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Abstract: Interference of two and four light beams with linear or circular polarization is studied ana-
lytically and numerically based on the Richards–Wolf formalism. We consider such characteristics of
the interference fields as the distribution of intensity, polarization, and spin angular momentum den-
sity. The generation of light fields with 1D and 2D periodic structure of both intensity and polarization
is demonstrated. We can control the periodic structure both by changing the polarization state of the
interfering beams and by changing the numerical aperture of focusing. We consider examples with a
basic configuration, as well as those with a certain symmetry in the polarization state of the interfering
beams. In some cases, increasing the numerical aperture of the focusing system significantly affects
the generated distributions of both intensity and polarization. Experimental results, obtained using a
polarization video camera, are in good agreement with the simulation results. The considered light
fields can be used in laser processing of thin films of photosensitive (as well as polarization-sensitive)
materials in order to create arrays of various ordered nano- and microstructures.

Keywords: polarization; multi-beam interference; circular polarization; linear polarization;
Richards–Wolf formulas

1. Introduction

Currently, light fields with a nonuniform polarization state are increasingly used to
solve problems of optical microscopy, laser processing of materials, laser manipulation,
holography, and optical communications [1–4]. To form such structured light fields, it is
necessary to use subwavelength gratings that are quite complex to manufacture [5], metasur-
faces [6] and metalenses [7], or approaches based on the mode addition of two orthogonally
polarized light fields [8]. The last of the mentioned approaches is implemented both with
the help of dynamic spatial light modulators (SLMs) [9] and with the help of diffractive
optical elements (DOEs) [10]. The DOEs have a high damage threshold that allows them to
be used with powerful laser pulses; however, DOEs are inferior in functionality to modern
SLMs and in most cases are more demanding for adjustment. Relatively simple profiles of
nonuniformly polarized light fields can be formed using various sector polarizing plates
that consist of either rotated polarizing films or birefringent crystals with rotated axes [11].
The disadvantages of such elements include the occurrence of diffraction effects at the
junctions of sectors, as well as a relatively small set of types of inhomogeneously polar-
ized fields that can be formed with their help. Also, the quality of the generated fields is
significantly lower compared to the methods based on subwavelength gratings.

At the same time, there are quite simple methods for generating non-uniformly po-
larized light fields with a periodically repeating structure. Such structured light fields are
especially interesting in laser processing of materials and laser manipulation, since they

Photonics 2024, 11, 478. https://doi.org/10.3390/photonics11050478 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics11050478
https://doi.org/10.3390/photonics11050478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-6765-4373
https://doi.org/10.3390/photonics11050478
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics11050478?type=check_update&version=2


Photonics 2024, 11, 478 2 of 23

can significantly speed up the processing or provide trapping and moving many nano- and
micro-objects [12,13]. These approaches include the method of multi-beam interference
of linearly or circularly polarized beams. In this case, by changing the polarization states
of the beams or their locations, it is possible to form different polarization profiles with a
periodicity depending on the angle of convergence of the beams. This approach does not
require the use of special optical elements but provides ample opportunities for dynamic
control of the field polarization structure.

It was previously shown that using two or more interfering beams with specified prop-
erties, one can quickly form two-dimensional or three-dimensional diffraction structures
in photosensitive materials [14–20]. Moreover, studies of the influence of the polarization
state of various beams on the formation of relief in polarization-sensitive materials are
increasingly appearing [21–26].

Most works analyze the influence of the geometric arrangement of interfering beams
and their polarization state on the contrast of the formed relief [27–30]. In this case, the TE-
or TM-polarization of beams is often considered with respect to the radius vector connect-
ing the origin of the input plane and the center of the position of the corresponding beam.
Thus, with multi-beam interference, the influence of linear polarization with a certain con-
figuration is studied. Note that the best contrast in lithography was predicted for structures
formed by coplanar (diametrically spaced relative to the origin) pairs of beams [24,29,30]
with TE polarization corresponding to the azimuthal configuration. When structuring
polarization-sensitive materials, better contrast is achieved due to the interference of beams
with orthogonal circular or diagonal polarizations, depending on the polymer type [23–26].

In this work, we analyze the influence of various combinations of polarization not
only on the distribution of vector field intensity interference (for each component) but also
on the distribution of the polarization state, as well as on the spin angular momentum
(SAM) density.

Analytical expressions were obtained for the interference of two and four beams from
point sources in the Richards–Wolf formalism [31,32]. This made it possible to show the
difference between paraxial approximation and sharp focusing for several special cases
that are important in the structuring of polarization-sensitive materials.

2. Methods
Theoretical Background

We consider a set of point sources Fp(x, y), implemented, for example, as holes in a
black screen, and having a certain type of polarization cp = (cxp, cyp)T:

F(x, y) =
P

∑
p=1

cpFp(x, y) =
P

∑
p=1

cpapδ
(

x − xp, y − yp
)

(1)

where δ(x, y) is the delta function, and ap is the weight coefficient (complex in the general case).
It is known that when propagating in the far zone, radiation from a set of point sources

corresponds to a superposition of plane waves [33]. Therefore, as a rule, the interference of
plane waves created by a set of point sources (or small holes) is considered [27–30,33–38].
However, field 1 can also be focused using both conventional lenses and objective lenses.

When radiation interacts with matter, not only is the amplitude-phase distribution of
the field near the irradiated surface important but also the polarization state [39–41], as
well as the component ratio [42–44].

The components of the electric field vectors when focusing each point source can be
calculated using the Richards–Wolf formulas [31,32]:

Ep(r,φ, z) = − i f
λ

α∫
0

2π∫
0

T(θ)Fp(θ,ϕ)Pp(θ,ϕ) exp[ik(r sin θ cos(ϕ−φ) + z cos θ)] sin θdθdϕ (2)
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where

Pp(θ,ϕ) =

 A(θ,ϕ) C(θ,ϕ)
C(θ,ϕ) B(θ,ϕ)
−D(θ,ϕ) −E(θ,ϕ)

(cxp(θ,ϕ)
cyp(θ,ϕ)

)
. (3)

Expression (3) uses the following notation:

A(θ,ϕ) = 1 + cos2 ϕ(cos θ− 1) ,
B(θ,ϕ) = 1 + sin2 ϕ(cos θ− 1) ,
C(θ,ϕ) = sinϕ cosϕ(cos θ− 1) ,
D(θ,ϕ) = cosϕ sin θ,
E(θ,ϕ) = sinϕ sin θ .

(4)

In Expressions (2)–(4) (r, ϕ, z) are cylindrical coordinates in the focal region, (θ, ϕ) are
spherical angular coordinates at the exit of the pupil of the focusing system, sin(α) = NA is
the numerical aperture of the system, Fp(θ, ϕ) is the transmission (input) function, T(θ) is
the apodization function, k = 2π/λ is the wave number, λ is the radiation wavelength, and
f is the focal length (see Figure 1).
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In spherical coordinates, field 1 will take the following form:

F(θ,ϕ) =
P

∑
p=1

cpFp(θ,ϕ) =
P

∑
p=1

cpapδ
(
θ− θp,ϕ−ϕp

)
(5)

Further, for symmetry reasons, we shall assume that the set of points in Expression (5)
is located on a ring with radius f sinθ0. Then, Function (5) depends only on the angle ϕ:

F(ϕ) = δ(θ− θ0)
P

∑
p=1

cpF(ϕp) = δ(θ− θ0)
P

∑
p=1

cpapδ
(
ϕ−ϕp

)
(6)

When substituting Expressions (5) or (6) into Formula (2), due to the filtering action of
the delta functions, the integration operation disappears [45,46]. So, in this case, the total
field after focusing will be the result of a superposition of fields in Equation (2):

E(r,φ, z) = − i f
λ

P

∑
p=1

ApEp(r,φ, z) (7)
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where Ap = apT (θ0) sin (θ0).
In this work, we are interested in the result in the focal plane (z = 0). In this case, the

result of focusing for each individual source can be written explicitly for all components of
the electric field:

Exp(r,φ, 0) = F(ϕp)
{[

1 − cos2 ϕp(1 − cos θ0)
]
cxp − sinϕp cosϕp(1 − cos θ0)cyp

}
exp

[
ikr sin θ0 cos(ϕp −φ)

]
,

Eyp(r,φ, 0) = F(ϕp)
{[

1 − sin2 ϕp(1 − cos θ0)
]
cyp − sinϕp cosϕp(1 − cos θ0)cxp

}
exp

[
ikr sin θ0 cos(ϕp −φ)

]
,

Ezp(r,φ, 0) = F(ϕp)
[
− sin θ0

(
cxp cosϕp + cyp sinϕp

)]
exp

[
ikr sin θ0 cos(ϕp −φ)

]
.

(8)

From Expression (8) it is clear that a significant change in the distribution of field
components is possible due to the polarization state of each source cp = (cxp, cyp)T (even in
the case of the accepted symmetry condition of Equation (6)).

In this work, we shall consider for field 7, formed by the interference of two or more
beams of Expression (8), such characteristics as the distribution of intensity, polarization,
and SAM density.

The SAM density distribution may be calculated by the following formula [47]:

s(r,φ, z) ≃ Im[E∗(r,φ, z)× E(r,φ, z)]. (9)

The individual components of the SAM density distribution are defined as follows:

s(r,φ, z) =

sx
sy
sz

 ≃ Im

E∗
y Ez − E∗

z Ey

E∗
z Ex − E∗

x Ez
E∗

x Ey − E∗
y Ex

. (10)

It is well known that the longitudinal component of the SAM sz is associated with
the presence of circular polarization in the generated field [48–51], which allows trapped
particles to rotate around their axis in the transverse plane. In the paraxial case, the
longitudinal component of the SAM dominates the transverse components. However, with
sharp focusing, especially of structured beams, transverse components of the SAM may
also be present [52–55], which ensures the rotation of the particles around their axis in
the direction of the light propagation. The presence of both transverse and longitudinal
components [56] can lead to complex 3D rotation of trapped particles.

Next, we shall consider some special cases and modeling results illustrating them both
in the paraxial case and with sharp focusing.

3. Analysis and Modeling Results for Interfering Beams

Obviously, the simplest case is the interference of two beams. However, if we add
two expressions of Expression (8) for arbitrary ϕ1 and ϕ2, then the general field will not
have interesting properties. Therefore, we consider a superposition with a certain symmetry
also along the angle ϕ.

3.1. Superposition of Two Horizontally Spaced Beams

Let us consider the simplest case for analytical calculations, when ϕ1 = 0◦, ϕ2 = 180◦.
Note that the result will be similar for any pair of diametrically opposite (coplanar) points
up to rotation.

For two horizontally spaced beams we obtain:

Ex = cos θ0[cx1 exp(iαx) + cx2 exp(−iαx)],
Ey = cy1 exp(iαx) + cy2 exp(−iαx),
Ez = − sin θ0[cx1 exp(iαx) + cx2 exp(−iαx)].

(11)

To obtain Expression (11), we use the notation α = k sin θ0, reduction formulas, and
the equalities x = r cos φ, y = r sin φ. From Expression (11), it is clear that the dependences
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of all three components are one-dimensional: only on variable x. Thus, a one-dimensional
lattice is formed. In addition, it can be noted that the x- and z-components of the field
depend only on the x-component of the initial polarization vector, and the y-component
depends only on the initial y-component.

The interference of two beams with different polarizations is often used to study
the photo-induced properties of materials when forming one-dimensional gratings with
different contrasts [23–26].

Below, we give several examples with different polarization vectors. When modeling, in-
stead of pinholes in a black screen, we used a set of Gaussian beams: G(x, y) = exp (–(x2 + y2)/σ2).
In the case when the radius of the Gaussian beam σ is small compared to the total size of
the input field, such a replacement does not introduce significant differences compared
to the theoretical model with point sources [57,58]. But such an approximation is more
convenient for numerical calculations.

Calculation parameters: wavelength is λ = 1 µm, input field size is 200 × 200 µm, and
σ = 10 µm. In the paraxial case, the numerical aperture is NA = 0.15, and the output field
size is 16 × 16 µm. With sharp focusing, numerical aperture NA = 0.99, and output field
size is 4 × 4 µm.

3.1.1. Two Beams with the Same Polarization: c2 =

[
cx2
cy2

]
= c1 =

[
cx1
cy1

]
With the same polarization vectors in both beams, the expressions become especially

simple thanks to Euler’s formulas. When substituting into Expression (9), we get:

Ex = 2cx1 cos θ0 cos(αx),
Ey = 2cy1 cos(αx),
Ez = −2cx1i sin θ0 sin(αx).

(12)

Taking into account paraxiality (cosθ0 ≈ 1, sinθ0 ≈ 0), Expression (12) is reduced to an
even simpler form:

Ex ≈ 2cx1 cos(αx),
Ey = 2cy1 cos(αx),
Ez ≈ 0.

(13)

From Expression (13), it is clear that an amplitude grating is formed, the period
of which increases in inverse proportion to the value α = k sinθ0, i.e., it increases with
decreasing numerical aperture NA. In this case, we can assume that the field preserves
the original polarization of the beams. However, with tight focusing, the influence of the
type of polarization will be significant. We will show this using two examples with linear
polarization, when the beam polarization is co-directional to the beam separation line, i.e.,
in our case, horizontally spaced beams are directed along the x-axis and perpendicular, i.e.,
directed along the y-axis.

Figure 2 shows the simulation results for two Gaussian beams horizontally displaced
in the input plane relative to each other with the same linear x-polarization (Figure 2a)
[G(x − x0, y) + G(x + x0, y)]ex, x0 = 80 µm, ex = (1, 0)T .

In this case, instead of Equation (12), we get:

Ex = 2cx1 cos θ0 cos(αx),
Ey = 0,
Ez = −2cx1i sin θ0 sin(αx).

(14)

As follows from Equation (12), the y-component will be absent, and the x- and z-
components will change in anti-phase (Figure 2b). Moreover, taking into account paraxiality,
the intensity of the longitudinal component will be small, and an amplitude grating will be
observed (Figure 2d). With sharp focusing, the influence of the longitudinal component
increases, which leads to a decrease in grating contrast (Figure 2e). In both cases, the
original polarization is completely preserved.
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Figure 2. Simulation results for two Gaussian beams with the same linear x-polarization: (a) input
field; (b) intensity distributions of the x-, y-, and z-components of the electric field; and (c) distributions
of the x-, y-, and z-components of the SAM density, as well as the pattern of the total intensity with the
state of polarization (shown by arrows) in (d) the paraxial case and (e) in the case of sharp focusing.

The SAM density distribution components in Equation (10) have the following form:

sx = 0,
sy = 2 sin(2θ0) sin(2αx),
sz = 0.

(15)

Thus, only the transverse y-component of the SAM is non-zero (Figure 2c), the distri-
bution of which corresponds to a vertical grating with twice the frequency compared to
the electric field components in Equation (14) (compare to Figure 2b,c). In this case, the
rotation of the particles around its axis in the direction of the light propagation is expected.
Moreover, in adjacent lines of different levels (corresponding to positive and negative
values), rotation will occur in opposite directions.

Figure 3 shows similar simulation results for two Gaussian beams with the same linear
y-polarization (Figure 3a) [G(x − x0, y) + G(x + x0, y)]ey, x0 = 80 µm, ey = (0, 1)T .
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(the rest is as in Figure 2).

In this case, instead of Equation (12), we get:

Ex = 0,
Ey = 2cy1 cos(αx),
Ez = 0.

(16)

Expression (16) actually corresponds to a scalar field, which only has a non-zero y-
component (Figure 3b). This case is special in that the contrast of the amplitude grating
does not change at any numerical aperture; only the grating period changes (Figure 3d,e).
The fact of high contrast of the interference grating in this case was noted in [59,60] and
was used for laser processing of polarization-sensitive materials.

It is interesting to note that all components of the SAM density distribution in this
case are equal to zero:

sx = 0,
sy = 0,
sz = 0.

(17)
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Thus, the field does not even have local areas with non-zero SAM (Figure 3c).

3.1.2. Two Beams with Orthogonal Linear Polarization: c1 =

[
1
0

]
, c2 =

[
0
1

]
In this example, orthogonal linear polarizations are considered (Figure 4a). Here,

no transformation according to Euler’s formulas occurs, but one of the terms of each
component in Equation (9) becomes zero:

Ex = cos θ0 exp(iαx),
Ey = exp(−iαx),
Ez = − sin θ0 exp(iαx).

(18)
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Figure 4. (a–e) Simulation results for two Gaussian beams with orthogonal linear polarization
(the rest is as in Figure 2).

The intensity of each component is independent of x (Figure 4b), as well as the total
intensity. In this case, the amplitude grating is not formed at any numerical aperture, but
the polarization state becomes inhomogeneous and changes along with the x-coordinate
(Figure 4d,e). Thus, a purely polarization grating is formed, which can also be used to form
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a relief in polarization-sensitive films [25,42]. This is a significant difference from example
of Section 3.1.1.

The SAM density distribution components are the following:

sx = −2 sin θ0 sin(2αx),
sy = 0,
sz = −2 cos θ0 sin(2αx).

(19)

In this case, the spatial distribution in the transverse x-component and in the lon-
gitudinal component is the same (Figure 4c). Thus, the trapped particles will exhibit
complex rotation in both the transverse and longitudinal directions. Moreover, the values
in the longitudinal component with increasing numerical aperture (with sharp focusing)
will decrease compared to the values in the transverse component, i.e., the particles will
predominantly rotate in the direction of beam propagation.

3.1.3. Two Beams with Orthogonal Circular Polarizations: c1 = 1√
2

[
1
i

]
, c2 = 1√

2

[
1
−i

]
In the case of interference of two beams with opposite circular polarizations (Figure 5a),

we obtain:
Ex =

√
2 cos θ0 cos(αx),

Ey = −
√

2 sin(αx),
Ez = −

√
2i sin θ0 sin(αx).

(20)

Here, a transformation of polarization took place: It became linear. Moreover, the
direction of polarization changes periodically in accordance with parameter α (Figure 5d,e).
This fact was noted earlier in [19,23] and was used for laser patterning of polarization-
sensitive materials [42,59–61].

Note, in the paraxial case, that the overall intensity is close to a uniform distribution
(Figure 5d). This occurs due to the addition of the intensities of the transverse components
varying in anti-phase. The work [59] also noted a rather low contrast of the gratings
formed in this case compared to the interference of y-polarized beams. However, with tight
focusing, a grating relief will appear (Figure 5e) as the energy from the x-component is
redistributed to the longitudinal component, enhancing the y-component. In this way, both
a polarization and an amplitude grating will be formed. This fact ensures effective writing
of diffraction gratings on the surface of chalcogenide glasses [60].

The SAM density distribution components are the following:

sx = 4 sin θ0 sin2(αx),
sy = sin(2θ0) sin(2αx),
sz = 0.

(21)

In this case, the longitudinal component contains only zero values, and the transverse
x-component contains only positive values (Figure 5c).

Similar results are observed during the interference of two beams with orthogonal
diagonal linear polarizations [60]. However, the state of polarization in this case will be
similar to the version considered in Section 3.1.2, which will also lead to the formation of a
non-uniform distribution of the SAM density.

3.2. Superposition of Four Beams Spaced Horizontally and Vertically

The analytical results discussed in the previous section can be quite simply generalized
to the case of four beams spaced horizontally and vertically. In this case, ϕ1 = 0◦, ϕ2 = 90◦,
ϕ3 = 180◦, and ϕ4 = 270◦. If we substitute these values into Equations (7) and (8), we get:

Ex = cos θ0[cx1 exp(iαx) + cx3 exp(−iαx)] + [cx2 exp(iαy) + cx4 exp(−iαy)] ,
Ey =

[
cy1 exp(iαx) + cy3 exp(−iαx)

]
+ cos θ0

[
cy2 exp(iαy) + cy4 exp(−iαy)

]
,

Ez = − sin θ0{[cx1 exp(iαx)− cx3 exp(−iαx)] +
[
cy2 exp(iαy)− cy4 exp(−iαy)

]}
.

(22)
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First, we shall look at two examples where the polarization of all four beams is the
same. In one case it is linear, and in the other it is circular.
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(the rest is as in Figure 2).

3.2.1. Four Beams with the Same Linear X-Polarization: cp =

[
1
0

]
This case is the simplest (Figure 6a):

Ex = 2[cos θ0 cos(αx) + cos(αy)],
Ey = 0,
Ez = −2i sin θ0 sin(αx).

(23)

From Expression (23), it follows that the polarization remained linear (Figure 6d,e),
although the field structure has changed compared to example of Section 3.1.1.

The intensity of the x-component is a two-dimensional grating, the y-component is
absent, and the intensity of the longitudinal component depends only on the x coordinate,
i.e., it corresponds to a one-dimensional grating (Figure 6b).

In the paraxial case, a regular-amplitude two-dimensional grating will be observed,
corresponding to the distribution of the x-component (Figure 6d). With tight focusing, the
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contribution of the longitudinal component will increase, which will lead to the elongation
of the light spots of the grating along the direction of field polarization (Figure 6e).
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As follows from Expression (25), in the paraxial approximation ( 0cos θ  ≈ 1) the po-
larization remains virtually circular (Figure 7d), but with sharp focusing ( 0cos θ  ≈ 0). In-
stead of circular, it becomes elliptical (Figure 7e). Note that the longitudinal component 
has a two-dimensional periodic set of points with a vortex singular phase. 

Although the intensity of each of the transverse components in Expression (25) is 
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Figure 6. (a–e) Simulation results for four Gaussian beams with the same linear x-polarizations (the
rest as in Figure 2).

The SAM density distribution has only a non-zero y-component:

sx = 0,
sy = 8 sin θ0 sin(αx)[cos θ0 cos(αx) + cos(αy)],
sz = 0.

(24)

This component appears as a two-dimensional lattice with triangular regions of pos-
itive and negative values (Figure 6c) in which trapped particles will rotate in opposite
directions. As the numerical aperture increases (with tight focusing), the SAM values will
increase, but the grating period will decrease, and the size of the areas will also decrease.
Therefore, a clear rotational movement can only be observed in small particles (the size of
which corresponds to the size of individual regions).

Note that for linear x-polarization, the result will be approximately the same if the
directions at various points are reversed. In this case, only a displacement of the formed
structure can occur.
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3.2.2. Four Beams with the Same Circular Polarizations: cp = 1√
2

[
1
i

]
This case is more interesting (Figure 7a):

Ex =
√

2[cos θ0 cos(αx) + cos(αy)],
Ey =

√
2i[cos(αx) + cos θ0 cos(αy)],

Ez = −
√

2i sin θ0[sin(αx) + i sin(αy)].
(25)
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Figure 7. (a–e) Simulation results for four Gaussian beams with identical circular polarizations
(the rest is as in Figure 2).

As follows from Expression (25), in the paraxial approximation (cos θ0 ≈ 1) the polar-
ization remains virtually circular (Figure 7d), but with sharp focusing (cos θ0 ≈ 0). Instead
of circular, it becomes elliptical (Figure 7e). Note that the longitudinal component has a
two-dimensional periodic set of points with a vortex singular phase.

Although the intensity of each of the transverse components in Expression (25) is
asymmetric with respect to the permutation of x and y, their sum will be symmetric:

|Ex|2 +
∣∣Ey

∣∣2 = 2
{(

1 + cos2 θ0

)[
cos2(αx) + cos2(αy)

]
+ 4 cos θ0 cos(αx) cos(αy)

}
. (26)
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The amplitudes of the transverse components are not equal, but the phase difference
is always ±90◦. Therefore, the axes of the polarization ellipses are located either hori-
zontally or vertically (Figure 7e). Circular polarization is preserved only on lines where
cos2(αy) = cos2(αx).

All components of the SAM density distribution are non-zero:

sx = −4 sin θ0 sin(αy)[cos(αx) + cos θ0 cos(αy)],
sy = 4 sin θ0 sin(αx)[cos θ0 cos(αx) + cos(αy)],
sz = 4[cos θ0 cos(αx) + cos(αy)][cos(αx) + cos θ0 cos(αy)].

(27)

The form of the transverse components in Expression (27) represents two-dimensional
lattices with triangular regions having positive and negative values. Note that the longitu-
dinal component, which is responsible for the rotation of trapped particles in the transverse
plane, in the paraxial approximation will have mostly positive values (the area of re-
gions with negative values is small, and the negative values themselves are close to zero)
(Figure 7a). This corresponds to rotation only in one direction (in the same direction as the
original polarization). At sharp focusing (cos θ0 ≈ 0), areas with negative values will be
more visible.

Next, we shall consider examples in which a certain symmetry or some features occur.

3.2.3. Radial-Type Distribution: c1 =

[
1
0

]
, c2 =

[
0
1

]
, c3 =

[
−1
0

]
, c4 =

[
0
−1

]
This variant corresponds to the simulation of radial polarization (Figure 8a):

Ex = 2i cos θ0 sin(αx),
Ey = 2i cos θ0 sin(αy),
Ez = −2 sin θ0[cos(αx) + cos(αy)].

(28)

As can be seen from Expression (28), the transverse components correspond to
one-dimensional lattices in orthogonal directions, and the longitudinal component corre-
sponds to a two-dimensional grating (Figure 8b). The polarization is non-uniform linear
(Figure 8d,e), and the inclination angle of the polarization vectors is determined by the
relations cos β = sin (αx) and sin β = sin (αy). Note that the structure of the total in-
tensity changes when the numerical aperture of the focusing system changes due to the
contribution of the longitudinal component (Figure 8d,e).

The components of the SAM density distribution are defined as follows:

sx = 4 sin(2θ0) sin(αy)[cos(αx) + cos(αy)],
sy = −4 sin(2θ0) sin(αx)[cos(αx) + cos(αy)],
sz = 0.

(29)

The transverse components in Expression (29) are two-dimensional gratings with
triangular regions having positive and negative values, and there are no non-zero values in
the longitudinal component (Figure 8c).

3.2.4. Azimuthal-Type Distribution: c1 =

[
0
−1

]
, c2 =

[
1
0

]
, c3 =

[
0
1

]
, c4 =

[
−1
0

]
This variant corresponds to the azimuthal polarization simulation (Figure 9a):

Ex = 2i sin(αy),
Ey = −2i sin(αx),
Ez = 0.

(30)
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 (31)

  

Figure 8. (a–e) Simulation results for four Gaussian beams with orthogonal linear polarizations of the
radial type (the rest of the description is as in Figure 2).

As can be seen, there is no longitudinal component. In the transverse components,
compared to Expression (20), there is no cosθ0 multiplier, the sines have swapped places,
and a minus sign has appeared in the x-component (Figure 9b). The absence of the cosθ0
multiplier in this case ensures the invariance (up to scale) of the structure of the total
intensity when changing the numerical aperture of the focusing system (Figure 9d,e). This
is one of the differences from the previous case 3.2.3 of radial arrangement. The polarization
is non-uniform linear (Figure 9d,e), and the angle of inclination of the polarization vectors
is found from the equalities cos β = sin (αy) and sin β = –sin (αx).

All components of the SAM density distribution are equal to zero in this case (Figure 9c):

sx = 0,
sy = 0,
sz = 0.

(31)
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Figure 9. (a–e) Simulation results for four Gaussian beams with orthogonal linear polarizations of
azimuthal type (the rest of the description is as in Figure 2).

3.2.5. Mixed Radial–Azimuthal Distribution:

c1 = 1√
2

[
1
−1

]
, c2 = 1√

2

[
1
1

]
, c3 = 1√

2

[
−1
1

]
, c4 = 1√

2

[
−1
−1

]
This variant corresponds to a mixed radial–azimuthal distribution [32,62,63] of polar-

ization (Figure 10a) with the following distribution of electric field components:

Ex =
√

2i[cos θ0 sin(αx) + sin(αy)],
Ey =

√
2i[cos θ0 sin(αy)− sin(αx)],

Ez = −
√

2 sin θ0[cos(αx) + cos(αy)].
(32)

The longitudinal component is the same as in Section 3.2.3. In the paraxial case, the
maxima of the x-component lie on straight lines with a slope close to 45 degrees, and
the maxima of the y-component lie on straight lines with a slope close to 135 degrees
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(Figure 10b). The distribution of the longitudinal component has two axes of symmetry.
The polarization is non-uniform linear (Figure 10d,e), and the angle of inclination of the
polarization vectors is found from the equalities cos β = cos(θ0)sin (αx) + sin (αy) and
sin β = cos(θ0)sin (αy)–sin (αx).
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Figure 10. (a–e) Simulation results for four Gaussian beams with linear polarizations of the spiral 
type (the rest of the description is as in Figure 2). 

Figure 10. (a–e) Simulation results for four Gaussian beams with linear polarizations of the spiral
type (the rest of the description is as in Figure 2).

The components of the SAM density distribution are defined as follows (Figure 10c):

sx = 4 sin θ0[cos θ0 sin(αy)− sin(αx)][cos(αx) + cos(αy)],
sy = −4 sin θ0[cos θ0 sin(αx) + sin(αy)][cos(αx) + cos(αy)],
sz = 0.

(33)

The form of the transverse components in Expression (33) are two-dimensional grat-
ings with areas of positive and negative values shaped like rounded rectangles. The
longitudinal component is zero (Figure 10c).
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3.2.6. Pairwise Orthogonal Circular Polarizations:

c1 = c2 = 1√
2

[
1
i

]
, c3 = c4 = 1√

2

[
1
−i

]
In this section, we obtain the following electric field components (Figure 11b):

Ex =
√

2[cos θ0 cos(αx) + cos(αy)],
Ey = −

√
2[sin(αx) + cos θ0 sin(αy)],

Ez = −i
√

2 sin θ0[sin(αx) + cos(αy)].
(34)
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From these equalities, it can be concluded that positive component values occupy a 
larger area than negative ones. The longitudinal component is zero. 
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Figure 11. (a–e) Simulation results for four Gaussian beams with two pairs of orthogonal circular 
polarizations (the rest of the description is as in Figure 2). 
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Figure 11. (a–e) Simulation results for four Gaussian beams with two pairs of orthogonal circular
polarizations (the rest of the description is as in Figure 2).

It can be seen that the polarization of the formed field is non-uniform linear
(Figure 11d,e). The intensities of the x- and y-components are symmetrical (the x-component
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has a maximum in the center, and the y-component has a minimum in the center) relative to
the origin, while the center of the z-component is shifted horizontally. The latter property
appears in the total intensity pattern in the non-paraxial case (Figure 11e). The intensity of
the sum of the transverse components is:[

cos2 θ0 cos2(αx) + sin2(αx)
]
+

[
cos2(αy) + cos2 θ0 sin2(αy)

]
+ 2 cos θ0 cos(x − y). (35)

In the paraxial case, Expression (35) is approximately one-dimensional, as can be seen
in Figure 11d. With sharp focusing, the influence of the longitudinal component increases
and the field structure becomes more complex (Figure 11e).

The components of the SAM density distribution are following (Figure 11c):

sx = 4 sin θ0[sin(αx) + cos θ0 sin(αy)][sin(αx) + cos(αy)],
sy = 4 sin θ0[cos θ0 cos(αx) + cos(αy)][sin(αx) + cos(αy)],
sz = 0.

(36)

From these equalities, it can be concluded that positive component values occupy a
larger area than negative ones. The longitudinal component is zero.

4. Experimental Results

The optical setup used for the experimental generation and study of multi-beam
interference patterns is shown in Figure 12a. In the experiments, a linearly polarized laser
beam with a wavelength of 532 nm from a continuous solid-state laser MGL-U-532-1B was
expanded using a combination of a micro-objective MO1 (3.7×, NA = 0.11) and a lens L1
(f 1 = 100 mm). The linear polarizer PT1 made it possible to increase the contrast of the
linear polarization of the laser beam. Then, mirrors M1 and M2 directed the beam into the
diffractive optical element (DOE), which is a one- or two-dimensional binary diffraction
grating used for splitting the laser beam and shaping two or four identical laser beams. The
angle of divergence of split beams after the DOE was 0.85 degrees. A technological process
comprising lithography and plasma etching was utilized to manufacture the DOEs [11].
The amplitude mask (AM) and the polarizing element PT2 were utilized to spatially filter
the laser beam and create the necessary combination of two or four laser beams with the
desired polarization states. In the case of generating two-beam interference patterns, the
amplitude mask was a black screen with two transparent holes for laser beams propagating
in the direction of ±1 diffraction orders. In the case of generating four-beam interference
patterns, the amplitude mask was a black screen with four transparent holes for laser beams
propagating in the direction of ±1 diffraction orders along the Cartesian coordinates x and
y. The diameter of the holes was 1 mm, and the distance between holes in the amplitude
mask was 2.5 mm. Micro-objective MO2 (20×, NA = 0.4) projected the generated light
field onto the matrix of a polarization video camera ImagingSource DZK 33UX250 (PCAM).
This video camera is widely used to generate distributions of Stokes parameters of incident
laser beams and can be used to reconstruct the polarization distribution of the light fields
under study. However, this video camera allows one to measure only the first three Stokes
parameters (St0, St1, and St2). To measure the fourth Stokes parameter (St3) and restore
the ellipticity of the formed polarization ellipses in each pixel, an additional quarter-wave
plate was used (the plate is not shown in Figure 12a). The procedure for reconstructing
polarization distributions using Stokes parameters is described in [9]. Examples of intensity
distributions and reconstructed polarization distributions experimentally obtained using
two- and four-beam interference are shown in Figures 13 and 14. The results obtained are
in good agreement with the simulation results presented in Figures 2–6, 8 and 9.
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tical setup: Laser is a cw solid-state laser MGL-U-532-1W; L1, L2, and L3 are spherical lenses (f1 = 
100 mm, f2 = 125 mm, and f3 = 100 mm); M1 and M2 are mirrors, PT1 is a linear polarizer, and DOE 
is a diffractive optical element in the form of a binary diffractive grating for the splitting of incident 
laser beams; AM is an amplitude mask, PT2 is a polarizing element, MO1 and MO2 are micro-ob-
jectives (NA = 0.11 and 0.4), and PCAM is a ImagingSource DZK 33UX250 polarization video cam-
era. (b1) Phase mask of the diffractive optical element (DOE) utilized to split an incident laser beam 
into four laser beams. (b2) Amplitude mask used for spatial filtering of the light field formed by the 
DOE. (b3) Local optical axis orientation of an S-waveplate utilized in the experiments for transfor-
mation of the polarization distribution of the incident light field. (c) Example of light field distribu-
tions (intensity and polarization vectors) of the experimentally generated light field corresponding 
to the modeling results presented in Figure 9. 

 
Figure 13. Intensity and polarization distributions of the experimentally generated two-beam inter-
ference patterns. White arrows and ellipses represent linear polarization vectors and polarization 
ellipses. 

Figure 12. Experimental investigation of the generation of multi-beam interference patterns.
(a) Optical setup: Laser is a cw solid-state laser MGL-U-532-1W; L1, L2, and L3 are spherical lenses
(f 1 = 100 mm, f 2 = 125 mm, and f 3 = 100 mm); M1 and M2 are mirrors, PT1 is a linear polarizer, and
DOE is a diffractive optical element in the form of a binary diffractive grating for the splitting of
incident laser beams; AM is an amplitude mask, PT2 is a polarizing element, MO1 and MO2 are
micro-objectives (NA = 0.11 and 0.4), and PCAM is a ImagingSource DZK 33UX250 polarization
video camera. (b1) Phase mask of the diffractive optical element (DOE) utilized to split an incident
laser beam into four laser beams. (b2) Amplitude mask used for spatial filtering of the light field
formed by the DOE. (b3) Local optical axis orientation of an S-waveplate utilized in the experiments
for transformation of the polarization distribution of the incident light field. (c) Example of light
field distributions (intensity and polarization vectors) of the experimentally generated light field
corresponding to the modeling results presented in Figure 9.
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5. Discussion

A detailed theoretical and numerical analysis of the interference of two light beams
with different polarization states allows us to more clearly understand the mechanism of
formation of contrast amplitude gratings and purely polarization gratings.

It has been shown that the amplitude grating with the best contrast, which is indepen-
dent of focusing sharpness, is achieved with linear polarization directed perpendicular to
the line connecting the coplanar radiation sources (Figure 3a). The fact of high contrast of
the interference grating in this case was noted in [59,60] and was used for laser processing
of polarization-sensitive materials.

Purely polarization gratings (without amplitude changes) are formed in orthogo-
nal states of polarization of coplanar beams—for example, with x- and y-polarization
(Figure 4a) or circular polarizations of opposite directions (Figure 5a). In the formed field,
the polarization state changes periodically; thus, a purely polarization grating is formed,
which can also be used to form a relief in polarization-sensitive films [25,42,59–61].

The interference of four light beams with different polarization states allows a periodic
light field to be formed whose polarization distribution is actually a set of polarization
singularities corresponding to radially and azimuthally polarized beams (Figures 8 and 9).
Such structures can expand the capabilities of the laser processing and structuring of
materials, as well as the capture and manipulation of microparticles.

6. Conclusions

In this work, light fields formed as a result of the interference of two and four light
beams with identical and different polarization states are numerically studied. Both linearly
and circularly polarized beams are considered. The possibility of forming periodic light
fields, the polarization distribution of which is actually a set of polarization singularities
corresponding to radially and azimuthally polarized beams, is shown. For this purpose,
combinations of four beams equidistant from the optical axis with a changing orientation
of linear polarization, simulating a change in the polarization vector in a single radially
or azimuthally polarized beam, were considered. In practice, such combinations can be
formed using combinations of beam splitter cubes and half-wave plates or polarizing films.
This approach, compared to the method of using sector polarizing plates, not only makes
it possible to form periodically repeating sets of the required polarization singularities
but also provides better quality of formation. In addition, the interference approach is
known to potentially produce light spots with subwavelength resolution without the use of
additional high-aperture focusing optics. However, for this, it is necessary to increase the
values of the convergence angles of the interfering beams in comparison with the angles
that were used in our experiments.

The results obtained are planned to be used in the future for processing thin films of
light-sensitive materials in order to study the influence of the polarization of generated
periodically repeating light fields on the structure of manufactured nano- and microstruc-
tures [25] and for parallel laser manipulation of multiple nano- and micro-objects. In the



Photonics 2024, 11, 478 21 of 23

field of laser processing of materials, the use of multi-beam interference patterns makes it
possible to achieve high efficiency and quality in the manufacture of arrays of the desired
nano- and microelements. As we have shown in this work, controlling the polarization
states of interfering beams leads to the generation of light fields with different polarization
distributions, which can be visualized in some photosensitive materials. In this case, the
amplitude distributions of the generated interference patterns can have the same structure.
Thus, only by controlling the polarization states of individual beams in a superposition
can one significantly change the polarization structure of the generated light fields and
the structure of the patterns recorded in photosensitive materials. This is very convenient,
especially when using multi-stage laser processing, since it allows online control of the pro-
files of manufactured structures. In the field of laser manipulation, such SAM distributions
can also be used to implement micropumps and study the hydrodynamic interactions of
numerous optically trapped nano- and microparticles. Research into these interactions will
contribute to biological sciences and nanotechnology [64–67].
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