces were covered with transferred materials and abrasive particles after
the friction test. The wear mechanism of the TiN film under ambient air was adhesive and
abrasion wear. As seen in Figure 2, with increasing normal load and sliding velocity, the
adhesive strength of the transferred material on the friction interface increases.

Furthermore, to understand the effect of the adhesive material on the friction interface,
the Raman spectra of the wear tracks after the friction test of the TiN film under different
normal loads and sliding velocities are shown in Figure 4. The inside (red mark) and
outside (yellow mark) of the debris on wear tracks were characterized by Raman spectra,
and the adhesion material was distributed in the center of the wear tracks. The composition
of the inside and outside of the debris on the wear tracks was hematite (α-Fe2O3), and
these peaks could correspond to the hematite phase (α-Fe2O3) [29,30].
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Figure 4. Optical images and Raman spectra for the wear tracks of the TiN film after sliding against the
GCr15 steel ball in ambient air: (a) optical images of the inside (red mark) and outside (yellow mark) of
the wear tracks under various normal loads at a sliding velocity of 1 Hz (1.75 cm/s), (b) Raman spectra of
the inside of the wear tracks and (c) Raman spectra of the outside of the wear tracks.

3.3. Friction Behavior under High Vacuum

Figure 5 shows the variation in the friction coefficient of the TiN film under different
loads and sliding velocities in a high vacuum environment (1 × 10−5 mbar). The fric-
tion coefficient decreased sharply to approximately 0.25 during the initiation to around
1000 sliding laps. Immediately, the friction coefficient increased to approximately 0.3 and
remained stable through 10,000 sliding laps. Compared with the friction coefficient of the
TiN film under ambient air, the friction coefficient of the TiN film under a high vacuum (0.3)
was nearly half the friction coefficient of the TiN film under ambient air (0.56). In addition,
the effect of the load and sliding velocity on the friction coefficient of the TiN film under a
high vacuum was smaller than the friction coefficient of the TiN film under ambient air. All
of the friction curves of the TiN film under a high vacuum showed a similar tendency, and
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compared with low load (1 N) and low sliding velocity (1 Hz), the variation range of the
friction coefficient decreased under high load (5 N) and high sliding velocity (5 Hz).
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sliding velocity of 5 Hz (7.85 cm/s).

For a friction system composed of the TiN film and GCr15 steel ball, the friction
behavior can be affected by the inherent properties of the TiN film and counterpart ball,
the test conditions and the environmental atmosphere [31]. In this study, the diversity of
friction behavior of the TiN film can be attributed to the transformation of the environmental
atmosphere from ambient air to a high vacuum, and there are almost no active gases or
water molecules in a high vacuum environment. Moreover, the surface chemical and
physical states of the contact points have a significant effect on the tribological behavior of
the TiN film during the friction process.

Figure 6 shows the SEM micrograph and element distribution of the corresponding
area of the wear tracks after the friction test under a high vacuum. The wear debris
produced by the GCr15 steel ball still accumulated at the edge of the wear track, but there
was no obvious adhesion inside the wear track. Under the condition of a high vacuum,
the gas content and humidity are very low, and the effect of tribo-chemical action can be
ignored. The main contribution to the friction coefficient is mechanical wear in the interface.
Compared with the wear track in ambient air, the inside of the wear track is obviously
different after the friction test under a high vacuum. The inside regions of the wear tracks
were very clear, indicating no adhesion between the contacting surfaces. Adhesion wear on
the friction interface can lead to a large friction coefficient. This might be the reason that
the low friction coefficient of the TiN film occurred in a high vacuum.

The Raman spectra obtained from the wear tracks on the TiN film under a high vacuum
are shown in Figure 7. The inside (red mark) and outside (yellow mark) of the debris on
wear tracks were characterized by Raman spectra. However, there is no obvious transfer of
material from the GCr15 steel ball at the center of the wear tracks. The composition of the
inside of the debris was titanium nitride (TiN), and the Raman peaks appeared at 209 cm−1

(TA), 330 cm−1 (LA) and 547 cm−1 (TO). These peaks could correspond to the titanium
nitride phase (TiN) [32,33]. In contrast, the composition of the outside of the debris on
the wear tracks was hematite (α-Fe2O3). The Raman peaks appeared at 231 cm−1 (A1g),
293 cm−1 (Eg),396 cm−1 (Eg), 672 cm−1 (Eg) and 1304 cm−1 (Eg), and these peaks could
correspond to the hematite phase (α-Fe2O3) [29,30].
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Figure 7. Optical images and Raman spectra for the wear tracks of the TiN film after sliding against the
GCr15 steel ball in high vacuum: (a) optical images of the inside (red mark) and outside (yellow mark) of
the wear tracks under various normal loads at a sliding velocity of 1 Hz (1.75 cm/s), (b) Raman spectra of
the inside of the wear tracks and (c) Raman spectra of the outside of the wear tracks.

3.4. Friction Behavior under Low Vacuum

Figure 8 shows the variation in the friction coefficient of the TiN film for different loads
and sliding velocities under a low vacuum (1 × 10−2 mbar). Generally, all of the friction
coefficients of the curves can be divided into three stages, and the friction coefficient finally
stabilizes at a value of approximately 0.2. In the first stage, the friction coefficient drops
sharply to a value of 0.35 and then slowly increases to a value of 0.4 at the second stage.
In the subsequent third stage, the friction coefficient drops sharply to approximately 0.2,
where it remains constant throughout the entire test. However, it should be noted that the
friction coefficient in a low vacuum is lower than the friction coefficient in ambient air and
a high vacuum.
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Figure 8. Friction curve of the TiN film sliding against the GCr15 steel ball under low vacuum
(1 × 10−2 mbar): (a,d,g) under various normal loads at a sliding velocity of 1 Hz (1.75 cm/s),
(b,e,h) under various normal loads at a sliding velocity of 3 Hz (4.71 cm/s), and (c,f,i) under various
normal loads at a sliding velocity of 5 Hz (7.85 cm/s).

In addition, it should also be noted that the sliding laps that reach a low friction
coefficient are different. The sliding laps reaching a low friction coefficient at different
sliding velocities and loads are shown in Table 2. Running-in is the initial stage of sliding
wear before forming conformal sliding contact, and severe wear occurs in this stage. The
influence of mechanical wear on the friction coefficient is much greater than that of the tribo-
chemical reaction. With the increase in the applied load and sliding velocity, the running-in
period required for the friction interface to reach the stable stage is longer [34,35]. After
the severe wear of the steel ball in the running-in period, the friction interface is relatively
stable. At the stage of low friction coefficient, the tribo-chemical reaction plays a major
role in the friction coefficient. Moreover, the contribution of tribo-chemistry to the friction
coefficient continued until the end of the friction test.

Table 2. Sliding laps reaching a low friction coefficient at different sliding velocities and loads.

Experimental Parameters Laps Friction Coefficient

1 N–1 Hz 10,304 0.19
1 N–3 Hz 28,140 0.20
1 N–5 Hz 55,227 0.24
3 N–1 Hz 17,418 0.20
3 N–3 Hz 45,637 0.22
3 N–5 Hz 47,236 0.22
5 N–1 Hz 27,348 0.21
5 N–3 Hz 53,523 0.21
5 N–5 Hz 56,175 0.23
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Figure 9 shows the SEM micrograph and element distribution of the corresponding
area of the wear tracks after the friction test under a low vacuum. The wear debris produced
by the GCr15 steel ball still accumulates at the edge of the wear tracks, and the amount of
wear debris increases as the load increases. There is a small amount of wear debris on the
inside of the wear tracks. The main component of wear debris was iron oxide.
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The Raman spectra obtained from the wear tracks on the TiN film under a high
vacuum are shown in Figure 10. The inside (red mark) and outside (yellow mark) of the
debris on wear tracks were characterized by Raman spectra. The composition of the inside
and outside of the debris on the wear tracks was hematite (α-Fe2O3). The Raman peaks
appeared at 231 cm−1 (A1g), 293 cm−1 (Eg),396 cm−1v(Eg), 672 cm−1 (Eg) and 1304 cm−1

(Eg), and these peaks could correspond to the hematite phase (α-Fe2O3) [29,30].
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Figure 10. Optical images and Raman spectra for the wear tracks of the TiN film after sliding against the
GCr15 steel ball in a low vacuum: (a) optical images of the inside (red mark) and outside (yellow mark) of
the wear tracks under various normal loads at a sliding velocity of 1 Hz (1.75 cm/s), (b) Raman spectra of
the inside of the wear tracks and (c) Raman spectra of the outside of the wear tracks.
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4. Discussion

In Figure 11a, the friction results of the TiN film from different environments are
summarized and presented as a function of loads and sliding velocities. In ambient air, a
higher friction coefficient was observed as compared with the high vacuum environment.
The different friction coefficients were related to the real contact state of the friction interface
in different environments [31,36]. The wear tracks and Raman analysis showed that the
mechanical wear and tribo-chemical reaction were different, where more metal oxide and
adhesive wear was observed as compared with the high vacuum environment (Figure 4).
In the high vacuum environment, low friction coefficients of all tribological tests were
observed. The wear tracks and Raman analysis showed that no metal oxide was observed
on the inside of the sliding interface (Figure 7). Tribo-chemistry has no effect on friction
coefficient of the TiN film under a high vacuum. Obviously, in the low vacuum environment,
the lowest friction coefficient of the TiN film was observed. It is worth noting that the
lowest friction coefficient in a low vacuum was achieved by a long running-in period.
Results from the present study suggest that the friction mechanisms of TiN film under
different environments are different.
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Figure 11. (a) Average steady-state friction coefficient of the TiN film and (b) wear rate of the GCr15
steel ball after friction testing under different loads and sliding velocities in ambient air, low vacuum
and high vacuum environments.

The effects of friction environments on the tribological properties of the contact inter-
face have been extensively studied [31,37]. In this study, it is worth noting that the TiN film
siding against the GCr15 steel ball has almost no wear after the friction test. In Figure 11b,
wear results of the GCr15 steel ball from different environments are summarized and
presented as a function of loads and sliding velocities. The wear rate of the GCr15 steel ball
in ambient air is higher than that in a high vacuum. The number of sliding laps used in the
wear rate under a low vacuum was the same as that measured in ambient air and a high
vacuum, which was 10,000 laps. As seen from the friction coefficient curves in Figure 8, a
high friction coefficient stage of the TiN film in a low vacuum appeared in the running-in
period. Generally, the high wear rate of the GCr15 steel ball corresponds to the high friction
coefficient of the TiN film.

The friction and wear results described above raise an interesting and important
question: why do the friction and wear results differ in ambient air, low vacuum and high
vacuum conditions? The wear loss of material is usually estimated using Archard’s wear
equation, and Archard’s relationship states that the wear of material is linearly proportional
to the normal load and sliding distance but inversely proportional to the hardness of the
materials [38,39]. Therefore, the mechanical properties of the TiN film and GCr15 steel
ball dictate the wear process, and the wear of the GCr15 steel ball varies depending on the
difference in the friction environment. The above results revealed different tribo-chemical
reactions in ambient air, low vacuum and high vacuum environments.
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The environmental atmosphere may significantly affect the tribological behavior of
ceramic materials, and the friction interface after a tribological test is an important aspect
that affects the friction behaviors of ceramic films [10,40]. The wear tracks of the TiN film
after the tribological test in different environments are shown in Figure 12. The interfacial
bond between the metal and the ceramic is generally stronger than the cohesive bond of
the metal, so the metal was sheared and experienced serious wear during sliding. From
Figure 12(a1,a2), it can be observed that serious adhesive wear occurred on the wear track
of the TiN film in ambient air, and the serious adhesion wear of the wear track led to high
friction resistance on the tribology interface. As seen in the Raman spectra in Figure 4, the
transferred material inside and outside the wear tracks of the TiN film after the friction
test was composed of a large amount of hematite (α-Fe2O3). Adhesion occurred at the
tribology interface during the friction process, causing cold welding, high friction and high
wear [38,41]. Therefore, the TiN film has high friction in ambient air.
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Figure 12. SEM and EDS images of the wear tracks on the TiN film after the friction test. (a1) SEM
image of the wear track in ambient air, (a2) the high-resolution SEM images of the area marked with
the yellow solid square in (a1,a3) the EDS images of the wear tracks in (a1). Correspondingly, the
SEM and EDS images of the wear tracks in a high vacuum are in (b1–b3), and the SEM and EDS
images of the wear tracks in a low vacuum are in (c1–c3).

From the previous friction test in a high vacuum, the friction coefficients measured in the
high vacuum are all lower than those measured in ambient air. As seen in Figure 12(b1,b2),
no adhesion wear exists inside the wear track of the TiN film, but there is a small amount
of wear debris on the outside of the wear tracks after the friction test. As seen in the Raman
spectra in Figure 7, the transferred material outside the wear tracks of the TiN film after the
friction test was composed of hematite (α-Fe2O3), but the wear tracks were still the TiN film
itself. Removing the influence of the environmental atmosphere in ambient air has enabled
a better understanding of the friction interface that influences friction and wear in a high
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vacuum. No adhesive wear occurs at the friction interface under a high vacuum (Figure 7),
and the significant wear reduction of the GCr15 steel ball was observed in the high vacuum
environment (Figure 11b). This indicates that in the high vacuum environment, tribo-chemical
reactions and tribo-mechanical wear on the friction interface were suppressed in comparison
with ambient air. Therefore, the TiN film has low friction in a high vacuum.

From the friction coefficient curves in a low vacuum in Figure 8, the lowest friction
efficient (0.19) can be achieved when the load is 1 N and the sliding velocity is 1 Hz, and
the lowest friction can be achieved at different loads and sliding velocities. The wear track
of the TiN film is shown in Figure 12(c1,c2). It is clear that the amount of metal oxide inside
the wear track in low vacuum environments was less than in ambient air. Slight adhesion
was distributed inside the wear track of the TiN film, and the transferred material inside
the wear track was hematite (α-Fe2O3) according to Figure 10. Therefore, slight adhesion
and a small amount of hematite (α-Fe2O3) on the friction interface can further reduce the
friction coefficient.

5. Conclusions

In this study, the influence of the environment, normal load and sliding velocity on the
friction behaviors in TiN films were investigated. Tribological tests were conducted on TiN film
in ambient air, low vacuum and high vacuum. The following conclusions can be drawn:

(1) The friction coefficient of the TiN film was approximately 0.56 in ambient air and 0.3 in
a high vacuum (1 × 10−5 mbar). The lowest friction coefficient (0.19) appeared in a
low vacuum (1 × 10−2 mbar). It is worth noting that the TiN film possesses excellent
wear resistance under different environments.

(2) Under ambient air conditions, a large number of active gases and humidity exist, and
serious adhesive wear and abrasive wear occur at the friction interface, resulting in
an increased friction coefficient. Under high vacuum conditions, there are almost
no active gases or water molecules, and the friction coefficient is mainly affected by
mechanical wear. Under low vacuum conditions, the tribo-chemical reaction and
mechanical wear play simultaneous roles in further reducing the friction coefficient.

(3) It was observed that the tribo-chemical products (Fe2O3) detected by Raman and
slight wear on the friction interface can define the low friction behavior of the TiN film
in a low vacuum environment. Furthermore, a connection between the low friction
of the TiN film and the tribological interface evolution was established by changing
the friction environment. The analysis of the friction coefficient and sliding interface
after the friction test in different environments reveals that the tribo-chemical reaction
and mechanical wear on the sliding interface have a significant impact on the friction
of the TiN film. The outcome provides significant support and scientific basis for the
design, optimization, and application of novel coating materials used in aerospace.
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