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Abstract: The increasing concern over climate change has spurred significant interest in exploring the
potential of microalgae for wastewater treatment. Among the various types of industrial wastewaters,
high-salinity NH4

+-N wastewater stands out as a common challenge. Investigating microalgae’s
resilience to NH4

+-N under high-salinity conditions and their efficacy in NH4
+-N utilization is crucial

for advancing industrial wastewater microalgae treatment technologies. This study evaluated the
effectiveness of employing nitrogen-efficient microalgae, specifically Oocystis lacustris, for NH4

+-N
removal from saline wastewater. The results revealed Oocystis lacustris’s tolerance to a Na2SO4

concentration of 5 g/L. When the Na2SO4 concentration reached 10 g/L, the growth inhibition
experienced by Oocystis lacustris began to decrease on the 6th day of cultivation, with significant
alleviation observed by the 7th day. Additionally, the toxic mechanism of saline NH4

+-N wastewater
on Oocystis lacustris was analyzed through various parameters, including chlorophyll-a, soluble
protein, oxidative stress indicators, key nitrogen metabolism enzymes, and microscopic observations
of algal cells. The results demonstrated that when the Oocystis lacustris was in the stationary growth
phase with an initial density of 2 × 107 cells/L, NH4

+-N concentrations of 1, 5, and 10 mg/L achieved
almost 100% removal of the microalgae on the 1st, 2nd, and 4th days of treatment, respectively. On
the other hand, saline NH4

+-N wastewater minimally impacted photosynthesis, protein synthesis,
and antioxidant systems within algal cells. Additionally, NH4

+-N within the cells was assimilated
into glutamic acid through glutamate dehydrogenase-mediated pathways besides the conventional
pathway involving NH4

+-N conversion into glutamine and assimilation amino acids.

Keywords: saline NH4
+-N wastewater; microalgae treatment technology; Oocystis lacustris; NH4

+-N
utilization; stress responses

1. Introduction

Water eutrophication, resulting from an excess of nitrogen, phosphorus, and other
nutrients in water, poses a threat to water resources worldwide [1,2]. Ammonia nitrogen
(NH4

+-N) is a typical pollutant that contributes to eutrophication in natural water bodies
and presents a risk to aquatic ecosystems [3]. In 2020, global ammonia production increased
by 2.9 million tons, reaching a total supply of 185 million tons [4]. Besides wastewater from
residential and agricultural sources, emissions of NH4

+-N from industrial activities must
not be disregarded [5]. Typically, industries such as food processing, rubber processing,
textile dyeing and printing, leather manufacturing, fertilizer production, and others, dis-
charge high levels of NH4

+-N concentration into water [6]. As an illustration, in China,
the “Second National Pollution Source Census Bulletin” released in June 2020 revealed
that industrial wastewater in China discharged 44,500 tons of NH4

+-N in 2017 [7]. In
general, governments worldwide have set strict environmental standards for NH4

+-N [8].
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For example, the United States Environmental Protection Agency (U.S. EPA) recommends
that in freshwater systems, acute one-hour exposures should not exceed 17 mg/L (pH = 7.0
and T = 20 ◦C) and also regulates the chronic exposures [9]. Facing the urgent challenges of
global warming, it is crucial to seek methods for treating NH4

+-N in industrial wastewater
that are efficient, cost-effective, and characterized by low energy consumption [10,11].

Currently, a variety of NH4
+-N removal technologies are available, including physi-

cal methods like air stripping, ion exchange, and adsorption; chemical methods such as
chemical precipitation and breakpoint chlorination; and biological methods like nitrifi-
cation, denitrification, partial nitrification, and anaerobic ammonium oxidation [12–15].
In comparison, the growing concern about climate change and water conservation has
drawn significant attention from researchers to investigate the potential of microalgae
for biological carbon fixation and wastewater treatment [16–18]. However, microalgae
technology for industrial wastewater treatment is not yet fully developed, and there are
still areas of concern that require further research. On one hand, while microalgae primarily
utilize NH4

+-N as their nitrogen source, excessive concentrations have been observed to
induce toxic effects, thereby inhibiting growth [19]. On the other hand, microalgae are
susceptible to the effects of coexisting pollutants in industrial wastewater, which can inhibit
their growth. For example, the presence of salt compounds in industrial wastewater can
diminish algal activity due to high osmotic pressure, thus impacting the treatment efficacy
for NH4

+-N [20,21]. While certain types of microalgae can tolerate fluctuations in salinity,
exposure to salinity stress often leads to reduced biomass productivity, mainly due to the
significant energy requirements for osmoregulation [22].

Oocystis lacustris, a member of the Oocystis genus, is commonly distributed across
various water bodies, particularly thriving in freshwater ecosystems, where it dominates
the planktonic community in small lakes and ponds [23]. Additionally, previous research
has found that Oocystis lacustris can thrive in food waste digestate with high NH4

+-N
concentrations, and researchers have identified it as one of the prevalent algae species in
surface water with elevated salinity levels [24]. As such, Oocystis lacustris holds promising
potential for the treatment of saline NH4

+-N wastewater. Nonetheless, it is essential
to conduct laboratory experiments to evaluate the toxicity of NH4

+-N and to explore
the tolerance of Oocystis lacustris to saline industrial wastewater, as well as assess its
effectiveness in removing NH4

+-N.
Therefore, with the goal of further advancing the application of microalgae technolo-

gies in industrial wastewater treatment, this study simulated the characteristics of saline
NH4

+-N wastewater and investigated the growth of Oocystis lacustris in the wastewater, as
well as its efficiency in removing NH4

+-N. Importantly, this research analyzed the physi-
ological status, lipid accumulation, key enzyme activity, and changes in the antioxidant
system of Oocystis lacustris during the treatment of saline NH4

+-N wastewater, contributing
to a more comprehensive understanding of microalgae-based saline NH4

+-N wastewater
treatment technology. Furthermore, the potential mechanisms involved in the removal of
NH4

+-N have been examined, aiming to provide valuable guidelines for the treatment of
saline NH4

+-N wastewater using microalgae.

2. Materials and Methods
2.1. Instruments and Reagents

The experimental devices used in this study included an intelligent light incubator
(GXZ, Ningbo Jiangnan Instrument Factory, Ningbo, China), algal cell counter (IA1000,
Shanghai Ruiyu Biotechnology Co., Ltd., Shanghai, China), spectral color illuminometer
(OHSP-350P, Hangzhou Hopoo Light & Color Technology Co., Ltd., Hangzhou, China),
UV–visible spectrophotometer (UV-1900, Shimadzu, Kyoto, Japan), vertical pressure steam
sterilizer (LDZM-40KCS, Shanghai Shenan Medical Equipment Factory, Shanghai, China),
UV sterilization bench (VD-850, Shanghai Dingke Scientific Instrument Co., Ltd., Shanghai,
China), Heraeus Multifuge X1 refrigerated centrifuge (Thermo Fisher Scientific, Waltham,
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MA, USA), and ultrasonic cell disruptor (JY92-II, Ningbo Xinzhi Biotechnology Co., Ltd.,
Ningbo, China).

The reagents used in this study, including sodium sulfate (Na2SO4) and phosphate-
buffered saline (PBS) purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China), and ammonium sulfate [(NH4)2SO4] obtained from China National Phar-
maceutical Group Corporation (Beijing, China), were all of analytical grade. Additionally,
a BG11 medium was used which contained the following components: NaNO3 (1.5 g/L);
K2HPO4·3H2O (40 mg/L); MgSO4·7H2O (75 mg/L); CaCl2·2H2O (36 mg/L); Na2CO3
(20 mg/L); FeCl3·6H2O (3.15 mg/L); citric acid (6 mg/L); and 1 mL of microelements
composed of H3BO3 (2.86 mg/L), MnCl2·4H2O (1.81 mg/L), ZnSO4·7H2O (0.22 mg/L),
Na2MoO4·2H2O (0.39 mg/L), CuSO4·5H2O (0.08 mg/L), and Co(NO3)2·6H2O (0.05 mg/L)
in 1000 mL, and the pH was adjusted to 7.1 using 0.1 mol/L HCl and 0.1 mol/L NaOH.

2.2. Algal Strain and Culture Conditions

The algal strain, Oocystis lacustris (FACHB-2069), used in this study was obtained from
the Freshwater Algal Culture Collection at the Institute of Hydrobiology, Chinese Academy
of Sciences (Wuhan, China). The propagation of the strain involved the preparation and
sterilization of the BG11 medium through autoclaving at 100 kPa and 121 ◦C for 20 min. The
algal inoculum was introduced into the culture medium at a volume ratio of 1:5, and the
resulting mixture was then placed in an intelligent light incubator. They were maintained
at 25 ± 1 ◦C and illuminated by 60 µmol photons m−2 s−1 from daylight-type fluorescent
lamps using a light:dark photoperiod of 12:12. Irradiance was measured by a spectral
color illuminometer. The conical flasks were manually agitated three times daily at regular
intervals to prevent algal cell sedimentation.

2.3. The Effect of High Concentrations of Na2SO4 on Algal Growth

Na2SO4 is a common dyeing accelerant for reactive dyes, favored for its superior
performance over NaCl [25]. The concentration of SO4

2− in dyeing wastewater typically
ranges from 200 to 5000 mg/L, sometimes exceeding 10,000 mg/L [25,26]. Generally,
wastewater is considered “high-salinity” when the concentration of inorganic salts ranges
from 1 to 3.5% w/w. Therefore, this study investigated the effects of Na2SO4 concentrations
ranging from 5 to 20 g/L (equivalent to approximately 3380 to 13,520 mg/L of SO4

2−) on
microalgal growth. Accordingly, the BG11 medium (the conductivity was 0.19 S/m) was
prepared using Na2SO4 as an inorganic salt source at concentrations of 5, 10, 15, and 20 g/L
(the conductivities were 0.78 S/m, 1.22 S/m, 1.64 S/m, and 2.07 S/m), respectively. The
algal cultures in the exponential growth phase (on the 4th to 6th day after inoculation)
were utilized. Considering the requirements for the hydraulic retention time (HRT) and
treatment efficiency in the wastewater treatment, the initial concentration of microalgae
was established at 8 × 105 cells/L, surpassing the standards outlined by the OECD (2011)
Test No. 201 and other pertinent guidelines for algal growth inhibition tests [27]. A control
group using the standard BG11 medium was established for comparative analysis. During
the tests, a 50 mL microalgal suspension was cultured in a 100 mL conical flask sealed
with a breathable sealing film. The cultivation conditions for Oocystis lacustris, including
illumination, temperature, and agitation, were consistent with the methods described
in Section 2.2 regarding the cultivation of algal strains. This experimental section was
conducted three times to ensure the reproducibility of the results. All tests included
triplicates of each Na2SO4 concentration and five replicates of the control sample. The
samples were taken every 24 h to measure the algal cell density (Section 2.5.1).

2.4. NH4
+-N Removal by Oocystis lacustris in Simulated Saline Wastewater

In the textile printing and dyeing process, printing necessitates the utilization of
significant quantities of urea, which undergoes transformation into NH4

+-N during the
biological treatment of wastewater. Additionally, the post-finishing treatment of cotton
fabrics frequently entails the application of liquid ammonia to enhance their sheen and
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durability, thereby directly contributing to the generation of NH4
+-N [26]. The concentra-

tion of NH4
+-N in textile printing and dyeing wastewater ranges from 0.5 to 75 mg/L [26].

Therefore, nitrogen components were removed from the BG11 medium, and the Na2SO4
concentration was set to 10 g/L. NH4

+-N concentrations of 1, 5, 10, 30, and 50 mg/L were
then prepared to simulate saline NH4

+-N wastewater in our study. The BG11 medium
containing 10 g/L Na2SO4 served as the control group. Oocystis lacustris cultures in the
exponential growth phase were inoculated into the simulated wastewater at an initial
cell density of 8 × 105 cells/mL, referred to as the EX phase Oocystis lacustris treatment
group. To investigate the effect of Oocystis lacustris during stationary growth phases (on
the 8th to 10th day after inoculation) on NH4

+-N removal, the microalgae in the stationary
growth phase were inoculated into the simulated wastewater at an initial cell density of
2 × 107 cells/mL. This group was referred to as the STA phase Oocystis lacustris treatment
group. The cultivation conditions, including illumination, temperature, and agitation,
remained consistent with the methods outlined in Section 2.2. This experimental section
was also repeated three times to ensure result reproducibility. Each test included triplicates
of each NH4

+-N concentration and five replicates of the control sample. Given that enzyme
assays require a larger quantity of algal cells, an additional three replicates were added
to the treatment groups that needed enzyme activity measurement. The samples were
collected at fixed intervals to measure algal cell density (Section 2.5.1), NH4

+-N concentra-
tion (Section 2.5.2), and physiological parameters (Section 2.5.3). Additionally, under the
conditions of pH = 7.1 and the temperature = 25 ◦C, the proportion of NH4

+ unionized as
NH3 was less than 1%.

2.5. Analytical Methods
2.5.1. Algal Cell Density

First, 1 mL of a microalgal solution was mixed with 10 µL of Lugol’s solution for
fixation. Subsequently, 30 µL of the mixture was transferred to a cell counting chamber,
and the algal cell density was measured using the Countstar algal cell counter. During
the counting process, each sample was measured three times for replicability. The percent
inhibition in yield (%Iy) was calculated for each treatment replicate as follows [27]:

%Iy =
(Yc − YT)

Yc
×100 (1)

where %Iy represents the percent inhibition of yield, Yc represents the mean value for yield
in the control group, and YT represents the value for yield for the treatment replicate. The
yield is calculated as the biomass at the end of the test minus the starting biomass for each
single vessel of controls and treatments.

2.5.2. NH4
+-N Concentrations

NH4
+-N concentrations were determined via Nessler’s reagent method, with each

sample being measured three times to ensure reproducibility [28].

2.5.3. Physiological Parameters of the Microalgae

For the determination of chlorophyll-a (Chl-a), the alga sample (10 mL) was collected
by centrifugation with 10,000 rpm for 10 min. The collected algal cells were frozen and
thawed four times in the dark. Next, the solids were steeped in an acetone 80% solution
at 4 ◦C for 24 h. At last, the acetone solution containing chlorophyll-a was centrifuged
again with 10,000 rpm for 10 min and the supernatant was measured by a UV–visible
spectrophotometer with OD630, OD647, OD664, and OD750 [29,30].

Chl − a =
11.5(OD664 − OD750)−1.54(OD647 − OD750)−0.08(OD630 − OD750)V1

V
(2)
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where Chl-a is the chlorophyll-a concentration of the sample (mg/L), V1 is the volume of
the sample after extraction (mL), and V is the volume of the sample (mL).

To investigate soluble protein, superoxide dismutase (SOD), catalase (CAT), malondi-
aldehyde (MDA), triglycerides (TAG), nitrate reductase (NR), and glutamine synthetase
(GS) within microalgae, algal cells were disrupted first. Algal cells were collected from the
microalga suspension (40 mL) by centrifugation (10,000 rpm) at 4 ◦C for 10 min. The cell
pellets were washed by pre-cooled phosphate-buffered saline (PBS) solution (50 mmol/L,
pH 7.0) twice and re-suspended in 6 mL of a PBS solution. Cell homogenization was
conducted by ultrasonic cell disintegration at 650 W for 25 cycles (ultrasonic time: 3 s; rest
time: 9 s) in an ice bath. The disrupted cells were then centrifuged at 10,000 rpm for 10 min
at 4 ◦C, and the supernatant was collected and kept on ice for soluble protein content, MDA
content, TAG content, and enzymes activity measurements.

The assay kits for measuring soluble protein (product no. QYS-237014), SOD (product
no. QYS-23028), CAT (product no. QYS-23030), MDA (product no. QYS-23036), TAG (prod-
uct no. QYS-234006), NR (product no. QYS-232003), and GS (product no. QYS-232017),
were purchased from Qiyi Biological technology (Shanghai) Co., Ltd. (Shanghai, China).
Soluble protein content was determined using the bicinchoninic acid (BCA) method at
562 nm wavelength using a UV–visible spectrophotometer. SOD activity was evaluated
utilizing the nitro-blue tetrazolium dye (NBT) method at a 560 nm wavelength using a
UV–visible spectrophotometer. CAT activity was assessed based on H2O2 decomposition,
measured at 240 nm with a UV–visible spectrophotometer. The MDA level was deter-
mined by the formation of the MDA-TBA adduct formed by the reaction of MDA and
thiobarbituric acid (TBA) under high temperature (90–100 ◦C), with absorbance measured
at 535 nm using a UV–visible spectrophotometer. These enzyme activities and the MDA
content were quantified by protein concentration. The enzyme activity unit (U) was defined
as the amount of enzyme required to catalyze 1 µmol of substrate per minute. The TAG
content was determined using a UV–visible spectrophotometer at 420 nm. The colorimetric
principle was as follows: TAG was saponified by KOH to hydrolyze into glycerol and
fatty acids. Glycerol was oxidized to formaldehyde by periodic acid. In the presence of
chloride ions, formaldehyde condensed with acetone to produce a yellow substance. The
NR activity was determined by monitoring the oxidation of NADH at 340 nm (UV-visible
spectrum), dependent on the reduction of NO3

− to NO2
−. The GS activity was determined

by the reverse-glutamyl transferase reaction, which measured the formation of glutamyl
hydroxamate using UV–visible spectrophotometer at 540 nm. One unit of enzymatic activ-
ity (U) was defined as the formation of 1 µmol of γ-glutamyl hydroxamate per min. These
enzyme activities and TAG content were quantified by the algal cell concentration. The
assays mentioned above were conducted following the user manual instructions of the
assay kits, with each sample subjected to triplicate measurements.

2.5.4. Subcellular Structures of the Microalgae

The Oocystis lacustris cells were initially fixed in 3% glutaraldehyde in a 0.1 mol/L
cacodylate buffer, followed by fixation in 1% aqueous osmium tetroxide in a 0.1 mol/L
cacodylate buffer. After dehydration in acetone and embedding in Spurr’s resin, ultrathin
sections were prepared and stained with uranyl acetate and lead citrate [31]. The sections
were then observed under a Hitachi HC-1 transmission electron microscope (TEM) at an
accelerating voltage of 80 kV.

2.5.5. Data Processing and Analysis

Data analysis was conducted using the SPSS software statistical package (SPSS version
17.0 for Windows). The mean and standard error of the mean (S.E.M) were calculated for
each parameter. The results were compared to determine the toxic effects by a one-way
analysis of variance (ANOVA) and graphically presented using GraphPad Prism version 6
(GraphPad Software Inc., La Jolla, CA, USA). The significance level was set at p-value 0.05.
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3. Results and Discussion
3.1. Influence of Different Na2SO4 Concentrations on the Growth of Oocystis lacustris

Figure 1 shows the growth of Oocystis lacustris at different concentrations of Na2SO4.
The cell concentration of Oocystis lacustris increased across all tested Na2SO4 concentrations,
despite significant differences in the growth rates (Figure 1a). On the 7th day of cultivation,
the cell concentration of Oocystis lacustris in the 20 g/L Na2SO4 group was only half that
of the control group. The growth inhibition (Figure 1b) shows that the highest inhibition
occurred on the 1st day of cultivation under saline conditions, likely due to the significant
impact of Na2SO4 exposure on algal growth. On the 2nd day, there was partial relief in
growth inhibition. However, except for the 5 g/L concentration, Na2SO4 continued to
inhibit Oocystis lacustris growth, reaching a second peak of inhibition by the 5th day of
cultivation. In addition to altering osmotic pressure, Na2SO4 may also compete with struc-
turally similar nutrients for transport proteins, thereby reducing the ability of algal cells to
acquire essential other nutrients for growth, such as selenite and molybdate ions [32–34].
It was also observed that as the algal cell concentration increased, the standard deviation
among replicate samples widened. This could be attributed to counting errors caused by
the aggregation of Oocystis lacustris. To ensure the reliability of observation, two additional
replicate experiments were conducted, as depicted in Figures S1 and S2 in Supplementary
Information. Although variations in numerical values existed in algal cell concentration
between different experimental batches, the overall inhibitory trend remained consistent.
Due to the results indicating that under treatment with 10 g/L Na2SO4, although Oocystis
lacustris exhibited significant growth inhibition, recovery was observed by the 7th day.
Furthermore, the concentration of 10 g/L Na2SO4 closely resembles the characteristics of
actual high-salinity wastewater. Subsequent experiments in our study were conducted
using 10 g/L Na2SO4 to simulate saline wastewater.
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3.2. Effects of Oocystis lacustris on NH4
+-N Removal

Figure 2a shows the NH4
+-N removal efficiency of Oocystis lacustris with an initial

cell density of 8 × 105 cells/mL (EX phase) at different concentrations of NH4
+-N. Oocystis

lacustris exhibited high removal efficiencies at low concentrations of NH4
+-N, achieving al-

most 100% removal rate by the 2nd day for 1 mg/L NH4
+-N and by the 7th day for 5 mg/L

NH4
+-N. However, as the NH4

+-N concentration exceeded 10 mg/L, the NH4
+-N removal

efficiency by the algae decreased, reaching 70% on the 11th day. As the NH4
+-N concen-

tration further increased to 30 mg/L, the removal efficiency of the algae remained low.
This phenomenon was closely related to the growth state of algal cells (Figure 2b,c), which
illustrated the growth of algal cells and the corresponding growth inhibition over time.
During the 11-day growth period, the cell density of Oocystis lacustris in the control group
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increased from 8 × 105 to 4.6 × 107 cells/mL. The presence of NH4
+-N obviously inhibited

the growth of Oocystis lacustris. On the 11th day of the NH4
+-N treatment experiment, in the

treatment groups with NH4
+-N concentrations ranging from 1 to 50 mg/L, the inhibition

rate of microalgae ranged from 23.6% to 77.7%. When the NH4
+-N concentrations were

1 mg/L and 5 mg/L, although the removal rate of NH4
+-N could reach nearly 100%, the

growth inhibition rate of Oocystis lacustris still ranged from 23.6% to 45.4%. The consistent
phenomena observed from replicate experiments are illustrated in Figures S3 and S4. This
suggests that Oocystis lacustris in the EX phase was sensitive to the NH4

+-N concentration
in saline wastewater. Previous studies have indicated that high NH4

+-N levels mainly
disrupt the normal transmembrane proton gradient from adenosine triphosphate (ATP) to
ADP in algal chloroplasts, inhibiting photosynthesis. This disruption may occur through
mechanisms such as damage to protein subunits in chloroplasts, thereby hindering the
function of photosystem II (PSII) and inhibiting cell growth [35–37].

Figure 2. Treatment of Oocystis lacustris in the EX phase (8 × 105 cells/mL) with different concentra-
tions of NH4

+-N. (a) NH4
+-N removal rate; (b) cell concentration; (c) inhibition of yield. (At the same

cultivation time, different letters on adjacent bars indicate significant differences (p < 0.05), while the
same letter indicates no significant difference).

Figure 3a illustrates the NH4
+-N removal efficiency of Oocystis lacustris with an ini-

tial cell density of 2 × 107 cells/mL (STA phase) at different concentrations of NH4
+-N.

Compared with the EX phase, the NH4
+-N removal efficiency of Oocystis lacustris in the

STA phase was improved. NH4
+-N concentrations of 1, 5, and 10 mg/L resulted in almost

complete removal by Oocystis lacustris on the 1st, 2nd, and 4th days of treatment, respec-
tively. As the NH4

+-N concentration increased to 30 and 50 mg/L, its removal efficiency
remained low, with NH4

+-N removal rates of 35.2% and 16.2% on the 8th day of treatment,
respectively. Additionally, compared to the growth phase of EX, Oocystis lacustris in the STA
phase exhibited a slower rate of cell proliferation during NH4

+-N removal. By the 8th day
of cultivation, the cell density of Oocystis lacustris in the control group had only increased
2.5-fold. The slower growth rate resulted in the peak inhibition of NH4

+-N occurring on
the first day of cultivation. Subsequently, the growth inhibition remained stable, with the
growth inhibition of algal cells in saline NH4

+-N environments all below 50%. The consis-
tent observations from replicate experiments are depicted in Figures S5 and S6. It indicates
that microalgae in the STA phase with high cell densities might be more advantageous for
treating saline NH4

+-N wastewater. Despite initially experiencing some toxicity impact
during treatment, the microalgae demonstrated rapid stabilization in growth. Moreover,
they exhibited high efficiency in removing NH4

+-N.
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Table 1 displays the NH4
+-N removal efficiency achieved by typical microalgae. Given

the diversity in species, culture conditions, and wastewater compositions, the NH4
+-

N removal efficiency varies widely, ranging from 31% to over 97%. Such variability
poses significant challenges for microalga-based wastewater treatment, particularly when
handling large wastewater volumes. Moreover, there is a scarcity of studies examining
NH4

+-N removal efficiency under high-salinity conditions. Therefore, this study aimed to
investigate the NH4

+-N removal efficiency of Oocystis lacustris under high concentrations
of Na2SO4. While the removal efficiency may appear lower compared to the reported algal
strains such as Chlorella sp., Chlorococcum sp., Parachlorella kessleri, and others, we explored
the stress induced by high concentrations of Na2SO4. To delve deeper into the physiological
responses of Oocystis lacustris to saline NH4

+-N wastewater treatment, subsequent sections
will undertake analyses of chlorophyll-a content, oxidative stress indicators, key nitrogen
metabolism enzymes, and microscopic observations of algal cells. These investigations
aim to lay a foundation for the potential application of Oocystis lacustris in treating saline
NH4

+-N wastewater.

Table 1. The comparison of NH4
+-N treatment efficiency by typical microalgae.

Algal Strain Initial NH4
+-N

Concentration (mg/L)
NH4

+-N Removal
Efficiency (%) Salt Concentration Wastewater Ref.

Chlorella sp. 85.9 ± 1.1 93.9 / Municipal wastewater [38]
Chlorella vulgaris

80

85.30

NaCl = 64 mg/L Synthetic wastewater [39]
Chlorococcum sp. GD 91.72

Parachlorella kessleri TY 92.68
Scenedesmus obliquus 93.04

Scenedesmus quadricauda 97.03

Chlorella vulgaris 10 53.12 / Modified
Bristol medium [40]

Scenedesmus sp. LX1 15 31.1 / Synthetic wastewater [41]
Scenedesmus quadricauda 42~46 65 / Synthetic sewage [42]

Chlorella sp. 160 50.60 / Mixed wastewater [43]

Oocystis lacustris 1~50 15.2~99 Na2SO4 = 10 g/L Modified BG11
medium This work

3.3. Variations in Chlorophyll-a and Soluble Protein Contents of Oocystis lacustris

Figure 4 illustrates the changes in chlorophyll-a and soluble protein contents in Oocystis
lacustris cells treated with NH4

+-N on the 8th day with the presence of 10 g/L Na2SO4. In
the EX phase group of microalgae, when the NH4

+-N concentration exceeded 10 mg/L,
there was a significant decrease in chlorophyll-a content, reaching only one-fifth of the level
observed in the control group as the NH4

+-N concentration reached 30 mg/L (Figure 4a).
The treatment group with NH4

+-N concentration at 5 mg/L was an outlier. As evident
from the results of the two additional repeated experiments (Figures S7 and S8), at this
concentration, the effect of NH4

+-N on chlorophyll-a content was not significant. Changes
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in the soluble protein content of Oocystis lacustris cells were consistent with those of
chlorophyll-a (Figure 4b). On the 8th day of treatment with 30 and 50 mg/L NH4

+-N,
the soluble protein content in the algal cells significantly decreased, reaching only 36%
of the level observed in the control group. These reductions may be attributed to the
detrimental effects of high NH4

+-N concentrations on the oxygen-evolving complex (OEC)
of algal cells, leading to reduced OEC activity. Additionally, NH4

+-N diffusion within cells
altered the pH of the thylakoid lumen, resulting in decreased ATP levels, thereby affecting
chlorophyll-a synthesis [44,45].
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different NH4

+-N concentrations on the 8th day. (a,b) Changes in chlorophyll-a and soluble protein
contents within algal cells in the EX phase; (c,d) changes in chlorophyll-a and soluble protein contents
within algal cells in the STA phase. (Different letters on adjacent bars indicate significant differences
(p < 0.05), while the same letter indicates no significant difference).

In comparison, Oocystis lacustris in the STA phase exhibited stronger resistance to
the toxic impacts of saline NH4

+-N wastewater. As the NH4
+-N concentration exceeded

30 mg/L, there was only a 29.3% decrease in chlorophyll-a content. On the other hand,
with an increasing NH4

+-N concentration, the soluble protein content in the algal cells
peaked at 0.108 mg/mL in the 10 mg/L NH4

+-N treatment group (Figure 4d). Subsequently,
the soluble protein content gradually decreased, reaching a minimum of 0.046 mg/mL
in the 50 mg/L NH4

+-N group. Research reports have indicated that the accumulation
of soluble proteins in microalgae can enhance cell water retention capacity and protect
vital compounds within the cell membrane [46,47]. Therefore, at lower concentrations of
NH4

+-N, the synthesis of soluble proteins in algal cells increased, whereas exposure to high
concentrations of NH4

+-N inhibited and significantly damaged the synthesis of soluble
proteins in algal cells.

3.4. Oxidative Stress Status of Oocystis lacustris

The oxidative stress induced by NH4
+-N and Na2SO4 may affect the growth status

of Oocystis lacustris and the efficiency of NH4
+-N removal. MDA, a product of lipid

peroxidation, is generally considered a primary biomarker for assessing oxidative stress
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intensity [48–50]. Figure 5a,d shows the accumulation of MDA in algal cells during the
removal of NH4

+-N. For the microalgae in the EX phase (Figure 5a), the MDA content in
Oocystis lacustris cells remained relatively stable in the 10 mg/L NH4

+-N treatment group
compared with the control group. However, at a high NH4

+-N concentration (50 mg/L), the
MDA content rapidly increased, indicating strong oxidative stress and significant oxidative
damage to algal cells [51,52]. At the same time, the MDA content of Oocystis lacustris in
the STA phase remained relatively stable (Figure 5d). Figure 5b,c,e,f shows the response of
the antioxidant system in Oocystis lacustris through the evaluation of the concentrations of
SOD and CAT in algal cells. SOD was considered the primary enzyme in the antioxidant
system. Moreover, SOD catalyzed the dismutation reaction of superoxide radicals into
hydrogen peroxide and oxygen molecules, which were further decomposed into water
and molecular oxygen by enzymes such as CAT [53–55]. In the EX phase (Figure 5b,c),
microalgae showed increased SOD and CAT activities with rising NH4

+-N concentrations.
By the 8th day of treatment with 50 mg/L NH4

+-N, the SOD activity doubled, while the
CAT activity increased nearly fourfold compared to the control group. These changes,
along with the replicated experimental results (Figures S9 and S10), indicate that during
the EX phase, Oocystis lacustris was highly sensitive to the toxic effects of NH4

+-N, leading
to significant oxidative stress. In contrast, SOD and CAT activities within Oocystis lacustris
cells during the STA phase showed only slight increases, even in the presence of 50 mg/L
NH4

+-N, suggesting slight oxidative stress.
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3.5. Subcellular Structures of Oocystis lacustris

Figure 6 shows the cell morphology of Oocystis lacustris in the EX phase. In the control
group, algal cells exhibited an elliptical or circular shape, with multiple layers of cell walls
and well-organized chloroplasts. In each algal cell, there is a single pyrenoid enclosed by a
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homogeneous matrix and surrounded by a thick starch sheath. When treated with 10 mg/L
NH4

+-N, the number of starch granules in the algal cells decreased (Figure 6b1–b3). This
reduction may be attributed to the high metabolic state induced by NH4

+-N absorption
with the presence of Na2SO4, leading to the degradation and depletion of starch granules.
When exposed to 50 mg/L NH4

+-N (Figure 6c1–c3), the starch sheath thickness in algal cells
visibly decreased, with widened channels. Moreover, chloroplasts displayed overlapping
arrangements instead of being organized in parallel, indicating possible chloroplast damage.
Figure 7 shows the cell morphology of Oocystis lacustris in the STA phase. In both the
control group and the 10 mg/L NH4

+-N treatment group, the main organelles of algal cells
did not undergo visible changes. But similar to the algal cell in the EX phase, the number
of starch grains decreased in the presence of NH4

+-N. Additionally, a key morphological
feature observed was the presence of some cells enveloped in a pectinaceous gelatinous
sheath during growth. Sometimes, multiple algal cells aggregated into colonies, encased
within a gelatinous sheath (Figure S11) [56,57]. When exposed to 50 mg/L NH4

+-N, the
gelatinous sheath ruptured, potentially increasing the susceptibility of the algal cells to
external disruptions. This phenomenon indirectly indicates why Oocystis lacustris in the
STA phase exhibits greater resistance to saline NH4

+-N stress.
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ment group. (C: chloroplast; ST: starch sheath; P: pyrenoid; S: starch grains).
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3.6. Removal Mechanism and Limiting Factors of Oocystis lacustris for NH4
+-N

Microalgae mainly utilized NH4
+-N by synthesizing glutamine from two molecules of

α-ketoglutarate using GS-glutamate synthase (GS-GOGAT). The synthesized glutamine
was then assimilated into amino acids, which were transported to various organelles for
protein synthesis, nucleic acid synthesis, and other life activities. In NO3

−-N utilization,
microalgae initially reduced NO3

−-N to NO2
−-N using NR. NO2

−-N was then transferred
to the chloroplast and reduced to NH4

+-N using nitrite reductase. Compared to NO3
−-N

and NO2
−-N, microalgae tend to preferentially utilize NH4

+-N directly, but NH4
+-N serves

both as an essential nutrient and a toxic compound for microalgae. Li found that the
GS activity increased with low concentrations of NH4

+-N but decreased as the NH4
+-N

concentration increased [58]. This result aligns with our research findings (Figure 8a),
showing an increase in GS activity when Oocystis lacustris in the EX phase was treated
with 10 mg/L NH4

+-N, but a significant decrease when treated with 50 mg/L NH4
+-N.

However, Oocystis lacustris in the STA phase exhibited no significant fluctuations in GS
activity upon treatment with NH4

+-N, indicating minimal disruption to its GS-GOGAT
pathway. In addition to the GS-GOGAT pathway, microalgae might also utilize NH4

+-N
through the glutamate dehydrogenase (GDH) pathway. Tian et al. found that increasing
NH4

+-N concentration, GS activity decreased while GDH expression levels increased [59].
In this pathway, α-ketoglutarate was converted to glutamate salt by GDH [60,61].
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Additionally, this study investigated alterations in NR activity during the NH4
+-N

removal process. Both Oocystis lacustris in the EX and STA phases exhibited decreased
NR activity when treated with NH4

+-N. Compared to the control group, NR activity in
algal cells subjected to 50 mg/L NH4

+-N decreased by 48.9% and 19.0%, respectively
(Figure 8b,e). These findings align with those of Tian et al., who observed a significant
downregulation of nitrate transport proteins (NTR2 and NTR3) when NH4

+-N was utilized
as a sole nitrogen source or in combination with NO3

−-N, indicating the inhibition of
nitrate transport protein synthesis by NH4

+-N [59].
Further, TAG is the energy molecule stored as oil droplets within cells, crucial for

adapting to adverse environmental conditions and maintaining cell survival processes. The
TAG content within Oocystis lacustris in the EX phase (Figure 8c) markedly decreased when
the NH4

+-N concentration reached 50 mg/L. This decline can be attributed to the damage
caused by the elevated NH4

+-N concentration to chloroplasts, resulting in disrupted TAG
synthesis and diminished TAG content [62,63]. For the Oocystis lacustris in the STA phase,
the influence on cellular TAG content was comparatively minimal (Figure 8f), suggesting a
potentially heightened resistance capability.

In summary, combining the results of the replicated experiments (Figures S12 and
S13), Oocystis lacustris cultured in simulated saline NH4

+-N wastewater exhibited greater
stability during the STA phase and demonstrated enhanced resistance to NH4

+-N stress
following stabilization.

Although NH4
+-N utilization was more direct than NO3

−-N, high concentrations of
NH4

+-N can exert toxic effects on algal cells. This induced oxidative stress in algal cells,
leading to an imbalance in antioxidant systems and lipid damage. Additionally, high NH4

+-
N concentrations could disrupt the OEC of the algal cells and affect chlorophyll-a synthesis,
thereby influencing the photosynthetic system of the algal cell. Moreover, the exposure of
algal cells to high NH4

+-N concentrations in saline wastewater could lead to lower activities
of nitrogen metabolism enzymes such as GS and NR. When using Oocystis lacustris to treat
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saline wastewater containing NH4
+-N, it is important to monitor the stability of microalgae

growth and avoid excessively high concentrations of NH4
+-N.

4. Conclusions

This study highlights the impact of high concentrations of Na2SO4 on the growth of
Oocystis lacustris, demonstrating its tolerance up to 5 g/L, with an observed alleviation of
growth inhibition at concentrations of 10 g/L within a week. In the STA phase, Oocystis
lacustris (2 × 107 cells/mL) exhibited relatively higher efficiency in NH4

+-N removal in
the presence of 10 g/L Na2SO4, achieving almost 100% removal rate for 10 mg/L NH4

+-
N by the 4th day of treatment. Additionally, it displayed robust resistance to the toxic
effects of saline NH4

+-N wastewater, with minimal disruption observed in photosynthesis,
protein synthesis, and the antioxidant system. Unlike previous studies that have focused on
microalgae for NH4

+-N wastewater treatment, this study specifically aimed to investigate
the feasibility of utilizing Oocystis lacustris for treating NH4

+-N wastewater under high
salinity conditions. These findings have the potential to broaden the horizons of research
in microalga-based wastewater treatment technology and offer fresh perspectives for
industrial wastewater treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12050353/s1, Figure S1: Growth of Oocystis lacustris at
different Na2SO4 concentrations—September 2022. (a) Cell concentration; (b) inhibition of yield. (At
the same cultivation time, different letters on adjacent bars indicate significant differences (p < 0.05),
while the same letter indicates no significant difference.); Figure S2: Growth of Oocystis lacustris at
different Na2SO4 concentrations—November 2022. (a) Cell concentration; (b) inhibition of yield. (At
the same cultivation time, different letters on adjacent bars indicate significant differences (p < 0.05),
while the same letter indicates no significant difference.); Figure S3: Treatment of Oocystis lacustris
in the EX phase (8 × 105 cells/mL) with different concentrations of NH4

+-N—September 2022.
(a) NH4

+-N removal rate; (b) cell concentration; (c) inhibition of yield. (At the same cultivation
time, different letters on adjacent bars indicate significant differences (p < 0.05), while the same
letter indicates no significant difference.); Figure S4: Treatment of Oocystis lacustris in the EX phase
(8 × 105 cells/mL) with different concentrations of NH4

+-N—November 2022. (a) NH4
+-N removal

rate; (b) cell concentration; (c) inhibition of yield. (At the same cultivation time, different letters on
adjacent bars indicate significant differences (p < 0.05), while the same letter indicates no significant
difference.); Figure S5: Treatment of Oocystis lacustris in the STA phase (2 × 107 cells/mL) with
different concentrations of NH4

+-N—September 2022. (a) NH4
+-N removal rate; (b) cell concentration;

(c) inhibition of yield. (At the same cultivation time, different letters on adjacent bars indicate
significant differences (p < 0.05), while the same letter indicates no significant difference.); Figure S6:
Treatment of Oocystis lacustris in the STA phase (2 × 107 cells/mL) with different concentrations of
NH4

+-N—November 2022. (a) NH4
+-N removal rate; (b) cell concentration; (c) inhibition of yield. (At

the same cultivation time, different letters on adjacent bars indicate significant differences (p < 0.05),
while the same letter indicates no significant difference.); Figure S7: Variations in chlorophyll-a
and soluble protein contents within Oocystis lacustris cells at different NH4

+-N concentrations on
the 8th day—September 2022. (a,b) Changes in chlorophyll-a and soluble protein contents within
algal cells in the EX phase; (c,d) changes in chlorophyll-a and soluble protein contents within algal
cells in the STA phase. (Different letters on adjacent bars indicate significant differences (p < 0.05),
while the same letter indicates no significant difference.); Figure S8: Variations in chlorophyll-a and
soluble protein contents within Oocystis lacustris cells at different NH4

+-N concentrations on the 8th
day—November 2022. (a,b) Changes in chlorophyll-a and soluble protein contents within algal cells
in the EX phase; (c,d) changes in chlorophyll-a and soluble protein contents within algal cells in the
STA phase. (Different letters on adjacent bars indicate significant differences (p < 0.05), while the same
letter indicates no significant difference.); Figure S9: Oxidative stress status within Oocystis lacustris
cells treated with different concentrations of NH4

+-N on the 8th day - September 2022. (a–c) MDA
concentration and SOD and CAT activities within algal cells in the EX phase; (d–f) MDA concentration
and SOD and CAT activities within algal cells in the STA phase. (Different letters on adjacent bars
indicate significant differences (p < 0.05), while the same letter indicates no significant difference.);
Figure S10: Oxidative stress status within Oocystis lacustris cells treated with different concentrations
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of NH4
+-N on the 8th day - November 2022. (a–c) MDA concentration and SOD and CAT activities

within algal cells in the EX phase; (d–f) MDA concentration and SOD and CAT activities within algal
cells in the STA phase. (Different letters on adjacent bars indicate significant differences (p < 0.05),
while the same letter indicates no significant difference.); Figure S11: Microscopic morphology of
Oocystis lacustris cells in the EX phase on the 8th day: Two cells enveloped in a pectinaceous gelatinous
sheath of control group; Figure S12: Changes in nitrogen metabolism enzymes and TAG activity
within Oocystis lacustris treated by different NH4

+-N concentrations—September 2022: (a) GS, (b) NR,
and (c) TAG within algal cells in the EX phase; (d) GS, (e) NR, and (f) TAG within algal cells in the
STA phase. (Different letters on adjacent bars indicate significant differences (p < 0.05), while the
same letter indicates no significant difference.); Figure S13: Changes in nitrogen metabolism enzymes
and TAG activity within Oocystis lacustris treated by different NH4

+-N concentrations—November
2022: (a) GS, (b) NR, and (c) TAG within algal cells in the EX phase; (d) GS, (e) NR, and (f) TAG
within algal cells in the STA phase. (Different letters on adjacent bars indicate significant differences
(p < 0.05), while the same letter indicates no significant difference.).
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