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Appendix A. Description of structure for each sampling method 

1) Random Oversampling (ROS) 

Random Oversampling (ROS) is the simplest approach to address imbalanced data problems, 

where data from the minority class are randomly resampled until their size matches that of the 

majority class within the range of normalized values between 0 and 1. Synthetic data generated 

using ROS were extracted based on the data from the minority class and added to the training 

dataset. 

 

2) Synthetic Minority Oversampling Technique (SMOTE) 

The Synthetic Minority Oversampling Technique (SMOTE) algorithm, proposed by Chawla et 

al. (2002), generates synthetic data through performing random linear interpolation between the 

selected minority class data and its neighboring data. The specific process of generating synthetic 

data in SMOTE is described as follows.  

1) Randomly select one of the minority class data (𝑥௜). 

2) Randomly select one of its K-nearest neighbors (𝑥௝) from the same class (where k is a 

user-defined parameter, typically k = 5). 

3) Calculate the distance between the selected data and its selected neighbor and multiply 

this distance by a random number between 0 and1 (𝑟𝑎𝑛𝑑[0,1] × (𝑥௝ − 𝑥௜)). 

4) Add the value from step (3) to the selected data (𝑥௜ + 𝑟𝑎𝑛𝑑[0,1] × (𝑥௝ − 𝑥௜)). 

5) The process was iteratively performed from steps (1) to (4) until the number of minority 

data points equaled the number of majority data points. 
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Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002) Smote: synthetic minority 

over-sampling technique. Journal of Artificial Intelligence Research 16, 321-357. 

 

3) Adaptive Synthetic Sampling (ADASYN) 

Adaptive Synthetic Sampling (ADASYN) is an adaptive method proposed by He et al. (2008) to 

facilitate learning using imbalanced datasets derived from SMOTE, SMOTEBoost, and 

DataBoost-IM. The main concept of the ADASYN algorithm is to use a data density distribution 

between the minority and majority classes. This provides a basis for automatically determining the 

amount of synthetic data that must be generated from the small-scale data. The process of 

generating synthetic data using ADASYN is as follows: 

1) Calculate the total number of synthetic data to be generated using the number of minority 

and majority data (𝐺 = (𝐷𝑎𝑡𝑎௠௔௝௢௥ − 𝐷𝑎𝑡𝑎௠௜௡௢௥) × 𝛽), where 𝛽 ranges from 0 to 1, and 

if 𝛽 is 1, generate synthetic data until it is equal to the number of the majority class. 

2) Randomly select one of the minority class data points and find the K-nearest neighbors 

based on the Euclidean distance. 

3) Calculate the ratio 𝑟௜ , where 𝑟௜  is the number of majority class data in the K-nearest 

neighbors (𝑟௜ = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟/𝐾, 𝑖 = 1, … , 𝐷𝑎𝑡𝑎௠௜௡௢௥). 

4) Calculate the density distribution (𝑟̂௜ = 𝑟௜/ ∑ 𝑟௜)஽௔௧௔೘೔೙೚ೝ௜ୀଵ . 

5) Calculate the number of synthetic data to be generated (𝑔௜ = 𝑟̂௜ × 𝐺). 

6) Calculate the distance between the selected minority data and its selected neighbor and 

multiply this distance by a random number between 0 and1 (𝑟𝑎𝑛𝑑[0,1] × (𝑥௝ − 𝑥௜)). 

7) Add the value from step (6) to the selected minority data (𝑥௜ + 𝑟𝑎𝑛𝑑[0,1] × (𝑥௝ − 𝑥௜)). 

8) Iteratively perform steps (6) and (7) until 𝑔௜. 
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He, H., Bai, Y., Garcia, E.A., Li, S. (2008) ADASYN: Adaptive synthetic sampling approach for 

imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world 

congress on computational intelligence, 1322-1328. 

 

4) Cluster Centroid Undersampling (CC) 

The Cluster Centroid Undersampling (CC) algorithm generates new data based on majority class 

data using a clustering method. The synthetic data for the majority class were generated using the 

cluster centroid of the K-means algorithm. The algorithm undersamples the majority class by 

replacing cluster centroid values of the K-means algorithm with new majority class data. However, 

the characteristics of the features and the amount of minority class data are preserved (Lin et al., 

2017). A detailed explanation of the K-means algorithm can be found in Yadav and Sharma (2013).  

 

Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S. (2017) Clustering-based undersampling in class-

imbalanced data. Information Sciences 409, 17-26. 

Yadav, J., and Sharma, M. (2013) A Review of K-mean Algorithm. Int. J. Eng. Trends 

Technol 4(7), 2972-2976. 

 

5) Random Undersampling (RUS) 

Random undersampling (RUS) is a method of performing normalization with values from 0 to 1 

for all classes based on the original data and randomly removing data from the majority class until 

the number of data from the majority class matches the number of data from the minority class. 

Random undersampling and oversampling can be performed on the data without making specific 
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statistical assumptions. This makes the application of this sampling method relatively 

straightforward compared with other sampling methods.  

 

6) Synthetic Minority Oversampling Technique–Edited Nearest Neighbor (ENN) and Synthetic 

Minority Oversampling Technique–Tomek Link (Tomek) 

Although oversampling can balance class distributions, it may not address other problems 

commonly encountered in datasets with imbalanced classes. One of these problems is that class 

clusters may not be well defined because of the invasion of majority class data into the space of 

the minority class cluster. Conversely, interpolating minority class data may expand minority class 

clusters and introduce synthetic data too deeply into the space of the majority class cluster, 

potentially leading to overfitting. To generate better-defined class clusters, Batista et al. (2004) 

proposed the use of undersampling methods, such as Synthetic Minority Oversampling Technique-

Edited Nearest Neighbor (ENN) and Synthetic Minority Oversampling Technique–Tomek Link 

(Tomek) links, on the oversampled training dataset as a data cleaning method. The process of 

generating the dataset using SMOTE-ENN and SMOTE-Tomek involves applying SMOTE to 

oversample the original data and then using ENN or Tomek to perform undersampling. 

Consequently, a balanced dataset is generated for each well-defined class cluster. Unlike 

undersampling methods that involve deleting data from the majority class, SMOTE-ENN and 

SMOTE-Tomek are used to remove data from all classes (both majority and minority). SMOTE-

ENN offers a more profound data cleaning process than SMOTE-Tomek by eliminating large 

amounts of data from the dataset. Wilson (1972) and Tomek (1976) provided detailed descriptions 

of ENN and Tomek Link methods, respectively. 
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Appendix B. Description of the RF model structure 

The most significant characteristic of a random forest model is that trees are different from each 

other owing to randomness. This characteristic ensures that the predictions of each tree are 

decorrelated, leading to an improved generalization performance. Furthermore, randomization 

enables the forest to be effective, even with noise-containing data. Randomization was applied 

during the training process of each tree and random sampling of the training data was used for 

bagging for ensemble learning and randomized node optimization. These two methods were used 

simultaneously to further enhance randomization features. Bagging is a method for aggregating 

base learners trained on slightly different training data via bootstrapping. Bootstrapping is the 

process of generating a dataset with the same size as the original training data by allowing 

duplicates of the given training data. The process of training a random forest using bagging was 

conducted in three steps. 

1) Generate N training datasets via the bootstrap method. 

2) Train N individual trees as base classifiers. 

3) Combine the trees using either averaging or majority voting to generate a single 

classifier. 

Each tree has a variance; thus, an extremely deeply trained tree tends to overfit the training 

data. The bootstrapping process helps decrease the variance of trees while maintaining their biases, 

thereby improving the performance of the forest. A single tree is highly sensitive to noise present 

in the training data. However, if the trees are not correlated, the average of multiple trees is not 

sensitive to noise. When all trees forming the forest were trained on the same dataset, the 

correlation among the trees increased. Bagging trains the trees on different datasets to maintain 

decorrelation among the trees. In the training step, randomized node optimization is performed to 
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determine the optimal value of parameter 𝜃 for the node-splitting function that maximizes the 

training objective function. Parameter 𝜃 is defined as follows: 𝜃 = (𝛼, 𝛽, 𝛾)                                                                                                                                  (1) 

where 𝛼 represents a filtering function that selects only a few features from the input factors vector. 

The purpose of feature selection is to address the situation in which a single feature or a small 

subset of features exhibits strong predictive performance for the output factor. In such cases, 

during the training process, these features can be redundantly selected from multiple tree nodes, 

resulting in correlated trees. Hence, feature selection helps mitigate the correlation between trees 

and improves the overall performance of the model. Parameter 𝛽  represents the geometric 

characteristics of the splitting function, indicating the separation of the data. In general, axis-

aligned hyperplanes, oblique hyperplanes, and general surfaces are used. 𝛾 represents the threshold 

value in the inequality of the binary test. 

 All trees in the forest underwent training independently. During the test step, random test 

data 𝑥 are simultaneously inputted to all trees and reach the terminal node. The random forest 

prediction was obtained by averaging the predictions of all trees using the following formula: 𝑝(𝑐|𝑥) = ଵே ∑ 𝑃௡(𝑐|𝑥)ே௡ୀଵ                                                                                                                        (2) 

where 𝑐 represents the algal alert levels (L-0, L-1, and L-2), and 𝑃௡(𝑐|𝑥) is the probability density 

function of each level in the given tree when the test data 𝑥 are provided. 
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Appendix C. Descriptive statistics for cyanobacteria and nutrients in the BJR 

N:P ratios ranged from 5.26–240.79 with an average value of 42.5. According to the N:P ratio 

proposed by Forsberg and Ryding (1980), a molar ratio of nitrogen to phosphorus below 10 

indicates that nitrogen is the limiting nutrient for algal growth. A ratio between 10 and 17 suggests 

that both nutrients are limiting factors, whereas a ratio above 17 indicates that phosphorus is the 

limiting factor. The N:P ratio in events in all but 51 of the 345 monitoring events was above 17 

(>85%); thus, phosphorus was identified as a limiting nutrient in the BJR.  

For the entire monitoring period in the BJR, the concentration range and average value of 

Chl-a were 5.1–185.1 and 52.4 µg/L, respectively, and for phosphate, the corresponding values 

were 0–153 and 19.5 µg/L. From July to October, which is predominantly associated with algal 

bloom events corresponding to the caution and warning levels, the concentration range and average 

value of Chl-a were 5.3–177.7 and 50.5 µg/L, respectively. Similarly, for phosphate, during the 

same period, the concentration range and average values were 1–153 and 31.9 µg/L, respectively. 

Table S1 lists the eutrophication standards for a single parameter index in the index proposed by 

Carlson (1977). According to these standards, the nutritional status based on Chl-a concentration 

of the BJR in the entire period was classified as eutrophic (Chl-a > 7.2 µg/L) and as mesotrophic 

status based on phosphate (Phosphate 12–24 µg/L). However, the nutritional status from July to 

October was classified as eutrophic (Chl-a > 7.2 µg/L, Phosphate > 24 µg/L). 
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Appendix D. Comparison of model performance according to the feature selection  

In terms of the comparison of predictive performance for the optimal ANN model, the model using 

the original data without feature selection (accuracy for the training step: 90.5%; accuracy for the 

test step: 90.2%) exhibited higher predictive performance compared to models using a feature 

selection method. For the performance of original data with the dependence test, the training 

accuracy was 84.0% and test accuracy was 88.2%; and for original data with MI score, the training 

accuracy was 84.8% and test accuracy was 88.2%. However, in the RF, the predictive performance 

of the model improved when feature selection methods were applied to the original dataset in both 

the training and test steps. In the model of the original data, the training accuracy was 88.1% and 

test accuracy was 88.2%. In the model of the original data with the dependence test, the training 

accuracy was 94.7% and test accuracy was 89.2%. In the model of the original data with an MI 

score, the training accuracy was 94.7% and test accuracy was 92.2%. Specifically, for L-2 events, 

which have the potential to expand into large-scale algal blooms, the RF model with a non-linear 

feature selection method provided accurate predictions for all eight L-2 events (recall of L-2 was 

100%) in the test results. 
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Appendix E. Comparison of model performance according to sampling methods 

In the overall performance comparison, the overall accuracies of the ANN and RF on the original 

data were relatively high at 92.6% and 92.5% in the training step. However, the overall recall, 

representing the accuracy of each algal alert level, was as follows: for the ANN in the training step, 

L-0 was 98.3%, L-1 was 66.6%, and L-2 was 82.8%; for the RF, L-0 was 98.1%, L-1 was 67.9%, 

and L-2 was 80.6%. As a result of applying the sampling methods for the ANN, the performance 

of the overall accuracy of the ROS (89.2%), SMOTE (92.0%), and ADASYN (91.9%) showed 

lower accuracy compared to the model trained on the original data (92.6%). However, the 

accuracies of CC (96.2%), RUS (96.9%), ENN (96.6%), and Tomek (92.8%) were higher in the 

training step. For the RF, except for CC (84.2%) and RUS (88.8%), all models (ROS: 99.2%, 

SMOTE: 99.7%, ADASYN: 99.6%, ENN: 99.9%, and Tomek: 99.5%) with applied sampling 

methods showed higher accuracy than the model trained on the original data (92.5%). When 

comparing the overall recall for each algal alert level across different sampling methods for the 

ANN and RF in the training step, it was observed that the predictive performance for L-0 remained 

relatively consistent, whereas the predictive performance for both L-1 and L-2 increased when 

using the data trained with the sampling methods compared to the original data. In other words, 

when the sampling methods were applied, the predictions for each algal alert level were balanced 

and improved. Similarly, in the test step, the overall accuracy across all types of data was generally 

lower than the overall accuracy of the algal alert level predictions in the training step for both the 

ANN and RF. However, the predictive performance for L-1 and L-2 showed an improvement in 

the ANN, with an average increase of 16.2% for L-1 and 6.5% for L-2, and in the RF, with an 

average increase of 7.1% for L-1 and 9.8% for L-2, compared with the model using the original 

data.  
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 Comparing the results of the optimal model in the training step of the ANN, the accuracy 

for L-1 and L-2 increased in the models with the applied sampling methods compared to the models 

using the original data. In particular, the models with the ENN and ROS sampling methods 

achieved balanced predictions for each algal alert level. However, in the results of the test step, the 

accuracy for L-1 was lower for the ROS method at 50.0% compared to the accuracy of L-1 for the 

model using the original data (64.3%). Conversely, the ENN sampling method exhibited an 

increased accuracy of 85.7%. Furthermore, for all sampling methods except ROS, the accuracy for 

L-1 was higher than that for L-1 for the model using the original data in the test step. However, 

the accuracy of L-2 increased in models using the ROS and CC sampling methods, whereas it 

slightly decreased in models using the SMOTE, ADASYN, RUS, ENN, and Tomek methods. In 

the training step of the RF, models with all sampling methods except for CC and RUS, which are 

undersampling methods, showed higher accuracy compared to the models using the original data. 

These models provided balanced predictions for each algal alert level. In the test step, the accuracy 

for L-1 improved in all models, except for the model with the RUS sampling method, above the 

accuracy of the model using the original data for L-1. In addition, the accuracy of L-2 showed a 

distinct improvement in all models, except for the model with the ADASYN method applied. 
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Fig. S1. Results of the dependence test between each input variable and cyanobacteria cell 
density. 
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Fig. S2. Comparison of confusion matrices between the RF model using original data and the optimal RF model with non-linear 
feature selection and CC sampling method.
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Table S1. Eutrophication standards for single parameter index in Trophic state index (Carlson, 
1997). 

Class Total Phosphate (µg/L) Chlorophyll-a (µg/L) Transparence (m) 

Oligotrophic < 12 < 2.6 > 4 

Mesotrophic 12 ~ 24 2.6 ~ 7.2 2 ~ 4 

Eutrophic > 24 > 7.2 < 2 
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Table S2(A). Overall performance of the ANN model according to applied feature selection and sampling methods in the training 
step. 

Feature selection Sampling method 

Training (including validation) 
Performance index 

Accuracy 
Recall Precision 

L-0 L-1 L-2 L-0 L-1 L-2 

No feature selection 

Original 92.6(±6.4) 98.3(±1.6) 66.6(±29.6) 82.8(±16.7) 94.1(±5.2) 82.5(±16.6) 87.6(±11.9) 
ROS 89.2(±8.7) 89.4(±7.8) 83.1(±14.3) 95.0(±5.7) 89.3(±8.9) 86.5(±11.0) 91.6(±7.6) 

SMOTE 92.0(±6.2) 92.3(±5.8) 87.1(±10.4) 96.7(±3.2) 90.5(±7.5) 91.0(±7.0) 94.5(±4.7) 
ADASYN 91.9(±6.9) 92.1(±6.6) 86.8(±11.5) 97.0(±3.1) 90.4(±8.4) 91.1(±7.5) 94.2(±5.2) 

CC 96.2(±6.0) 96.0(±6.3) 94.0(±10.4) 98.7(±3.4) 96.2(±6.8) 94.5(±8.5) 98.0(±4.4) 
RUS 96.9(±5.4) 97.2(±5.9) 94.8(±8.8) 98.6(±3.9) 96.5(±6.8) 96.0(±7.2) 98.2(±4.8) 
ENN 96.6(±3.0) 96.6(±3.2) 95.0(±4.7) 98.4(±2.5) 95.9(±3.9) 96.1(±3.6) 97.9(±2.4) 

Tomek 92.8(±6.5) 92.9(±6.1) 88.5(±10.7) 96.9(±3.4) 91.5(±7.9) 91.6(±7.6) 95.2(±4.7) 

Linear method 
(Dependence test) 

Original 91.7(±6.0) 98.1(±1.4) 62.7(±27.4) 79.3(±15.9) 93.4(±4.8) 80.8(±15.7) 85.0(±11.6) 
ROS 87.9(±9.9) 89.2(±8.0) 80.5(±16.6) 94.0(±7.0) 88.5(±9.5) 85.0(±12.5) 89.9(±8.8) 

SMOTE 92.1(±7.0) 93.3(±5.4) 87.4(±12.2) 95.7(±4.5) 91.5(±7.9) 91.0(±7.9) 93.8(±6.0) 
ADASYN 90.4(±7.4) 92.1(±5.7) 84.3(±12.9) 95.0(±4.9) 90.2(±8.0) 89.3(±8.3) 91.8(±6.8) 

CC 93.3(±8.7) 93.4(±10.1) 90.4(±12.9) 96.0(±6.5) 94.7(±7.7) 90.4(±12.9) 95.4(±6.6) 
RUS 92.3(±8.9) 94.6(±7.2) 88.0(±13.9) 94.1(±7.5) 93.2(±8.5) 90.2(±11.1) 93.5(±8.3) 
ENN 94.9(±4.3) 96.4(±3.1) 92.3(±6.9) 95.9(±4.4) 95.6(±4.1) 93.7(±5.4) 95.3(±4.7) 

Tomek 91.6(±7.1) 92.7(±5.5) 86.3(±12.3) 95.7(±4.6) 91.3(±7.6) 90.5(±8.1) 93.0(±6.5) 

Non-linear method 
(MI score) 

Original 91.2(±6.1) 98.2(±1.3) 59.8(±29.0) 78.5(±17.5) 93.1(±5.0) 78.8(±16.5) 84.2(±11.3) 
ROS 87.7(±9.8) 89.7(±7.6) 79.6(±17.3) 93.9(±6.8) 87.9(±9.8) 85.0(±12.2) 89.9(±9.0) 

SMOTE 91.4(±7.2) 93.0(±5.3) 85.4(±13.1) 95.9(±4.3) 90.5(±8.3) 90.6(±8.0) 93.3(±6.2) 
ADASYN 91.7(±7.5) 93.3(±5.5) 85.6(±13.8) 96.4(±3.9) 91.0(±8.6) 91.4(±7.6) 92.9(±6.7) 

CC 92.4(±8.9) 93.1(±9.6) 88.5(±14.3) 95.8(±6.3) 93.4(±8.9) 89.2(±12.5) 95.1(±7.2) 
RUS 93.7(±8.1) 96.0(±6.7) 89.7(±14.6) 95.2(±7.3) 94.6(±8.5) 92.0(±10.5) 94.7(±8.0) 
ENN 96.7(±3.8) 97.5(±3.0) 94.8(±6.3) 98.0(±3.0) 96.9(±4.0) 96.1(±4.6) 97.2(±3.8) 

Tomek 92.4(±7.2) 93.7(±5.6) 87.0(±12.8) 96.4(±4.1) 91.6(±8.3) 91.6(±7.9) 93.9(±6.2) 
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Table S2(B). Overall performance of the ANN model according to applied feature selection and sampling methods in the test step. 

Feature selection Sampling method 

Test 
Performance index 

Accuracy Recall Precision 
 L-0 L-1 L-2 L-0 L-1 L-2 

No feature selection 

Original 82.4(±3.4) 93.3(±4.1) 35.6(±11.8) 55.3(±16.8) 88.9(±2.4) 55.6(±16.1) 56.3(±16.4) 
ROS 77.4(±4.3) 83.9(±5.6) 50.5(±11.3) 58.8(±19.3) 92.4(±2.8) 38.5(±8.3) 48.9(±17.1) 

SMOTE 79.4(±3.6) 86.6(±4.4) 49.6(±11.7) 59.6(±18.8) 92.3(±2.6) 42.8(±8.9) 49.8(±16.6) 
ADASYN 79.0(±3.9) 86.3(±5.2) 48.5(±12.2) 59.6(±17.0) 92.3(±2.6) 41.7(±8.3) 49.0(±15.3) 

CC 68.4(±6.0) 71.4(±7.5) 51.9(±10.5) 67.3(±16.5) 92.5(±2.4) 28.7(±7.7) 40.6(±10.5) 
RUS 64.0(±7.2) 65.5(±9.5) 53.4(±11.8) 67.9(±16.8) 93.3(±3.0) 25.8(±6.4) 37.4(±11.7) 
ENN 72.2(±5.4) 75.9(±6.4) 58.6(±12.4) 59.8(±15.8) 93.6(±2.8) 32.6(±8.0) 46.5(±14.8) 

Tomek 79.7(±3.4) 86.9(±4.2) 50.1(±12.4) 59.4(±17.8) 92.1(±3.0) 43.9(±9.4) 50.0(±14.8) 

Linear method 
(Dependence test) 

Original 83.0(±2.7) 93.7(±3.9) 38.2(±13.4) 54.9(±16.1) 89.2(±2.6) 58.0(±16.9) 60.0(±15.8) 
ROS 78.3(±4.4) 84.8(±6.0) 52.0(±11.2) 59.5(±19.3) 92.9(±3.0) 40.1(±9.1) 50.4(±15.1) 

SMOTE 81.1(±3.1) 88.3(±4.0) 52.7(±11.2) 58.4(±16.4) 92.7(±2.5) 46.5(±8.6) 52.2(±13.8) 
ADASYN 80.2(±3.7) 87.3(±4.8) 50.6(±10.0) 60.9(±18.4) 92.8(±2.6) 44.4(±8.7) 49.7(±13.8) 

CC 69.7(±5.6) 72.6(±7.3) 56.0(±11.0) 65.1(±17.0) 93.6(±2.7) 30.8(±6.9) 40.8(±11.9) 
RUS 66.0(±7.6) 68.0(±9.6) 55.1(±12.1) 65.8(±17.1) 94.0(±2.9) 27.0(±7.6) 39.5(±12.5) 
ENN 77.0(±4.8) 81.8(±5.9) 58.6(±11.5) 61.4(±18.6) 93.9(±2.5) 39.3(±9.1) 48.5(±13.6) 

Tomek 80.6(±3.4) 87.7(±4.4) 52.4(±12.2) 59.3(±18.0) 92.8(±2.6) 44.9(±8.5) 52.3(±15.5) 

Non-linear method 
(MI score) 

Original 82.2(±3.5) 93.4(±4.8) 34.9(±12.6) 53.3(±18.9) 89.0(±2.4) 54.0(±17.8) 56.7(±16.4) 
ROS 77.8(±4.4) 84.7(±6.3) 50.0(±12.5) 58.3(±19.4) 92.4(±3.0) 39.5(±9.1) 48.6(±14.7) 

SMOTE 79.8(±3.4) 87.3(±4.0) 49.9(±11.8) 58.3(±19.3) 92.3(±2.6) 43.2(±8.4) 49.5(±13.7) 
ADASYN 79.7(±3.7) 86.9(±4.3) 49.9(±12.6) 60.5(±18.6) 92.2(±2.7) 44.6(±9.6) 49.1(±14.6) 

CC 71.0(±6.5) 74.6(±8.3) 51.6(±11.4) 68.4(±17.6) 93.4(±2.6) 32.0(±9.4) 40.6(±10.8) 
RUS 64.5(±8.0) 66.5(±10.5) 54.2(±12.6) 63.1(±15.9) 92.9(±3.3) 26.3(±8.5) 39.0(±11.8) 
ENN 72.0(±5.0) 76.1(±6.3) 54.8(±11.5) 60.6(±17.4) 93.2(±2.5) 31.5(±6.6) 44.5(±14.6) 

Tomek 79.3(±3.4) 86.7(±4.1) 49.2(±12.2) 58.5(±18.2) 92.1(±3.0) 42.8(±9.0) 48.3(±13.3) 
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Table S3(A). Overall performance of the RF model according to applied feature selection and sampling methods in the training 
step. 

Feature selection Sampling method 

Training (including validation) 

Performance index 

Accuracy 
Recall Precision 

L-0 L-1 L-2 L-0 L-1 L-2 

No feature selection 

Original 92.5(±4.2) 98.1(±1.4) 67.9(±18.0) 80.6(±14.6) 94.2(±3.1) 83.1(±13.0) 88.5(±10.2) 
ROS 99.2(±6.7) 99.7(±0.8) 99.0(±10.0) 99.0(±10.0) 99.3(±6.7) 99.8(±0.6) 99.9(±0.3) 

SMOTE 99.7(±0.7) 99.4(±1.4) 99.8(±0.6) 99.9(±0.4) 99.7(±0.7) 99.5(±1.2) 99.8(±0.4) 
ADASYN 99.6(±0.8) 99.2(±1.6) 99.7(±0.7) 99.9(±0.3) 99.7(±0.8) 99.4(±1.2) 99.7(±0.5) 

CC 84.2(±8.8) 94.7(±6.7) 69.6(±20.0) 88.4(±7.5) 82.6(±12.1) 83.9(±10.9) 88.8(±7.1) 
RUS 88.8(±9.9) 93.0(±12.2) 82.0(±18.5) 91.5(±8.9) 90.8(±9.4) 86.7(±13.0) 90.6(±9.3) 
ENN 99.9(±0.3) 99.9(±0.4) 99.8(±0.5) 99.9(±0.3) 99.8(±0.4) 99.8(±0.5) 99.9(±0.3) 

Tomek 99.5(±0.9) 99.2(±1.6) 99.6(±0.9) 99.9(±0.4) 99.5(±1.0) 99.3(±1.4) 99.7(±0.5) 

Linear method 
(Dependence test) 

Original 92.4(±3.9) 98.1(±1.2) 67.5(±17.1) 80.5(±13.6) 94.2(±2.8) 82.8(±11.9) 87.2(±10.7) 
ROS 99.9(±0.3) 99.6(±0.9) 100.0(±0.2) 100.0(±0.0) 100.0(±0.2) 99.8(±0.7) 99.9(±0.3) 

SMOTE 99.5(±1.1) 99.2(±1.7) 99.6(±1.2) 99.8(±0.5) 99.6(±1.1) 99.4(±1.6) 99.7(±0.6) 
ADASYN 99.6(±0.8) 99.2(±1.6) 99.7(±0.8) 99.9(±0.2) 99.7(±0.7) 99.4(±1.3) 99.7(±0.7) 

CC 82.5(±8.9) 91.6(±8.2) 68.3(±20.7) 87.5(±7.8) 82.0(±11.6) 80.1(±11.7) 87.7(±8.0) 
RUS 85.8(±10.2) 92.5(±9.2) 75.9(±20.9) 89.0(±9.4) 87.3(±10.2) 83.6(±12.8) 88.1(±10.6) 
ENN 99.9(±0.3) 99.9(±0.4) 99.9(±0.6) 99.9(±0.3) 99.9(±0.5) 99.8(±0.5) 100.0(±0.2) 

Tomek 99.6(±0.8) 99.3(±1.4) 99.7(±0.9) 99.9(±0.3) 99.7(±0.7) 99.5(±1.2) 99.7(±0.7) 

Non-linear method 
(MI score) 

Original 93.5(±4.4) 98.3(±1.6) 72.1(±18.5) 83.1(±14.3) 95.0(±3.2) 85.5(±12.7) 89.5(±10.9) 
ROS 99.9(±0.3) 99.8(±0.7) 100.0(±0.1) 100.0(±0.0) 100.0(±0.1) 99.9(±0.5) 99.9(±0.3) 

SMOTE 99.3(±1.2) 98.9(±1.9) 99.4(±1.4) 99.8(±0.5) 99.4(±1.3) 99.1(±1.8) 99.6(±0.7) 
ADASYN 99.7(±0.8) 99.3(±1.5) 99.7(±0.9) 99.9(±0.5) 99.8(±0.7) 99.6(±1.2) 99.7(±0.7) 

CC 83.7(±7.0) 93.0(±7.5) 70.8(±15.5) 87.1(±6.9) 82.8(±10.3) 82.4(±9.5) 87.9(±5.6) 
RUS 86.4(±10.3) 93.5(±7.6) 75.0(±22.3) 90.8(±8.7) 87.1(±10.7) 85.4(±12.9) 88.4(±10.6) 
ENN 99.8(±0.5) 99.8(±0.5) 99.7(±1.0) 99.9(±0.3) 99.8(±0.7) 99.8(±0.6) 99.9(±0.4) 

Tomek 99.6(±0.8) 99.3(±1.4) 99.6(±1.0) 99.9(±0.2) 99.7(±0.8) 99.5(±1.0) 99.7(±0.7) 
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Table S3(B). Overall performance of the RF model according to applied feature selection and sampling methods in the test step. 

Feature selection Sampling method 

Test 

Performance index 

Accuracy 
Recall Precision 

L-0 L-1 L-2 L-0 L-1 L-2 

No feature selection 

Original 84.4(±2.4) 95.8(±2.2) 36.4(±11.4) 54.4(±15.7) 89.7(±2.1) 53.8(±14.6) 67.5(±17.3) 
ROS 83.2(±2.9) 93.8(±3.3) 37.3(±13.0) 56.6(±17.4) 89.9(±2.7) 50.4(±14.6) 61.6(±16.2) 

SMOTE 82.3(±2.8) 91.3(±3.3) 42.3(±12.4) 63.3(±16.7) 91.9(±2.2) 44.3(±10.7) 59.3(±14.5) 
ADASYN 82.2(±3.3) 91.1(±3.5) 42.6(±13.6) 62.9(±16.7) 92.0(±2.1) 44.0(±12.2) 59.4(±15.1) 

CC 73.0(±7.2) 78.4(±9.5) 41.7(±14.0) 73.1(±13.6) 92.5(±2.6) 38.7(±16.1) 38.2(±12.0) 
RUS 71.8(±9.0) 76.7(±12.4) 46.6(±16.9) 66.9(±17.5) 94.0(±2.7) 29.8(±10.5) 43.5(±13.1) 
ENN 77.4(±4.4) 83.6(±5.8) 50.4(±14.1) 62.9(±19.3) 93.7(±2.5) 34.3(±7.3) 55.5(±14.3) 

Tomek 82.5(±2.9) 91.1(±3.3) 43.6(±12.5) 63.9(±17.2) 91.8(±2.2) 44.6(±10.0) 61.4(±15.1) 

Linear method 
(Dependence test) 

Original 85.2(±2.5) 96.0(±2.5) 40.1(±11.1) 56.9(±16.4) 90.2(±2.2) 60.2(±14.8) 66.8(±14.5) 
ROS 83.8(±2.9) 94.2(±2.9) 40.7(±13.6) 55.0(±16.0) 90.7(±2.4) 50.8(±13.9) 62.2(±15.9) 

SMOTE 82.8(±3.3) 91.5(±3.2) 44.7(±13.5) 62.5(±17.6) 92.3(±2.4) 45.7(±11.3) 60.0(±14.3) 
ADASYN 82.6(±2.8) 91.1(±2.9) 45.1(±12.7) 63.3(±18.4) 92.4(±2.4) 45.4(±9.9) 58.9(±14.8) 

CC 71.9(±8.0) 77.1(±10.5) 41.6(±15.8) 73.1(±14.8) 92.3(±2.7) 35.8(±16.6) 40.3(±13.7) 
RUS 71.8(±8.2) 76.7(±11.1) 45.3(±15.7) 68.9(±16.6) 93.8(±2.7) 30.1(±10.7) 43.6(±11.7) 
ENN 80.0(±3.7) 86.7(±4.3) 50.1(±15.1) 65.1(±17.6) 93.5(±2.5) 39.5(±8.7) 56.0(±15.1) 

Tomek 83.0(±3.0) 91.6(±3.0) 45.2(±14.0) 63.1(±18.1) 92.2(±2.2) 46.8(±10.9) 59.4(±14.1) 

Non-linear method 
(MI score) 

Original 84.5(±2.8) 95.3(±2.8) 38.3(±12.8) 56.8(±17.4) 89.9(±2.3) 55.6(±14.4) 65.4(±15.3) 
ROS 83.0(±3.1) 93.4(±3.3) 39.7(±13.6) 54.5(±17.1) 90.6(±2.4) 49.3(±14.0) 57.9(±16.1) 

SMOTE 81.7(±2.9) 90.6(±3.1) 42.9(±13.1) 60.9(±17.5) 91.9(±2.3) 42.0(±9.8) 59.1(±15.2) 
ADASYN 81.8(±2.8) 90.5(±3.3) 43.2(±12.4) 61.9(±16.5) 92.1(±2.1) 43.0(±10.2) 57.4(±15.0) 

CC 72.9(±7.8) 78.1(±10.3) 41.9(±15.1) 75.8(±12.7) 92.6(±2.5) 39.7(±16.2) 37.3(±11.5) 
RUS 73.3(±6.8) 79.2(±8.8) 41.5(±16.3) 69.6(±16.6) 93.1(±2.8) 29.9(±10.9) 44.7(±12.7) 
ENN 78.1(±4.0) 84.6(±5.4) 48.6(±13.4) 64.9(±16.2) 93.3(±2.6) 35.1(±7.7) 56.3(±14.4) 
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Tomek 82.0(±2.7) 90.7(±3.2) 43.9(±13.1) 62.0(±17.4) 92.0(±2.2) 43.5(±8.7) 58.1(±13.9) 
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Table S4. Optimal performance of the ANN model according to applied feature selection and sampling methods. 

Feature 
selection 

Sampling 
method 

Training (including validation) Test 

Performance index Performance index 

Accuracy 
Recall Precision 

Accuracy 
Recall Precision 

L-0 L-1 L-2 L-0 L-1 L-2 L-0 L-1 L-2 L-0 L-1 L-2 

No feature 
selection 

Original 90.5 96.3 63.6 81.0 93.3 75.0 85.0 90.2 96.2 64.3 75.0 92.8 75.0 85.7 
ROS 96.1 91.5 96.8 100 96.6 94.3 97.4 82.4 87.5 50.0 87.5 92.1 63.6 46.7 

SMOTE 86.4 90.5 75.1 93.7 81.4 87.7 90.8 85.3 90.0 78.6 50.0 94.7 57.9 57.1 
ADASYN 83.7 85.7 73.8 92.0 80.2 82.3 88.7 83.3 87.5 78.6 50.0 95.9 47.8 66.7 

CC 87.3 95.2 81.0 85.7 100 81.0 81.8 79.4 81.2 64.3 87.5 94.2 40.9 63.6 
RUS 90.5 100 85.7 85.7 95.5 85.7 90.0 67.6 67.5 78.6 50.0 93.1 28.9 66.7 
ENN 95.5 95.5 94.3 97.0 93.9 95.9 97.0 81.4 83.8 85.7 50.0 95.7 50.0 50.0 

Tomek 87.0 88.8 78.6 93.7 84.7 83.1 93.2 82.4 85.0 78.6 62.5 97.1 68.8 31.2 

Linear 
method 

(Dependence 
test) 

Original 84.0 96.8 27.3 57.1 88.0 50.0 70.6 88.2 98.8 42.9 62.5 89.8 85.7 71.4 
ROS 94.2 90.5 92.1 100 91.9 91.6 99.0 87.3 93.8 64.3 62.5 93.8 69.2 55.6 

SMOTE 93.5 93.1 89.4 97.9 89.8 93.4 97.4 83.3 88.8 71.4 50.0 92.2 58.8 50.0 
ADASYN 82.6 88.9 72.3 87.0 83.6 77.9 86.0 84.3 87.5 71.4 75.0 93.3 58.8 60.0 

CC 93.7 90.5 90.5 100 90.5 90.5 100 70.6 72.5 78.6 37.5 95.1 36.7 27.3 
RUS 79.4 85.7 76.2 76.2 90.0 72.7 76.2 80.4 81.2 78.6 75.0 97.0 45.8 54.5 
ENN 90.1 94.8 86.9 88.2 95.6 85.3 89.1 87.3 92.5 64.3 75.0 96.1 69.2 50.0 

Tomek 82.8 90.3 66.3 91.5 82.3 80.3 85.1 85.3 90.0 71.4 62.5 91.1 62.5 71.4 

Non-linear 
method 

(MI score) 

Original 84.8 96.3 24.2 76.2 87.5 53.3 80.0 88.2 98.8 50.0 50.0 88.8 87.5 80.0 
ROS 77.6 86.8 65.1 81.0 80.8 69.5 81.8 83.3 87.5 64.3 75.0 93.3 56.2 54.5 

SMOTE 80.2 91.5 58.7 90.5 75.2 81.0 85.5 85.3 87.5 78.6 75.0 97.2 52.4 66.7 
ADASYN 91.5 91.0 88.3 95.3 95.6 90.6 88.9 89.2 93.8 64.3 87.5 94.9 75.0 63.6 

CC 77.8 85.7 61.9 85.7 78.3 72.2 81.8 70.6 70.0 78.6 62.5 100 32.4 41.7 
RUS 82.5 85.7 76.2 85.7 85.7 72.7 90.0 80.4 81.2 71.4 87.5 98.5 58.8 36.8 
ENN 90.9 95.6 86.2 90.5 93.1 87.9 91.5 80.4 82.5 71.4 75.0 95.7 50.0 46.2 

Tomek 83.3 87.5 75.0 87.3 87.0 77.5 85.1 90.2 97.5 57.1 75.0 94.0 72.7 75.0 
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Table S5. Optimal performance of the RF model according to applied feature selection and sampling methods. 

Feature 
selection 

Sampling 
method 

Training (including validation) Test 

Performance index Performance index 

Accuracy 
Recall Precision 

Accuracy 
Recall Precision 

L-0 L-1 L-2 L-0 L-1 L-2 L-0 L-1 L-2 L-0 L-1 L-2 

No feature 
selection 

Original 88.1 96.8 48.5 71.4 92.4 69.6 68.2 88.2 98.8 50.0 50.0 89.8 87.5 66.7 
ROS 99.5 100 100 99.8 100 100 99.5 85.3 93.8 50.0 62.5 88.2 63.6 83.3 

SMOTE 98.4 97.9 98.4 98.9 97.4 99.5 98.4 85.3 90.0 50.0 100.0 94.7 58.3 57.1 
ADASYN 99.3 97.9 100 100 100 98.5 99.5 83.3 90.0 71.4 37.5 91.1 58.8 50.0 

CC 73.0 95.2 42.9 81.0 66.7 75.0 81.0 82.4 87.5 50.0 87.5 93.3 87.5 36.8 
RUS 77.8 100 38.1 95.2 75.0 100 74.1 86.3 96.2 35.7 75.0 90.6 83.3 54.5 
ENN 99.4 100 99.1 99.0 99.1 99.1 100 86.3 85.0 85.7 100 98.6 54.5 72.7 

Tomek 100 99.5 100 99.8 99.5 100 100 88.2 95.0 57.1 75.0 92.7 72.7 66.7 

Linear 
method 

(Dependence 
test) 

Original 94.7 98.9 75.8 85.7 94.9 89.3 100 89.2 98.8 50.0 62.5 89.8 100 71.4 
ROS 99.6 98.9 100 100 100 100 99.0 91.2 96.2 71.4 75.0 93.9 76.9 85.7 

SMOTE 99.6 98.9 100 100 100 99.0 100 84.3 87.5 78.6 62.5 94.6 52.4 71.4 
ADASYN 99.7 99.5 99.5 100 99.5 100 99.5 88.2 92.5 78.6 62.5 96.1 57.9 83.3 

CC 71.4 90.5 57.1 66.7 70.4 66.7 77.8 81.4 86.2 85.7 25.0 95.8 46.2 50.0 
RUS 77.8 100 57.1 76.2 75.0 70.6 88.9 83.3 87.5 85.7 37.5 100 46.2 50.0 
ENN 98.2 98.5 96.3 100 97.7 98.1 98.9 83.3 83.8 85.7 75.0 97.1 46.2 85.7 

Tomek 97.7 96.2 97.3 99.5 97.8 95.8 99.5 84.3 90.0 78.6 37.5 92.3 57.9 60.0 

Non-linear 
method 

(MI score) 

Original 94.7 97.9 81.8 85.7 95.9 87.1 94.7 92.2 100 42.9 100 92.0 100 88.9 
ROS 99.6 98.9 100 100 100 99.0 100 87.3 95.0 64.3 50.0 93.8 64.3 57.1 

SMOTE 96.3 94.7 96.3 97.9 96.8 94.8 97.4 86.3 91.2 78.6 50.0 94.8 55.0 80.0 
ADASYN 98.1 94.2 100 100 100 95.6 98.9 85.3 91.2 64.3 62.5 94.8 52.9 62.5 

CC 82.5 95.2 61.9 90.5 76.9 92.9 82.6 82.4 83.8 71.4 87.5 97.1 55.6 46.7 
RUS 90.5 95.2 81.0 95.2 90.9 89.5 90.9 84.3 87.5 71.4 75.0 97.2 52.6 54.5 
ENN 99.1 98.2 99.1 100 100 98.3 99.0 79.4 82.5 78.6 50.0 97.1 39.3 66.7 

Tomek 95.6 94.1 93.1 99.5 96.2 95.6 94.9 88.2 91.2 78.6 75.0 100 55.0 66.7 
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Table S6. Descriptive statistics for optimized hyperparameters obtained from optimal model 
in the ANN and RF using randomly chosen training data. 

Model Hyperparameter 

ANN 
Activation function Linear 

Number of hidden neurons 24 

RF 

Ensemble aggregation method Adaptive boosting 

Number of ensembles learning cycles 25 

Learning rate for shrinkage 0.087 

Minimum leaf size 4 

Maximum number of decision splits 14 

Number of predictors to select at random for each split 13 

 


