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Abstract: The present study investigated the steady magnetohydrodynamics of the axisymmetric flow
of a incompressible, viscous, electricity-conducting nanofluid with convective boundary conditions
and thermo-diffusion over a radially stretched surface. The nanoparticles’ volume fraction was
passively controlled on the boundary, rather than actively controlled. The governing non-linear
partial differential equations were transformed into a system of nonlinear, ordinary differential
equations with the aid of similarity transformations which were solved numerically, using the very
efficient variational finite element method. The coefficient of skin friction and rate of heat transfer,
and an exact solution of fluid flow velocity, were contrasted with the numerical solution gotten by
FEM. Excellent agreement between the numerical and exact solutions was observed. The influences of
various physical parameters on the velocity, temperature, and solutal and nanoparticle concentration
profiles are discussed by the aid of graphs and tables. Additionally, authentication of the convergence
of the numerical consequences acquired by the finite element method and the computations was
acquired by decreasing the mesh level. This exploration is significant for the higher temperature of
nanomaterial privileging technology.

Keywords: nanofluid; themo-diffussion; MHD; finite element method; convective surface boundary
conditions

1. Introduction

The exploration of steady nanofluid flow through a stretching surface has been fundamentally
prolonged for extensive consideration amid the most recent few years because of numerous
applications in the engineering field. It consists of a micro-electro-mechanical structure that is highly
developed in nuclear schemes; and glass fiber, fuel cells, and paper fabrication have an imperative
part in rudimentary equipment of life. A suspension contains nanoparticles in a base liquid (water,
a mixture of the base fluid, kerosene, biofluids, and organic liquids), and has a base fluid viscosity,
thermal conductivity, density, and mass diffusivity. The composition of nanoparticles includes metal
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nitride, metals, oxide ceramics, and carbide ceramics. The investigation of magnetohydrodynamics
with transfer flow over a radially stretching surface is significant in many manufacturing processes,
such as in specific processes like laser devices, polymer processing technology, and medical treatment.
Aziz et al. [1] described that a change in flow geometry, enhancing thermal conditions, using porous
medium and boundary conditions, can be improved heat transfer capacity of the fluid. The perceptions
of nanofluid first commenced with Choi [2], to illustrate that a base fluid (water, kerosene, biofluids, and
ethylene-glycol mixture) could have improved thermal conductivity with the addition of nanoparticles.
Ariel [3] has a portrayal of a model of axisymmetric flow caused by a radically stretched sheet and also
gauges the consequences by the finite difference method. Omid et al. [4] examined the nanofluid flow
and heat transfer using two phase mixture model. Mohamed et al. [5] studied the LBM simulation
of free convection in a nanofluid. The impacts of nanoparticles and magnetic fields on the thermal
conductivity were considered by Mohammad et al. [6,7]. Arash et al. [8] investigated the carbon
nanotubes’ effects on temperature and considered water as a base fluid.

The fluid flow of the boundary layer caused by a stretching surface is a significant form
of flow occurring in processes of the engineering and chemical industries. These include the
processing of paper and fiberglass. In recent times, Mustafa et al. [9] deliberated that the
nanofluids flow through to a radially stretching sheet, and evaluated that both numerically and
analytically. Akbari et al. [10] examined the impacts of nanoparticles existing as non-Newtonian
nanofluids, and illustrated that thermal conductivity enlarges the cause of enhancement in the
nanoparticles. mohyud-Din et al. [11] scrutinized an analogous performance of nanoparticles. Ashraf
and coauthors [12] have investigated the micro-polar fluid flow through shrinking sheet also discussed
the thermal conductivity impacts.Masoud et al. [13] examined the effects of induced electric field on
magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium

Raza [14] analyzed a Casson fluid over a sheet and examined the radiation effects on temperature.
Chen [15] inspected the mixed convection fluid flow over a stretching sheet. In speculation about
a micro-polar fluid, a momentous contribution was contributed by Sankara et al. [16], who also
scrutinized the micro-polar boundary layer fluid’s flow through a stretching surface. The consequences
of a magnetic field on the constricting viscous fluid flow along with the parallel plates were conferred
and explained the through perturbation method by Hamza [17]. Numerous researchers have been
occupied with investigating the mixed convection flow of non-Newtonian fluids [18–24]. Mostafa et al.
[25] investigated the magneto-free convection in square cavities using different walls.

The novelty of this work is to consider that the nanoparticles’ volume fraction is passively
controlled on the boundary rather than actively with a convective boundary condition over the radially
stretched sheet, given the heat and mass transfer characteristics of the thermo-diffusion and chemical
reaction. Another aspect of this work is the numerical solution; the finite element method (FEM) was
chosen, which is the most robust method to solve the differential equations. Khan et al. [26] illustrated
that the precise solution of steady axi-symmetric flow over a non-linearly stretching sheet exists while
the stretching sheet’s velocity is comparative to x3. Kumar et al. [27] described that the finite element
method is especially utilized in business software akin to MATLAB, ABAQUS, ANSYS, and ADINA.

We were motivated by the above literature, a wide range of applications, and the fact that there was
no work considered to investigate the active and passive controls of nanofluid flow with a convective
surface boundary condition and thermo-diffusion over a radially stretched sheet to the best of our
knowledge. The intention of the presented study was to expand the work of Nayak et al. [28]. After
that, the governing non-linear partial differential equations were created in a non-linear system of ODEs
by applying suitable similarities. The consequential system of non-linear ODEs has been evaluated
numerically with a consummated and legitimated variational finite element method (FEM), and
with boundary conditions. The manipulations of assorted parameters on temperature, nanoparticles,
and solutal volume fractional functions were studied numerically and graphically. So as to additionally
bolster the validity of the present consequences of the finite element method, a comparison of the flow
velocity and the skin friction coefficient was made with the exact solution. Further, authentication
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of the convergence of the numerical results that were acquired by the finite element method and the
computations was conferred with reference to different mesh sizes for active and passive controls.

2. Mathematical Formulation

Let us consider a steady magnetohydrodynamic flow of the incompressible viscous flow of a
nanofluid over a stretching sheet coinciding with the sheet z = 0 in the presence of a chemical reaction.
The flow of the conducting fluid is assumed to be linear along the radial direction U(r) = c0r, where
c0 is a dimensional constant. The constant temperature, solutal concentration, and nanoparticle
concentration are Tw, Cw, and ψw respectively. The ambient values of the temperature, solutal
concentration, and nanoparticle concentration are denoted by T∞, C∞, and φ∞ respectively (see
Figure 1). It is supposed that the B(r) = Bor variable magnetic field intensity acts in z direction,
normal to the sheet. Under the above conditions, the governing equations of continuity, momentum
conservation, energy conservation, and nanoparticle volume fraction can be expressed as (see [28–30]):

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (1)

u
∂u
∂r

+ w
∂u
∂z

= ν
∂2u
∂z2 −

σB2(r)u
ρ

(2)

u
∂T
∂r

+ w
∂T
∂z

= α∗
∂2T
∂z2 + τDB

∂ψ

∂z
∂T
∂z

+ τ
DT
T∞

(
∂T
∂z

)2 + DTC
∂2C
∂2z

(3)

u
∂C
∂r

+ w
∂C
∂z

= Ds
∂2C
∂z2 − k1(r)(C− C∞) + DCT

∂2C
∂2z

(4)

u
∂ψ

∂r
+ w

∂ψ

∂z
= DB

∂2ψ

∂z2 +
DT
T∞

∂2T
∂2z

(5)

The velocity vector of flow is v = v(u, w), where u and w are components of velocity along r and
z directions respectively; σ, ν, and ρ are the electrical conductivity, kinetic viscosity, and viscosity of a
fluid, respectively; DB and DT , are the Brownian diffusion and thermophoretic diffusion coefficients
respectively; Ds, DCT , and DTC are the solutal, Soret, and Dufour diffusivities, respectively; and k1 is
the chemical reaction. The corresponding boundary conditions for active control are (see [28,29,31]):

u = U(r) + D1
∂u
∂z

, w = W0,−κ
∂T
∂z

= h f (Tw − T), C = Cw, ψ = ψw, at z = 0 (6)

u→ 0, T → ∞, C → ∞, ψ→ ∞, as z→ ∞, (7)

and the corresponding boundary conditions for passive control are (see [11]):

u = U(r) + D1
∂u
∂z

, w = W0,−κ
∂T
∂z

= h f (Tw − T), C = Cw, DB
∂ψ

∂z
+

DT
T∞

∂T
∂z

= 0, at z = 0 (8)

u→ 0, T → ∞, C → ∞, ψ→ ∞, as z→ ∞, (9)

where D1 is the hydrodynamic slip factor and Cw is the variable surface concentration.
The following are the similarity transformations to solve the Equations (1)–(5) stated as (see [28,32]):

u = c0r f ′(ξ), ξ =

√
co

ν
z, w = −

√
coν f (ξ), θ(ξ) =

T − T∞

Tw − T∞
, S(ξ) =

C− C∞

Cw − C∞
, φ(ξ) =

ψ− ψ∞

ψw − ψ∞
(10)
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In view of Equation (10), the system of partial differential Equations (2)–(5) transform into the
following system of coupled and non-linear ODEs:

d3 f
dξ3 + f

d2 f
dξ2 −M

d f
dξ
− d f

dξ

2
= 0, (11)

1
Pr

d2θ

dξ2 −
d f
dξ

θ + f
dθ

dξ
+ Tp(

dθ

dξ
)2 + Bm

dφ

dξ

dθ

dξ
+ D f

d2S
dξ2 = 0 (12)

1
Sc

d2S
dξ2 −m

d f
dξ

S + f
dS
dξ
− kcS + Sr

d2θ

dξ2 = 0 (13)

d2φ

dξ2 − Le
d f
dξ

φ +
Tp

Bm

d2θ

dξ2 + Le f
dφ

dξ
= 0; (14)

the transformed boundary conditions Equations (6) and (7) for active control are:

f (ξ) = λ,
d f
dξ

= 1 + σf
d2 f
dξ2 ,− dθ

dξ
= −β∗[1− θ(ξ)], S(η) = 1, φ(η) = 1, at ξ = 0, (15)

d f (ξ)
dξ

→ 0, θ(∞)→ 0, S(∞)→ 0, φ(∞)→ 0 at ξ = ∞; (16)

and the transformed boundary conditions Equations (8) and (9) for passive control are:

f (ξ) = λ,
d f
dξ

= 1 + σf
d2 f
dξ2 ,− dθ

dξ
= −β∗[1− θ(ξ)], S(η) = 1, Bm

dφ

dξ
+ Tp

dθ

dξ
= 0, at ξ = 0, (17)

d f (ξ)
dξ

→ 0, θ(∞)→ 0, S(∞)→ 0, φ(∞)→ 0 at ξ = ∞ (18)

where primes represent differentiation with respect to the variable ξ. The parameters in Equations
(11)–(15) are described as:

M =
σB2

0
ρco

, Pr = κ
ρcp , Bm = τDB(ψw−ψ∞)

ν , Tp = τDT(Tw−T∞)
νT∞

, D f = DTc(Cw−C∞)
ν(Tw−T∞)

, Sr = DCT(Tw−T∞)
ν(Cw−C∞)

,

Sc = ν
Ds

, Le = σ
DB

, β∗ =
√

ν
c0

cr,kc = k1
c0

, λ = −W0
1√
c0ν

where M is the magnetic parameter, Pr is the Prandtl number, Bm is the Brownian motion parameter,
Tp is the thermophoresis parameter, D f is the Dufour parameter, Sr is the Soret parameter, Sc is the
Schmidt number, Le is the Lewis number, β∗ is the Biot number, kc is the chemical reaction parameter,
σf is the hydrodynamic slip parameter, and λ represents the mass transfer rate at the surface. λ > 0 is
the case for injection and λ < 0 is the case for suction.

U(r)=cor

B(r)

Passive control

Active control

Figure 1. Physical configuration and coordinate system.
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3. Finite Element Method (FEM) Solutions

The finite element method was executed on the system of non-linear boundary value problems
to acquire the numerical solution that is given in Equations (9)–(12) and was subjected to the
boundary conditions of Equations (13) and (14). This method is more adept and reliable than
other numerical methods, such as Adomian decomposition method (ADM), homotopy perturbation
method (HPM), and finite-difference method (FDM). Additionally, it is very proficient and has
been applied to study the miscellaneous problems in fluid mechanics, and in computational fluid
dynamics, solid mechanics, mass transfer, heat transfer, and many other fields [33]. Reddy [34]
demonstrates an admirable universal feature of the variational finite element method, and confinement
in various nonlinear problems, such as simulating the transmission phenomenon of unsteady
magnetohydrodynamic [26,35,36] and mixed convection micropolar flow in porous media [37]. In order
to apply the finite element method (FEM) to the simultaneous nonlinear differential Equations (9)–(12),
and to use the boundary conditions in the Equations (13) and (14), we consider:

d f
dξ

= h, (19)

The set of Equations (9)–(12) thus reduces to

d2h
dξ2 + f

dh
dξ
−Mh− h2 = 0, (20)

1
Pr

d2θ

dξ2 − hθ + f
dθ

dξ
+ Bm

dφ

dξ

dθ

dξ
+ Tp(

dθ

dξ
)2 + D f

d2S
dξ2 = 0, (21)

1
Sc

d2S
dξ2 −mhS + f

dS
dξ
− kcS + Sr

d2θ

dξ2 = 0, (22)

d2φ

dξ2 − Lehφ + Le f
dφ

dξ
+

Tp

Bm

d2θ

dξ2 = 0, (23)

The corresponding boundary conditions reduce to following form now for active control:

f (ξ) = λ, h(ξ) = 1 + σf
dh
dξ

,− dθ

dξ
= −β∗[1− θ(ξ)], S(ξ) = 1, φ(ξ) = 1, at ξ = 0, (24)

h(ξ)→ 0, θ(∞)→ 0, S(∞)→ 0, φ(∞)→ 0 at ξ = ∞ (25)

and the corresponding boundary conditions reduce to following form now for passive control:

f (ξ) = λ, h(ξ) = 1 + σf
dh
dξ

,− dθ

dξ
= −β∗[1− θ(ξ)], S(ξ) = 1, Bm

dφ

dξ
+ Tp

dθ

dξ
= 0, at ξ = 0, (26)

h(ξ)→ 0, θ(∞)→ 0, S(∞)→ 0, φ(∞)→ 0 at ξ = ∞ (27)

3.1. Variational Formulations

The weak form connected with Equations (15)–(21) over a linear element Ωa = (ξa, ξa+1) is given
by the following.

∫ ξa+1

ξa
s1{

d f
dξ
− h}dη = 0, (28)∫ ξa+1

ξa
s2{

d2h
dξ2 + f

dh
dξ
−Mh− h2}dξ = 0, (29)∫ ξa+1

ξa
s3{

1
Pr

d2θ

dξ2 − hθ + f
dθ

dξ
+ Bm

dφ

dξ

dθ

dξ
+ Tp(

dθ

dξ
)2 + D f

d2S
dξ2 }dξ = 0, (30)
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∫ ξa+1

ξa
s4{

1
Sc

d2S
dξ2 −mhS + f

dS
dξ
− kcS + Sr

d2θ

dξ2 }dξ = 0, (31)∫ ξa+1

ξa
s5{

d2φ

dξ2 − Lehφ + Le f
dφ

dξ
+

Tp

Bm

d2θ

dξ2 }dξ = 0, (32)

where s1, s2, s3, s4 and s5 are arbitrary test functions.

3.2. Finite Element Formulations

The finite element model may be obtained from Equations (22)–(26) by plugging in the following
finite element approximation form.

f̄ =
p

∑
n=1

f̄nψn, h̄ =
p

∑
n=1

h̄nψn,
d̄θ

dξ
=

p

∑
n=1

d̄θn

dξ
ψn,

d̄φ

dξ
=

p

∑
n=1

d̄φn

dξ
ψn (33)

with s1 = s2 = s3 = s4 = s5 = ψn(n = 1, 2), where the test functions ψn for a typical length element
Ωe = (ξa, ξa+1) are given by.

x1, x2, x3, x4,   ..,xp

In global coordinates

he

In local coordinates: For p 2 (linear element)

ψ1 =
ξa+1 − ξ

ξa+1 − ξa
, ψ2 =

ξ − ξa

ξa+1 − ξa
, ξa ≤ ξ ≤ ξa+1. (34)

The FE model equations are, therefore, given by.
[A11] [A12] [A13] [A14] [A15]

[A21] [A22] [A23] [A24] [A25]

[A31] [A32] [A33] [A34] [A35]

[A41] [A42] [A43] [A44] [A45]

[A51] [A52] [A53] [A54] [A55]




{ f }
{h}
{θ}
{S}
{φ}

 =


{b1}
{b2}
{b3}
{b4}
{b5}

 (35)

where [Amn] and [bm](m, n = 1, 2, 3, 4, 5) are the matrices of order 2× 2 and 2× 1, respectively, and all
the matrices are given below:

A11
ij =

∫ ξa+1

ξa
ψi

dψj

dξ
dξ, A12

ij = −
∫ ξa+1

ξa
ψiψjdξ, A13

ij = A14
ij = 0, A15

ij = A21
ij = 0,

A22
ij = −

∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ +

∫ ξa+1

ξa
f̄ ψi

dψj

dξ
dξ −

∫ ξa+1

ξa
h̄ψiψjdξ

− M
∫ ξa+1

ξa
ψiψjdξ, A23

ij = 0, A24
ij = 0, A25

ij = 0, A31
ij = 0, A32

ij = 0,
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A33
ij = − 1

Pr

∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ −

∫ ξa+1

ξa
h̄ψiψjdξ +

∫ ξa+1

ξa
f̄ ψi

dψj

dξ
dξ,

+ Bm

∫ ξa+1

ξa
φ̄′ψi

dψj

dξ
dξ + Tp

∫ ξa+1

ξa
θ̄′ψi

dψj

dξ
dξ, A34

ij = −D f

∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ,

A35
ij = 0, A41

ij = A42
ij = 0, A43

ij = −Sr
∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ,

A44
ij = − 1

Sc

∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ +

∫ ξa+1

ξa
f̄ ψi

dψj

dξ
dξ −m

∫ ξa+1

ξa
h̄ψiψjdξdξ

− kc

∫ ξa+1

ξa
ψiψjdξdξ, A45

ij = A51
ij = A52

ij = A54
ij = 0, A53

ij = − Nt
Nb

∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ

A55
ij = −

∫ ξa+1

ξa

dψi
dξ

dψj

dξ
dξ + Le

∫ ξa+1

ξa
f̄ ψi

dψj

dξ
dξ − Le

∫ ξa+1

ξa
h̄ψiψjdξdξ,

and

b1
i = 0, b2

i = −(ψ dh
dξ

)ξa+1
ξa

, b3
i = − 1

Pr
(ψ

dθ

dξ
)ξa+1

ξa
− du(ψ

dS
dξ

)ξa+1
ξa

,

b4
i = − 1

Sc
(ψ

dS
dξ

)ξa+1
ξa
− Sr(ψ

dθ

dξ
)ξe+1

ξe
,

b5
i = −(ψ dφ

dξ
)ξa+1

ξa
−

Tp

Bm
(ψ

dθ

dξ
)ξe+1

ξe
, (36)

where f̄ = ∑2
n=1 f̄nψn, h̄ = ∑2

n=1 h̄nψn, d̄θ
dξ = ∑2

n=1
d̄θn
dξ ψn and d̄φ

dξ = ∑2
n=1

d̄φn
dξ ψn are supposed to be

known. The system of equations obtained by Equation (30) is of the order 10× 10 and the whole flow
domain is distributed into 1000 linear elements of the same size. We obtain a matrix after assembly of
all element equations. After the assemblage of the system of element equations, an ensuing system of
non-linear equations is attained; subsequent to this, it imposes an iterative method to compute it for an
effective solution. To compute f̄ , h̄, θ̄′, and φ̄′, functions are assumed to be known at a lower iteration
level to linearize the system. Then, the estimations for the velocity, solutal parameters, nanofluid,
temperature, and volume fraction profile are fulfilled for a high level, and continued until the desired
accuracy of 0.00005 is not attained. To make sure of the mesh’s independence, the mesh impact ability
has been used. There is no considerable disparity in the results observed for ξ > 12. For that reason, ξ

has been fixed at 12. For the corroboration of the convergence of results, we intended for the quantity
of elements to enlarge; n = 60, 100, 120, 240, 260, 48, 500, 700, 1000, and 1100. The results are
demarcated in Tables 1 and 2. Additionally, n enhances further than 1000, so no considerable alteration
in velocity, temperature, or concentration functions was exposed, so the results of the last outcomes
are reported for n = 1000 elements.

As the presented results, an assessment of the fluid velocity has been perceived with the exact
solution given by Crane [38] as f (ξ) = 1 − exp(−ξ) with special case (M = 0, λ = 0, σf = 0).
The results that have acquired by FEM are a good consensus, which avows the legality of FEM, clearly
observed in Table 3. In Table 4, the skin friction coefficient − f ′′(0) obtained by FEM and is also
compared with the numerical results of Bagh et al. [39] and exact solution of Mudassar et al. [40],
when all other parameters are supposed to be zero. An excellent correlation has been achieved and
grid invariance test has been conducted to maintain four decimal point accuracy. In Table 5, the −θ′(0)
obtained by FEM is also compared with the results of already published articles when remaining
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parameters are ignored. Our results have decent agreement with the published results that avow the
legality of FEM.

Table 1. FEM convergence results for active control of nanoparticles when Pr = 0.773; M = 2; Bm =

Tp = 0.1, Sc = 5, kc = D f = Sr = 0.1; Le = 4; m = β∗ = 1, λ = 0.2, and σf = 0.2.

Number of Elements f (3.0) h(3.0) θ(3.0) S(3.0) φ(3.0)

60 0.49978 0.00073 0.02127 0.26324 0.06208
100 0.50188 0.00075 0.02122 0.26206 0.06185
260 0.50290 0.00076 0.02119 0.26148 0.06173
500 0.50303 0.00076 0.02119 0.26141 0.06172
700 0.50306 0.00076 0.02119 0.26140 0.06172
1000 0.50307 0.00076 0.02119 0.26139 0.06171
1100 0.50307 0.00076 0.02119 0.26139 0.06171

Table 2. FEM convergence results for passive control of nanoparticles when Pr = 0.773; M = 2; Bm =

Tp = 0.1, Sc = 5, kc = D f = Sr = 0.1; Le = 4; m = β∗ = 1, λ = 0.2, and σf = 0.2.

Number of Elements f (3.0) h(3.0) θ(3.0) S(3.0) φ(3.0)

60 0.49575 0.00066 0.02095 0.25985 0.05915
120 0.50225 0.00075 0.02079 0.25627 0.05824
240 0.50287 0.00076 0.02078 0.25592 0.05815
480 0.50303 0.00076 0.02077 0.25584 0.05813
700 0.50306 0.00076 0.02077 0.25582 0.05812
1000 0.50307 0.00076 0.02077 0.25581 0.05812
1100 0.50307 0.00076 0.02077 0.25581 0.05812

Table 3. Comparison of the f ′(η) with the published results of Crane [38].

ξ
[38] FEM Error in %

ξ
[38] FEM Error in %

(a) Exact Solution (b) (Our Results) |( b−a
a )| × 100 (a) Exact Solution (b) (Current Results) |( b−a

a )| × 100

0.0 1.0000 1.00000 0.00000 5.0 0.0067 0.00670 0.00000
1.0 0.1379 0.13787 0.02175 6.0 0.0025 0.00251 0.40000
2.0 0.1353 0.13534 0.02956 7.0 0.0009 0.00091 1.11111
3.0 0.0498 0.04976 0.08032 8.0 0.0003 0.00031 3.33333
4.0 0.0183 0.01833 0.16393 9.0 0.0001 0.00011 10.0000

Table 4. The coefficient of skin friction in comparison with different values of magnetic parameter M.

M Bagh et al. [39] Mudassar et al. [40] FEM (Our Results) Error in %
Exact Solution (a) (b) |( b−a

a )| × 100

0.0 1.0000 1.000000 1.0000080 0.00080
0.2 1.0954 1.095445 1.0954458 0.00007
0.5 1.2247 1.224745 1.2247446 0.00003
1.0 1.4142 1.414214 1.4142132 0.00006
1.2 1.4832 1.483240 1.4832393 0.00005
1.5 1.5811 1.581139 1.5811384 0.00004
2.0 1.7321 1.732051 1.7320504 0.00003

Table 5. Assessment of −θ′(0) for numerous values of Pr when β∗ → ∞.

Pr Fazle et al. Dulal Pal. Haile et al. Ishak et al. [41] FEM Error in %
[42] [43] [44] (a) Accurate Solution (b) (Current Results) |( b−a

a )| × 100

0.72 0.8088 - - 0.8086313498 0.8086339289 0.0003
1.00 1.0000 1.0000 1.0004 1.000000000 1.0000080210 0.0008
3.00 1.9237 1.9236 1.9234 1.923682594 1.9236777223 0.0003
10.0 3.7207 3.7207 3.7205 3.720673901 3.7206681685 0.0002
100 - 12.2940 12.2962 12.294083260 12.294051661 0.0003
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4. Results and Discussion

This section was prepared to examine the performance of dimensionless fluid velocity f ′(ξ),
temperature distribution θ(ξ), and concentration profiles (S(ξ), φ(xi)) for active and passive cases,
under the effects of various rising entities, such as the magnetic parameter M, Prandtl number Pr,
Brownian motion Bm parameter, thermophoresis parameter Tp, Dufour parameter D f , Soret parameter
Sr, Schmidt number Sc, Lewis number Le, Biot number β∗, hydrodynamic slip parameter σf , chemical
reaction parameter kc, and suction/injection parameter λ.

Figure 2 depicts the impact of suction/injection parameter λ. A decline is observed in the velocity
function when suction is λ > 0, and fluid velocity is enhanced for injection λ < 0. Figure 3 shows the
effect of M and hydrodynamic slip σf on the velocity function. From the consequences, it is discernible
that the velocity reduces with the rising values of M. The M-produced Lorentz force slows down the
motion of the fluid along the radial direction. The boundary layer thickness can be controlled with the
assistance of magnetic M. A similar behavior for velocity has been reported by [28,31]. Additionally, it
can be seen in Figure 3 that the velocity of the fluid decreases due to presence of slip.
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Figure 2. The impact of f ′(ξ) on suction/injection λ.
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Figure 3. The impact of f ′(ξ) on magnetic M and hydrodynamic slip σf .

The thickness of the thermal boundary layer increases for different estimations of M. That is clear
from Figure 4. The thermal boundary layer;s thickness can also be controlled with the aid of magnetic
M. Similar temperature trends have been observed by [31]. The same behavior was observed for both
cases: active and passive controls.
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Figure 4. The impact of θ(ξ) on magnetic M.

Figures 5 and 6 illustrate that the temperature increases with the enhancement of Tp and Bm

in both cases. A similar trend was reported by [11] for temperature profile. Figure 7 represents the
temperature distribution with the variation of the Dufour parameter D f , which shows that the Dufour
parameter D f causes an increase in the thickness of the thermal boundary layer. It was also observed
that there was no significant variation in active and passive concentration of nanoparticles. Figure
8 illustrates that the thermal boundary layer thickness increases with the enhancement of β∗. The
temperature distribution approaches its maximum value at the high value of the Biot number because
an increase in β∗ causes stronger convection. A similar trend for the passive case is noticed.
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Figure 5. The impact of θ(ξ) on thermophoresis Tp.
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Figure 6. The impact of θ(ξ) on Brownian motion Bm.
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Figure 7. The impact of θ(ξ) on Dufour D f .

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(
)

0.5 1 1.5

0.45

0.5

0.55

Active control

Passive control

* = 1, 1.6, 2.5, 3.8

Pr = 0.773, T
p
=B

m
= 0.1, M=2,Sc = 5, Kc = D

f

=Sr = 0.1 ,Le=3,  = 0.2, 
f
 = 0.2,

Figure 8. The impact of θ(ξ) on Biot number β∗.

Figures 9 and 10 depict the establishment of the conversion of the suction/injection parameter λ

on the temperature. The injection λ < 0 overshoots the temperature, and opposite behavior of suction
λ > 0 is noticed. It is clearly seen in Figures 9 and 10. The similar trend of suction/injection λ for
active and passive control cases is seen in Figures 9 and 10. It is also noticed that the impact of λ on the
temperature in the active case is greater compared to passive control. The increment in magnetic M
causes no significant change in the solutal profile and causes enhancement in the boundary layers of
respective solutal profiles for cases of both active and passive control. A similar pattern in the solutal
profile has been observed by [28] for the active control case. That is clearly seen in Figure 11.
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Figure 9. The impact of θ(ξ) on suction/injection λ (active control case).
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Figure 10. The impact of θ(ξ) on suction/injection λ (passive control case).
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Figure 11. The impact of S(ξ) on magnetic M.

Figures 12 and 13 demonstrate the impact of suction/injection parameter λ for active and passive
control cases. The decline is observed in the solutal function when suction is λ > 0, and solutal
concentration increased for injection λ < 0. for both cases. The increment in the boundary layer is
very fast for the active control case compared to the passive control case when the injection λ < 0.
The solutal boundary layer thickness increases as there is an increase of Sr for both cases, but there is
no significant change between active and passive control. That has been shown in Figure 14.
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Figure 12. The impact of S(ξ) on suction/injection λ (active control case).
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Figure 13. The impact of S(ξ) on suction/injection λ (passive control case).
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Figure 14. The impact of S(ξ) on Soret Sr.

Figure 15 shows the incremental increases in magnetic M caused by increments in the nanoparticle
volume fraction profile for cases of both active and passive control. The increment in the boundary
layer is very fast for active control case compared to the passive control case when the values of
magnetic M are enhanced. Figures 16 and 17 demonstrate the impact of suction/injection parameter λ

for active and passive control cases on the nanoparticle volume fraction profile. The decline is observed
in the nanoparticle volume fraction profile when suction is λ > 0, and the nanoparticle volume fraction
profile increased for injection λ < 0. in both cases. Additionally, we observed interesting phenomena
for the passive control case: the concentration for ξ ≥ 2.0 seemed to be increasing when λ > 0 and
decreasing for λ < 0., and the opposite behavior was noticed for ξ > 2.0. That happens due to zero
flux boundary conditions.
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Figure 15. The impact of φ(ξ) on magnetic M.
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Figure 16. The impact of φ(ξ) on suction/injection λ (active control case).
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Figure 17. The impact of φ(ξ) on suction/injection λ (passive control case).

The increment in the boundary layer is very fast for the active control case compared to the passive
control case when the injection λ < 0. Figure 18 illustrates that the nanoparticle volume fraction profile
deceases with the enhancement of Bm for both cases, active and passive control, and nanoparticle
concentration decreases respectively. A similar trend was reported by [11] for the nanoparticle volume
fraction profile for the active control case. An opposite trend was observed with the increment of Tp for
both cases. Mohyud-Din et al. [11] and Nandy et al. [45] observed a similar trend in the nanoparticle
volume fraction profile for the active control case. That is evident from Figure 19.

A declining trend has been observed in terms of nanoparticle volume fraction, as it increases Le
for both active and passive control cases. That is clear from Figure 20, which shows the decreasing
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nanofluid volume fraction boundary layer. The passive control gives a more realistic approach to
controlling the nanofluid volume fraction boundary layer.
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Figure 18. The impact of φ(ξ) on Brownian motion Bm.
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Figure 19. The impact of φ(ξ) on thermophoresis Tp.
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Figure 20. The impact of φ(ξ) on Lewis number Le.

In Table 6 we observe the conversion of physical parameters Pr, λ, Sc, and β∗ on the − f ′′(0),
−θ′(0), and −φ′(0). The following results are concluded from the Table 6:

(i) The − f ′′(0), −θ′(0), and −φ′(0) increase with a thorough improvement in the increment of λ for
both active and passive controls cases.

(ii) The increment in Prandtl number Pr, causes increasing −θ′(0) and −φ′(0) for both active and
passive controls cases.
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(iii) The −θ′(0) decreases with the increasing Schmidt number for both cases, and increments in the
−φ′(0) for the active control case, but the opposite trend is observed for the passive control case.

(iv) The −θ′(0) increases with the increment of β∗ for both cases and declines in −φ′(0) for the active
control case, but the opposite trend is observed for passive control case.

Table 6. Assessment of − f ′′(0), −θ′(0), and −φ′(0) for numerous values of Pr and Sc (M = 1; Nb =

0.1; Nt = 0.1; Sc = 4; sigma = 0.1; Le = 4; D f = 0.1; Sr = 0.1; N = 1; Bi = 1; S = 0.2; S f = 0.2; bb = 1).

Pr Sc λ β∗
Active Control Passive Control

− f ′′(0), −θ′(0), −φ′(0) − f ′′(0) −θ′(0) −φ′(0)

0.773 4.0 0.2 1.0 1.116036 0.314270 2.230358 1.116036 0.325653 −0.325653
1.000 1.116036 0.337902 2.238065 1.116036 0.353987 −0.353987
2.000 1.116036 0.369181 2.304543 1.116036 0.406317 −0.406317
0.773 4.0 0.2 1.0 1.116036 0.314270 2.230358 1.116036 0.325653 −0.325653

5.0 1.116036 0.296912 2.248532 1.116036 0.308299 −0.308299
7.0 1.116036 0.264145 2.284424 1.116036 0.275669 −0.275669

0.773 4.0 0.2 1.0 1.116036 0.314270 2.230358 1.116036 0.325653 −0.325653
0.5 1.211634 0.328079 3.047308 1.211634 0.340621 −0.340621
0.7 1.277755 0.336787 3.651359 1.277755 0.349912 −0.349912

0.773 4.0 0.2 1.0 1.116036 0.314270 2.230358 1.116036 0.325653 −0.325653
2.0 1.116036 0.391965 2.190185 1.116036 0.409853 −0.409853
3.0 1.116036 0.427054 2.172055 1.116036 0.448419 −0.448419

5. Conclusions

Through inspection and discussion, we analyzed the active and passive controls of
magnetohydrodynamic an axisymmetric nanofluid flow with a convective boundary condition
and thermo-diffusion over a stretched sheet. The considerations for solutal, velocity, temperature,
nanoparticle, and volume fraction functions at sundry assessments of physical parameters have been
executed. A few stirring expositions from the contemporary work are avowed as:

• Influence of injection λ < 0 parameter is to proceed with the fluid velocity, fluid temperature,
and solutal and nanoparticles concentration functions but opposite behavior is observed for
suctionλ > 0 for both active and passive controls.

• Increments in the magnetic field parameter enhance the fluid temperature, and solutal and
nanoparticle concentration functions for both active and passive controls, but decline the
fluid velocity.

• The temperature and nanoparticle concentration functions exhibit a similar trend for increasing
values of thermophoresis parameter Tm in the presence of active and passive controls (both cases).
The temperature exhibits similar behavior for greater values of Brownian motion parameter Bm,
while the opposite trend is observed for nanoparticle concentration functions.

• The influence of the Dufour parameter and Biot number is to increase the fluid temperature in the
presence of active or passive controls.

• A greater Lewis number (Le) suppresses the nanoparticle concentration in the presence of both
active and passive controls.

• The − f ′′(0) parameter exhibits opposite behavior for λ < 0 and λ > 0. The −θ′(0) parameter
decreases with increasing Schmidt number for both cases, and increments in −φ′(0) for the active
control case, but the opposite trend is observed for the passive control case.

• The −θ′(0) parameter increases with the increment of β∗ for both cases, and declines in −φ′(0)
for the active control case, but the opposite trend is observed for the passive control case. The
increment in Prandtl number Pr, causes an increase in −θ′(0) and −φ′(0) for both active and
passive control cases.

• The −θ′(0) increases with the increment of β∗ for both cases, and declines in −φ′(0) for the active
control case, but the opposite trend is observed for the passive control case. The increment in
Prandtl number Pr causes increasing−θ′(0) and−φ′(0) for both active and passive controls cases.
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Nomenclature

M Magnetic parameter
Bm Brownian motion parameter
Tp Thermo-phoresis parameter
Pr Prandtl number
Le Lewis number
D f Dufour parameter
Sr Soret parameter
Sc Schmidt number
Kc Chemical reaction
λ Suction/Injection parameter
σ Electrical conductivity
α∗ Thermal diffusivity
T Temperature
σf hydrodynamic slip parameter
β∗ Biot number
Tw Sheet temperature
T∞ Ambient temperature
Cw Solutal concentration
C∞ Ambient solutal concentration
U(x) Velocity of sheet
φw Nanoparticle volume fraction
DT Thermal diffusivity
Ds Molecular diffusivity
DB Brownian diffusivity
DCT Soret diffusivity
DTc Dufour diffusivity
µ Dynamic viscosity
ρ Fluid density
u, v Velocity components
ψn test functions
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