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Abstract: In environmental flows, field and laboratory measurements of suspended sediments show
two kinds of concentration profiles. For coarse sediments, a near-bed upward convex profile is
observed beneath the main upward concave profile. In this study, we consider two 1-DV models,
namely, the classical advection–diffusion equation (ADE) based on the gradient diffusion model,
and the kinetic model. Both need sediment diffusivity, which is related to the eddy viscosity, and
an y-dependent β-function (i.e., the inverse of the turbulent Schmidt number). Our study shows
that the kinetic model reverts to the classical ADE with an “apparent” settling velocity or sediment
diffusivity. For the numerical resolution of the ADE, simple and accurate tools are provided for
both the sediment diffusivity and hindered settling. The results for the concentration profiles show
good agreement with the experimental data. An interpretation of the concentration profiles is
provided by two “criteria” for shapes. The main for steady open-channel flows shows that the
shape of the concentration profiles in the Cartesian coordinate depends on the vertical distribution
of the derivative of R (the ratio between the sediment diffusivity and the settling velocity of the
sediments): dR/dy > −1 for the upward concave concentration profile while dR/dy < −1 for the
near-bed upward convex profile. A generalization is proposed for oscillatory flows over sand ripples,
where the time-averaged concentration profiles in the semi-log plots are interpreted by a relation
between the second derivative of the logarithm of the concentration and the derivative of the product
between the sediment diffusivity and an additional parameter related to the convective sediment
entrainment process.

Keywords: suspended sediments; concentration profiles; coarse sediments; gradient diffusion model;
kinetic model; sediment diffusivity; eddy viscosity; turbulent Schmidt number; settling velocity;
convective process

1. Introduction

Accurate prediction of the concentration profiles for suspended sediments presents
an important field of research due to its implication in different practical applications
in both river and costal engineering [1–15]. Careful examination of field and laboratory
experimental data show two kinds of concentration profiles depending on particles size
(i.e., upward convex/concave profiles for fine/coarse sediments) [16–22]. Most modeling
studies use the widely and well-known approach based on the gradient diffusion model.
The resolution of the related classical one-dimensional vertical (1-DV) advection-diffusion
equation (ADE) needs the sediment diffusivity εs and the settling velocity of sediments
ωs. The diffusivity of sediments εs is related to the diffusivity of momentum, i.e., the eddy
viscosity νt, by a coefficient β = εs/νt (i.e., the inverse of the turbulent Schmidt number).

In rivers and open-channel flows, laboratory experiments were conducted for fully
developed steady uniform flow conditions in order to obtain more knowledge about
the involved physics related to suspended sediments. While for fine sediments the data
exhibit upward concave profiles, for coarse sediments a near-bed upward convex profile
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is observed beneath the main upward concave profile [16,17]. Examination of the well-
known analytical solution of the ADE i.e., the Rouse formula [23], by experimental data
of suspended sediment concentrations [16] shows that for fine sediments, the upward
concave profiles are well described by the ADE with adequate formulations for the eddy
viscosity and β-factor. However, for coarse sediments, the ADE fails to predict the near-bed
upward convex profile [17]. Based on a fall velocity that varies according to the grain
Reynolds number, Umeyama [24] divided the concentration field into an outer region and
an inner region and proposed two formulas for each region. The ADE was often used with
β equal to 1 and a constant sediment settling velocity equal to the terminal settling velocity
of a particle alone in an infinite fluid. In this case, the predicted concentration profiles,
which depend only on the eddy viscosity model, fail to predict the near-bed measured
concentrations. In particular, errors appear in the concentration distribution for flows with
coarse sediments and/or high concentrations.

In order to improve the suspended sediment concentrations models, two kinds of
research were conducted. On the one hand, studies were conducted to improve the descrip-
tion of the parameters involved in the ADE. Equations for β have been proposed [25,26],
and c-dependent [27] and y-dependent [22] β-functions have been introduced. The well-
known equation of Richardson and Zaki [28] for the sediment settling velocity ωs has
been considered. On the other hand, these errors were related to a weakness in the ADE
and dispersion mechanisms that were not accounted in the ADE [17] that was considered
as unable to predict the near-bed concentration profiles for flows with coarse sediments
and/or high concentrations. The kinetic model was used in order to improve results from
the ADE [17] thanks to the effect of the lift force and the sediment stress gradient. Results
from the kinetic model showed good agreement with experimental data and were related
to the sediment stress gradient, which was found to be significant for a relative flow depth
below 0.1.

The aim of this study is to provide explanations and tools about the modeling of the
near-bed concentration profile for coarse sediments by the ADE for suspended sediments in
both open-channel flows and oscillatory flows over sand ripples. In Section 2, two models
of suspended sediment concentrations, given by two ordinary differential equations (ODE),
are presented as follows: the classical advection–diffusion equation based on the gradient
diffusion model and the kinetic model. Both models need the sediment diffusivity, which
is the key parameter in suspended sediment concentration modeling. Section 3 is therefore
dedicated to the analytical modeling of the sediment diffusivity. Section 4 is for suspended
sediments in steady uniform open-channel flows while Section 5 is for suspended sediments
in oscillatory flows over sand ripples.

2. Mathematical Modeling of Suspended Sediment Concentrations
2.1. Classical Advection–Diffusion Equation Based on the Gradient Diffusion Model

In equilibrium conditions, the concentration of the suspended sediment results from
the balance between an upward mixing flux qm and a downward settling flux qs = c(y) ωs
as qm − c(y) ωs = 0, where ωs is the particle settling velocity and y the vertical distance
from the bed. The gradient diffusion model assumes that the mixing flux is proportional to
the concentration gradient qm = −εs

dc
dy ; where εs is the sediment diffusivity and makes it

possible to write the classical 1-DV advection–diffusion equation (ADE) as

εs
dc
dy

+ ωsc = 0 (1)

2.2. The Kinetic Model

The kinetic model for turbulent two-phase flows accounts for both particle–turbulence
interactions and particle–particle collisions. In turbulent solid–liquid flows, these models
use the Lagrangian equations of particle dynamics. The kinetic model deals with passing
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from the Lagrangian equation to the Eulerian ones though a stochastic description. The
method of moments is used in order to simplify the equations.

In this model, for passing from the Lagrangian equations to the Eulerian ones, a
probability density distribution function (PDF) for particles is introduced. Through differ-
entiating this function with respect to time t, a closed kinetic equation is obtained.

With the assumptions related to two-dimensional, fully developed, steady open-
channel flows, the sediment y-momentum equation is written as [17]

εs
dc
dy

+ ωsc− c τp
(

FL + Fsyns
)
= 0, (2)

where τp is the particle relaxation time, FL the lift force acting on the particles and Fsyns a
force produced by the gradient of sediment y direction normal stress. In Equation (2) the
sediment diffusivity εs is equal to εpd + (νt/(1 + St)) [17], where εpd is the drift–diffusion
coefficient and St the particle Stokes number.

2.3. Improved Advection–Diffusion Equations

Both ordinary differential Equations (ODE) (1) and (2) need the sediment diffusivity
and the settling or fall velocity which are the key parameters in suspended sediment
concentration modeling. Section 3 is dedicated to the analytical modeling of the sediment
diffusivity. Equation (2) introduces an additional correction term to the classical ADE (1).
This additional term from the kinetic model in Equation (2) is similar to a hindered settling
effect. In Section 4, we will show that Equation (2) reverts to the classical ADE (1) with an
“apparent” settling velocity or “apparent” sediment diffusivity.

3. Sediment Diffusivity

The diffusivity of sediments εs is related to the diffusivity of momentum, i.e., the eddy
viscosity νt, by a coefficient β. The sediment diffusivity is given therefore by

εs = β νt, (3)

where the β-factor is the inverse of the turbulent Schmidt number.
In this section, analytical methods are proposed for both the eddy viscosity and

β-factor (i.e., the inverse of the turbulent Schmidt number).

3.1. Eddy Viscosity

In engineering applications, the eddy viscosity is the main parameter related to turbu-
lence. Suitable analytical eddy viscosity models are based on the concepts of velocity and
length scales [29–31]. In these models, the eddy viscosity is given by the product of a mixing
length lm and a mixing velocity wm [32–34] which is related to the exponentially decreasing
turbulent kinetic energy (TKE) function. This method provides the exponential-type profile
of the eddy viscosity [34] given by

νt(y) = u∗ye−
y++0.34Re∗−11.5

0.46Re∗−5.98 , (4)

where in wall units y+ = yu∗/ν, Re∗ = hu∗/ν is the friction Reynolds number, u∗ the
friction or shear velocity, ν the kinetic viscosity and h the flow depth.

This Re∗-dependent eddy viscosity (4) was validated through the computation of the
velocity profiles and the comparisons to the experimental data of both the velocities and
the eddy viscosity [34]. It is possible to write Equation (4) in the following form

νt(ξ) = Cα u∗ye−C1ξ , (5)
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where ξ = y/h and the two coefficients Cα and C1 are given by [34]

Cα = e−
0.34Re∗−11.5
0.46Re∗−5.98 and C1 =

Re∗
0.46Re∗ − 5.98

,

for large values of Re∗ (Re∗>2000), Equation (4) becomes Re∗-independent, and the two
coefficients Cα = α1κ and C1 reach asymptotic values equal, respectively, to Cα = 0.477 and
C1 = 2.17. Equation (4) reverts therefore to the Re∗-independent form (5) with Cα = 0.477
and C1 = 2.17 [34]. With an additional correction to account for the damping effect of
the turbulence near the free surface, we use a damping function in order to decrease the
turbulent viscosity near the free surface as

νt(ξ) = Cα u∗ye−C1ξ
(

1− e−B f (1−ξ)
)

(6)

Figure 1 shows the eddy viscosity profiles given by Equations (5) (red solid line) and
(6) (red dashed line) and the comparisons with the parabolic and wake-modified profiles.
The profile of Equation (6) is similar to the wake-modified profile with the value Π = 2
used for the open-channel flows [35]. Equations (5) and (6) provide identical results for
ξ < 0.3 and therefore Equation (5) could be used for the sediment transport modeling.
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3.2. Turbulent Schmidt Number

Different studies were conducted toward developing equations for the turbulent
Schmidt number or β-factor for both the steady and oscillatory flows [22,25–27,36–39].

The finite mixing length model allows writing the sediment diffusivity as [19]

εs = wmlm

1 +
l2
m

24

d3C
dy3

dC
dy

+ . . .

, (7)
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with an eddy viscosity given by νt = wmlm (a product of mixing length lm and mixing
velocity wm) and the assumption of an exponential decreasing concentration profile given
by c = cbe−Aξ , Equations (3) and (7) provide an equation for β(y) as [38]

β(y) = 1 +
lm2

24
A2, (8)

with a linear mixing length equation (lm = λ y) and λ = 1 [19], (8) reverts to

β(y) = 1 +
A2

24
y2, (9)

Equation (9) is similar to that proposed in [22]. Another empirical equation for β(y) was
proposed as [22]

β(y) = βb fb(y) = βbeCbξ , (10)

where βb and Cb are the two coefficients. The Equation (10) allows to the sediment diffusiv-
ity εs to keep the same shape as eddy viscosity νt (5) by changing the value of the coefficient
C1 thanks to Cb as

εs = β νt = βbeCbξCα u∗ye−C1ξ = Cαβ u∗ye−C1βξ ,

where Cαβ = βbCα and C1β = C1 − Cb. The depth-averaged β-factor is obtained by
integrating β(y) over the water column as

βave =
1
h

∫ h

0
β(y)dy =

∫ 1

0
β(ξ)dξ, (11)

Using Equation (9), the integration of (11) gives the depth-averaged β-factor as

βave = 1 +
A2

72
, (12)

The coefficient A is given by [37]

A = 5.853 + 6.401
ω

u∗
, (13)

By using Equation (13) in Equation (12), βave becomes

βave = 1.47 + 1.03
(

ω

u∗

)
+ 0.57

(
ω

u∗

)2
,

while by using a linear function given by A = 11 ω
u∗ in Equation (12), βave becomes [38]

βave = 1 + 1.68
(

ω

u∗

)2
(14)

Equation (14) is similar to a former empirical equation βave = 1 + 2
(

ω
u∗

)2
[25].

4. Suspended Sediments in Steady Uniform Open-Channel Flows
4.1. The Kinetic Model and the Classical Advection–Diffusion Equation

The kinetic model was used for the suspended sediment in open-channel flows [17].
The concentration profiles from the kinetic model were compared to the experimental
data [16] for the coarse sediments with the particle diameter dp = 1.3 mm (Table 1). The
predicted concentration profiles for the coarse sediments obtained from the ADE, fail
to predict the measured concentrations while the kinetic model shows good agreement.
These results were related [17] to a weakness in the classical ADE, where the authors
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explained these profiles by the effects of lift the force and sediment stress gradient, which
are significant for ξ = y/h < 0.1.

However, it is possible to write the kinetic model of Equation (2) in two different forms
related to the ADE (1).

In the first form, (2) is written as

εs
dc
dy

+ ω∗s c = 0, (15)

where

ω∗s =

(
1−

τp
(

FL + Fsyns
)

ωs

)
ωs

Equation (15) shows the effect of the kinetic model (2) as a hindered settling with
a modified or “apparent” settling velocity ω∗s . Note that, for τp

(
FL + Fsyns

)
� ωs, (15)

reverts to (1).
In the second form, (2) is written as

ε∗s
dc
dy

+ ωsc = 0, (16)

where
ε∗s =

1

1− τp(FL+Fsyns)
ωs

εs

Equation (16) shows the effect of the kinetic model (2) as a modified or “apparent”
sediment diffusivity ε∗s . The same condition τp

(
FL + Fsyns

)
� ωs allows (15) to revert to (1).

Since the kinetic model (2) is related to the ADE (1), this later is able to provide the same
results as (2) with an adequate description of the “apparent” settling velocity or “apparent”
sediment diffusivity.

4.2. Concentration Profile with the Advection–Diffusion Equation

It is possible to write Equation (1) as

dc
dy

= − 1
R

c (17)

where R = εs/ωs is the ratio between the sediment diffusivity and the settling velocity.
Note that both different forms given above by Equations (15) and (16) revert to Equation (17)
with R given, respectively, by R = εs/ω∗s or R = ε∗s /ωs.

Table 1. Flow conditions of experiments of Einstein and Chien [16].

Run Number h(cm) dp(mm) u*(cm/s) ρs/ρf

S2 12.0 1.3 12.85 2.65
S3 11.7 1.3 13.26 2.65
S4 11.5 1.3 14.28 2.65

By assuming that this ratio becomes a constant equal to a concentration length scale
R = Lc, the integration of Equation (1) gives the well-known exponential decreasing
concentration profile

c(y) = ca exp
(
−y− a

Lc

)
, (18)

where ca = c(y = a) and Lc is the concentration profile length scale. Equation (18) allows
analysis of the experimental data. In the semi-log plot, Equation (18) is represented by a
straight line (Figure 2) which fits the experimental data for ξ > 0.1. However, for ξ < 0.1,
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the experimental data deviate from the straight line. This seems to be associated to a
decrease in the particles’ settling velocity for high concentrations, in particular for the case
of coarse sediments (i.e., hindered settling velocity).
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4.3. Hindered Settling Velocity

For the prediction of the suspended sediment concentration profiles, the settling
velocity of the sediment particles in the ADE was often taken as a constant. However,
in sediment-laden flows, the settling velocity is reduced due to the presence of particles
and high concentrations near the bed/bottom (i.e., hindered settling velocity). Different
studies have been undertaken to predict the distribution of the sediment concentration
incorporating this effect [22,37,38]. In the present study, we write an y-dependent settling
velocity as [22]

ωs(y) = ωs0 fs(y), (19)

where ωs0 is the terminal settling velocity of a particle alone in an infinite fluid and fs(y)
is a function that is equal to 1 far from the bed where concentrations are very small and
decrease near the bed for high concentrations. Since fs(y) ≈ 1 in the outer region, we can
write Lc ≈ (β νt)/ωs0 with the product β νt which seems to be y-independent over a given
elevation. However, we need to consider that fs(y) 6= 1 in the inner region where we write
R(y) = Lc/ fs(y). Experiments have demonstrated that the particle settling velocities are
lower at higher concentrations. This behavior is given by the well-known semi-empirical
equation of Richardson and Zaki [28]

ωs = ωs0(1− c)n, (20)

where n is an empirically determined exponent dependent on the particle Reynolds num-
ber Rt at ωs0 and is constant for a particular particle. This exponent was determined
experimentally as between 4.65 and 2.4 for increasing Rt.
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In order to verify that the observed near-bed upward convex concentration profile
for coarse sediments is related to the decreasing settling velocity, the following empirical
function for fs(y) was proposed [22]

fs(y) =
ωs(y)

ωs0
=

1
1 + αsexp(−y/hs)

(21)

where hs and αs are two parameters that depend on the concentrations and the sediment
grain size. Equation (21) is validated (Figure 3) by the experimental data of fs(y) obtained
from Equation (20) and the measured c-values as

fsexp =
(
1− cexp

)n (22)
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4.4. Results

Figures 4 and 5 show the comparison between the predicted concentration profiles and
the experimental data for the coarse sediments (Table 1) [16]. In Figure 4, the measurements
(symbols) show, in the Cartesian coordinates, the main upward concave concentration
profile for ξ > 0.1 which corresponds to the straight line, in the semi-log plot, given
by Equation (18) in Figure 2. The concentration profiles are obtained from ADE (1). In
Figure 4, the sediment diffusivity εs is given by (3), νt(y) from (5) and β(y) from (9) and
(13). The blue dashed line is for a constant ωs = ωs0 while the red solid line corresponds
to ωs(y) = ωs0 fs(y) given by (21). Concentration profiles show that β is very close to 1.
In order to study the effect of hindering settling, the concentration profiles (Figure 5) are
obtained from ADE (1) with εs = νt given by (5) (β = 1). For the settling velocity, constant
ωs = ωs0 (blue dashed lines) and ωs(y) = ωs0 fs(y) given by (21) (red solid lines). The
predicted concentration profiles obtained by the ADE with the hindering settling (red solid
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lines) show good agreement with the experimental data (symbols) for the coarse sediments
(Table 1).
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Figure 4. Concentration profiles for coarse sediments (S3). Curves from numerical resolution of ADE
(1) with νt(y) (5) Cα = 0.477 and C1 = 2.17; β(y) from (9) and (13); dashed lines: constant settling
velocity ωs = ωs0 = 0.1411m/s; solid lines: ωs(y) = ωs0 f s(y) (21) αs = 50, hs = 0.019; symbols:
experimental data.

Figures 4 and 5 confirm the ability of the ADE to predict the overall measured concen-
trations with a suitable description of the vertical distribution of the settling velocity ωs
over the flow depth (red solid lines).

4.5. First Criterion for Concentration Profiles Shape in Cartesain Coordiantes

Derivative of Equation (1) (by using Equation (18)) allows writing

d2c
dy2 =

c
R2

(
dR
dy

+ 1
)

(23)

The upward concavity/convexity of the concentration profiles is related to the sign of
d2c
dy2 and therefore to the sign of dR

dy + 1 since c
R2 is always >0 ( d2c

dy2 and dR
dy + 1 have the same

sign). Therefore, the upward concave concentration profiles correspond to dR
dy > −1 while

the upward convex concentration profiles correspond to dR
dy < −1.

The classical ADE is therefore able to predict the near-bed upward convex concentra-
tion profile if the derivative of the ratio between the sediment diffusivity and the settling
velocity is lower than −1 (Figure 6).
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Figure 5. Concentration profiles for coarse sediments. Curves from numerical resolution of ADE
(1) with εs = νt (5) Cα = 0.477 and C1 = 2.17; dashed lines: constant settling velocity ωs = ωs0 =

0.1411 m/s; solid lines: ωs(y) = ωs0 fs(y) (21); symbols: experimental data (a) S2 αs = 32, hs = 0.019;
(b) S4 αs = 70, hs = 0.019.
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5. Suspended Sediments in Oscillatory Flows over Sand Ripples
5.1. Convection–Diffusion Equation with Upward Convection Term

For suspended sediments in oscillatory flows over sand ripples, in addition to the
“diffusive mechanism” related to the sediment diffusivity εs, another process is a coherent
phenomenon related to vortex formation and shedding at the flow reversal above the
ripples, which is “a convective mechanism” [4].

The ADE (1) was adapted by adding an additional term related to the convective
mechanism Fconv. The convection–diffusion model for the time-averaged concentrations
(over the wave period) is given by [4]

εs
dc
dy

+ ωsc + Fconv = 0, (24)

the respective terms in (24) represent: upward diffusion, which represents a pure disor-
ganized “diffusive” process and downward settling and upward convection Fconv which
describes the coherent convective sediment entrainment process.

We wrote Equation (24) in the form of Equation (16) [40] with a modified or apparent
sediment diffusivity ε∗s instead of εs, given by

ε∗s =
1

1 + Fconv
ωsc

εs = 1 +
Fconv

εs
dc
dy

εs = αεs (25)

where the parameter α is related to the convective sediment entrainment process associated
with the process of vortex shedding above the ripples. This parameter α was interpreted by
two different expressions (Equation (25)). In the first, α depends on the relative importance
of the upward convection Fconv related to the coherent vortex shedding and downward
settling of the sediments ωsc. In the second, α depends on the relative importance of terms
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Fconv and Fdi f f = εsdc/dy which are related, respectively, to the coherent vortex shedding
and random turbulence. An empirical function for αwas proposed by [40]

α = 1 + D e−
y
hs (26)

where D and hs are two parameters. The eddy viscosity for the steady flows given by
Equation (6) was generalized to the oscillatory flows [40–45].

From Equations (5), (10) and (26) we wrote ε∗s as [40]

ε∗s
U0ks

= As
y
ks

e−
y

Bs

(
1 + D e−

y
hs

)
(27)

The vertical distribution of the sediment diffusivity given by Equation (27) was con-
firmed by the experimental data and it is similar to a former empirical distribution which is
constant then linear. The near-bed constant region is due to the coherent vortex formation
and shedding related to the flow separation on the lee side of the steep ripple crest. In
the following layer, the linearly increasing profile for the sediment diffusivity is related
to the random turbulent processes and gradient diffusion. Indeed, the vortices lose their
coherence in this layer [46–50].

5.2. Second Criterion for Concentration Profiles Shape in Semi-Log Plots

The concentration profiles were interpreted by a relation between the second derivative
of the logarithm of the concentration and the derivative of the product between the sediment
diffusivity and α. It is possible to write from Equation (16) [22]

d2ln(c)
dy2 =

ωs

ε∗s 2
dε∗s
dy

(28)

Equation (28) provides, in the semi-log plots, a link between the upward concav-
ity/convexity of the concentration profiles and the increasing/decreasing in ε∗s . Increasing
ε∗s allows the upward concave concentration profile, while decreasing ε∗s allows an upward
convex concentration profile.

6. Conclusions

This study is related to the near-bed/bottom concentration profiles for coarse sedi-
ments in environmental flows.

The findings of the present study can be summarized in the following conclusions:

- In this study, we provided simple and accurate tools for the sediment diffusivity
through analytical formulations for both the eddy viscosity and β-factor/function
(i.e., the inverse of the turbulent Schmidt number).

- For steady open-channel flows, two models were investigated, namely, the ADE and
the kinetic model.

- Our study shows that the kinetic model reverts to the classical ADE with a modified
or “apparent” settling velocity.

- Results for the concentration profiles, with a hindered settling function, show good
agreement for the open-channel flows.

- An interpretation of the concentration profiles is provided.
- For steady open-channel flows: the concentration profiles shape, in the Cartesian

coordinates, depends on the vertical distribution of the derivative of the ratio R
between the sediment diffusivity and the settling velocity of the sediments (dR/dy):
dR/dy > −1 for the upward concave concentration profile while dR/dy < −1 for the
near-bed upward convex profile.

- For oscillatory flows over sand ripples, the convection–diffusion equation was con-
sidered. As for the kinetic model, the convection–diffusion equation reverts to the
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classical ADE but with an “apparent” sediment diffusivity instead of the “apparent”
settling velocity.

- A generalization was proposed for the interpretation of the concentration profiles for
fine and coarse sand in oscillatory flows over sand ripples. A relation between the sec-
ond derivative of the logarithm of the concentration and the derivative of the apparent
sediment diffusivity allows interpretation of the concentration profiles in the semi-log
plots. This equation provides a link, in the semi-log plots, between the upward con-
cavity/convexity of the concentration profiles and the increasing/decreasing in the
apparent sediment diffusivity. Increasing the apparent sediment diffusivity allows
an upward concave concentration profile, while decreasing the apparent sediment
diffusivity allows an upward convex concentration profile.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Vanoni, V.A. Transportation of Suspended Sediment by Water; ASCE: Reston, VA, USA, 1946; Volume 111, pp. 67–133.
2. Yalin, M.S. Mechanics of Sediment Transport; Pergamon Press: Oxford, UK, 1972.
3. Fredsoe, J.; Deigaard, R. Mechanics of Coastal Sediment Transport; World Scientific Publishing: Singapore, 1992; 369p.
4. Nielsen, P. Coastal Bottom Boundary Layers and Sediment Transport; World Scientific Publishing: Singapore, 1992; 324p.
5. Seminara, G.; Blondeaux, P. River, Coastal and Estuarine Morphodynamics; Springer: Berlin/Heidelberg, Germany, 2001.
6. Guo, J.; Wood, W.L. Fine Suspended Sediment Transport Rates. J. Hydraul. Eng. ASCE 1995, 121, 919–922. [CrossRef]
7. Tsai, C.W.; Hung, S.Y. Modeling Suspended Sediment Transport Under Influence of Turbulence Ejection and Sweep Events. Water

Resour. Res. 2019, 55, 5379–5393. [CrossRef]
8. Ghoshal, K.; Jain, P.; Absi, R. Nonlinear Partial Differential Equation for Unsteady Vertical Distribution of Suspended Sediments

in Open Channel Flows: Effects of Hindered Settling and Concentration-Dependent Mixing Length. J. Eng. Mech. ASCE 2022, 148,
04021123. [CrossRef]

9. Gaudio, R. Turbulence and Flow–Sediment Interactions in Open-Channel Flows. Water 2020, 12, 3169. [CrossRef]
10. Lai, Y.G.; Wu, K.A. Three-Dimensional Flow and Sediment Transport Model for Free-Surface Open Channel Flows on Unstructured

Flexible Meshes. Fluids 2019, 4, 18. [CrossRef]
11. Hu, L.; Dong, Z.; Peng, C.; Wang, L.-P. Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow

Using the Lattice Boltzmann Method. Fluids 2021, 6, 217. [CrossRef]
12. Faraci, C.; Scandura, P.; Petrotta, C.; Foti, E. Wave-Induced Oscillatory Flow over a Sloping Rippled Bed. Water 2019, 11, 1618.

[CrossRef]
13. Gusarov, A.V.; Sharifullin, A.G.; Komissarov, M.A. Contemporary Long-Term Trends in Water Discharge, Suspended Sediment

Load, and Erosion Intensity in River Basins of the North Caucasus Region, SW Russia. Hydrology 2021, 8, 28. [CrossRef]
14. Jain, P.; Kundu, S.; Ghoshal, K.; Absi, R. Direct Derivation of Streamwise Velocity from RANS Equation in an Unsteady

Nonuniform Open-Channel Flow. J. Eng. Mech. ASCE 2022, 148, 06022002. [CrossRef]
15. Sen, S.; Kundu, S.; Absi, R.; Ghoshal, K. A model for coupled fluid velocity and suspended sediment concentration in an unsteady

stratified turbulent flow through an open channel. J. Eng. Mech. ASCE 2023, 149, 04022088. [CrossRef]
16. Einstein, H.A.; Chien, N. Effects of Heavy Sediment Concentration Near the Bed on Velocity and Sediment Distribution; M.R.D. Sediment

Series, Rep. No. 8; University of California: Berkeley, CA, USA, 1955.
17. Fu, X.; Wang, G.; Shao, X. Vertical dispersion of fine and coarse sediments in turbulent open-channel flows. J. Hydraul. Eng. ASCE

2005, 131, 877–888. [CrossRef]
18. McFetridge, W.F.; Nielsen, P. Sediment Suspension by Non-Breaking Waves over Rippled Beds; Technical Report No. UFL/COEL-

85/005; Coast Ocean Eng Dept, University of Florida: Gainesville, FL, USA, 1985.
19. Nielsen, P.; Teakle, I.A.L. Turbulent diffusion of momentum and suspended particles: A finite-mixing-length-theory. Phys. Fluids

2004, 16, 2342–2348. [CrossRef]
20. Absi, R. Comment on Turbulent diffusion of momentum and suspended particles: A finite-mixing-length theory. Phys. Fluids

2005, 17, 079101. [CrossRef]
21. Absi, R. Modeling turbulent mixing and sand distribution in the bottom boundary layer. In Proceedings of the 5th International

Conference on Coastal Dynamics 2005—State of the Practice, Barcelona, Spain, 4–8 April 2005; Sanchez-Arcilla, A., Ed.; ASCE:
Reston, VA, USA, 2005.

http://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(919)
http://doi.org/10.1029/2018WR023493
http://doi.org/10.1061/(ASCE)EM.1943-7889.0002045
http://doi.org/10.3390/w12113169
http://doi.org/10.3390/fluids4010018
http://doi.org/10.3390/fluids6060217
http://doi.org/10.3390/w11081618
http://doi.org/10.3390/hydrology8010028
http://doi.org/10.1061/(ASCE)EM.1943-7889.0002169
http://doi.org/10.1061/(ASCE)EM.1943-7889.0002158
http://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(877)
http://doi.org/10.1063/1.1738413
http://doi.org/10.1063/1.1949200


Hydrology 2023, 10, 5 14 of 14

22. Absi, R. Concentration profiles for fine and coarse sediments suspended by waves over ripples: An analytical study with the
1-DV gradient diffusion model. Adv. Water Resour. 2010, 33, 411–418. [CrossRef]

23. Rouse, H. Modern conceptions of the mechanics of fluid turbulence. Trans. Am. Soc. Civ. Eng. 1937, 102, 463–543. [CrossRef]
24. Umeyama, M. Velocity and concentration fields in uniform flow with coarse sands. J. Hydraul. Eng. ASCE 1999, 125, 653–656.

[CrossRef]
25. Van Rijn, L.C. Sediment Transport, Part II: Suspended Load Transport. J. Hydraul. Eng. ASCE 1984, 110, 1613–1641. [CrossRef]
26. Graf, W.H.; Cellino, M. Suspension flows in open channels: Experimental study. J. Hydraul. Res. 2002, 40, 435–447. [CrossRef]
27. Kaushal, D.R. Discussion of Vertical dispersion of fine and coarse sediments in turbulent open-channel flows. J. Hydraul. Eng.

ASCE 2007, 133, 1292–1294. [CrossRef]
28. Richardson, J.F.; Zaki, W.N. Sedimentation and fluidisation: Part 1. Trans. Inst. Chem. Eng. 1954, 32, 35–53. [CrossRef]
29. Absi, R. Time-dependent eddy viscosity models for wave boundary layers. In Proceedings of the 27th International Conference

on Coastal Engineering, Sydney, Australia, 16–21 July 2000; Edge, B.L., Ed.; ASCE Press: Reston, VA, USA, 2001; Volume 2, pp.
1268–1281.

30. Absi, R. Analytical solutions for the modeled k-equation. ASME J. Appl. Mech. 2008, 75, 044501. [CrossRef]
31. Absi, R. A simple eddy viscosity formulation for turbulent boundary layers near smooth walls. C. R. Mec. 2009, 337, 158–165.

[CrossRef]
32. Absi, R. Eddy viscosity and velocity profiles in fully-developed turbulent channel flows. Fluid Dyn. 2019, 54, 137–147. [CrossRef]
33. Absi, R. Analytical eddy viscosity model for velocity profiles in the outer part of closed- and open-channel flows. Fluid Dyn. 2021,

56, 577–586. [CrossRef]
34. Absi, R. Reinvestigating the parabolic-shaped eddy viscosity profile for free surface flows. Hydrology 2021, 8, 126. [CrossRef]
35. Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flows; A.A. Balkema: Rotterdam, The Netherlands, 1993.
36. Absi, R.; Marchandon, S.; Lavarde, M. Turbulent diffusion of suspended particles: Analysis of the turbulent Schmidt number.

Defect Diffus. Forum 2011, 312–315, 794–799. [CrossRef]
37. Jain, P.; Kumbhakar, M.; Ghoshal, K. A mathematical model on depth-averaged β-factor in open-channel turbulent fow. Environ.

Earth Sci. 2018, 77, 253. [CrossRef]
38. Absi, R. Rebuttal on A mathematical model on depth-averaged β-factor in open-channel turbulent flow. Environ. Earth Sci. 2020,

79, 113. [CrossRef]
39. Gualtieri, C.; Angeloudis, A.; Bombardelli, F.; Jha, S.; Stoesser, T. On the Values for the Turbulent Schmidt Number in Environ-

mental Flows. Fluids 2017, 2, 17. [CrossRef]
40. Absi, R.; Tanaka, H. Analytical eddy viscosity model for turbulent wave boundary layers: Application to suspended sediment

concentrations over wave ripples. J. Mar. Sci. Eng. submitted.
41. Absi, R. Calibration of Businger-Arya type of eddy viscosity model’s parameters. J. Waterw. Port Coast. Ocean Eng. ASCE 2000,

126, 108–109. [CrossRef]
42. Absi, R. Wave boundary layer instability near flow reversal. In Proceedings of the 28th International Conference on Coastal

Engineering 2002, Cardiff, UK, 7–12 July 2002; Smith, J.M., Ed.; World Scientific Publishing: Singapore, 2002; Volume 1, pp.
532–544, ISBN 981-238-238-0.

43. Absi, R. Discussion of One-dimensional wave bottom boundary layer model comparison: Specific eddy viscosity and turbulence
closure model. J. Waterw. Port Coast. Ocean Eng. ASCE 2006, 132, 139–141. [CrossRef]

44. Absi, R. On the effect of sand grain size on turbulent mixing. In Proceedings of the International Conference on Coastal
Engineering 2006, San Diego, CA, USA, 3–8 September 2006; Smith, J.M., Ed.; World Scientific Publishing: Singapore, 2006; pp.
3019–3029.

45. Absi, R.; Tanaka, H.; Kerlidou, L.; André, A. Eddy viscosity profiles for wave boundary layers: Validation and calibration by a
k-ωmodel. In Proceedings of the 33th International Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012.

46. Sheng, J.; Hay, A.E. Sediment eddy diffusivities in the nearshore zone, from multifrequency acoustic backscatter. Cont. Shelf Res.
1995, 15, 129–147. [CrossRef]

47. Lee, T.H.; Hanes, D.M. Comparison of field observations of the vertical distribution of suspended sand and its prediction by
models. J. Geophys. Res. 1996, 101, 3561–3572. [CrossRef]

48. Van Rijn, L.C. United view of sediment transport by currents and waves II: Suspended transport. J. Hydraul. Eng. ASCE 2007, 133,
668–689. [CrossRef]

49. Thorne, P.D.; Williams, J.J.; Davies, A.G. Suspended sediments under waves measured in a large-scale flume facility. J. Geophys.
Res. 2002, 107, 3178. [CrossRef]

50. Thorne, P.D.; Davies, A.G.; Bell, P.S. Observations and analysis of sediment diffusivity profiles over sandy rippled beds under
waves. J. Geophys. Res. 2009, 114, C02023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.advwatres.2010.01.006
http://doi.org/10.1061/TACEAT.0004872
http://doi.org/10.1061/(ASCE)0733-9429(1999)125:6(653)
http://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
http://doi.org/10.1080/00221680209499886
http://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1292)
http://doi.org/10.1016/S0263-8762(97)80006-8
http://doi.org/10.1115/1.2912722
http://doi.org/10.1016/j.crme.2009.03.010
http://doi.org/10.1134/S0015462819010014
http://doi.org/10.1134/S0015462821040017
http://doi.org/10.3390/hydrology8030126
http://doi.org/10.4028/www.scientific.net/DDF.312-315.794
http://doi.org/10.1007/s12665-018-7428-0
http://doi.org/10.1007/s12665-020-8849-0
http://doi.org/10.3390/fluids2020017
http://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(108)
http://doi.org/10.1061/(ASCE)0733-950X(2006)132:2(139)
http://doi.org/10.1016/0278-4343(94)E0025-H
http://doi.org/10.1029/95JC03283
http://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668)
http://doi.org/10.1029/2001JC000988
http://doi.org/10.1029/2008JC004944

	Introduction 
	Mathematical Modeling of Suspended Sediment Concentrations 
	Classical Advection–Diffusion Equation Based on the Gradient Diffusion Model 
	The Kinetic Model 
	Improved Advection–Diffusion Equations 

	Sediment Diffusivity 
	Eddy Viscosity 
	Turbulent Schmidt Number 

	Suspended Sediments in Steady Uniform Open-Channel Flows 
	The Kinetic Model and the Classical Advection–Diffusion Equation 
	Concentration Profile with the Advection–Diffusion Equation 
	Hindered Settling Velocity 
	Results 
	First Criterion for Concentration Profiles Shape in Cartesain Coordiantes 

	Suspended Sediments in Oscillatory Flows over Sand Ripples 
	Convection–Diffusion Equation with Upward Convection Term 
	Second Criterion for Concentration Profiles Shape in Semi-Log Plots 

	Conclusions 
	References

