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Abstract: Weather attribution is a scientific study that estimates the relative likelihood of an ob-
served weather event occurring under different climate regimes. Water budget models are widely
used tools that can estimate future water resource management and conservation conditions using
daily weather forcing. A stochastic weather generator (WG) is a statistical model of daily weather
sequences designed to simulate or represent a climate description. A WG provides a means to
generate stochastic, future weather forcing to drive a water budget model to produce future water
resource projections. Observed drought magnitude and human-induced climate change likelihood
from a weather attribution study provide targets for WG calibration. The attribution-constrained WG
approximately reproduces the five-fold increase in probability attributed to observed drought magni-
tude under climate change. A future (2031–2060) climate description produced by the calibrated WG
is significantly hotter, with lower expected soil moisture than the future description obtained from
global climate model (GCM) simulation results. The attribution-constrained WG describes future
conditions where historical extreme and severe droughts are significantly more likely to occur.

Keywords: weather attribution; stochastic weather generator; human-induced climate change; water
balance model; severe drought

1. Introduction

Weather attribution is the determination of the relative likelihood or probability of
a weather event occurring under two different climate descriptions. It has been used to
analyze changes in likelihood, relative to undisturbed early 20th century conditions, for
an observed drought or precipitation event under present-day human-induced climate
change conditions [1]. A specific drought or storm event is an example of weather, which
comprises daily atmospheric events. Weather describes short-term atmospheric events that
occur over minutes to weeks [2]. Climate describes the weather of a place averaged over an
interval of a couple of decades or longer [3].

Water budget or balance models are widely used in hydrology and water resources
applications. They have been implemented to estimate a range of water resources consider-
ations, including irrigation demand, soil moisture stresses, predicting stream flows, and
assessing the hydrologic effects of climate change and changes in vegetation cover [4,5].
Water budget models generally utilize hourly to monthly weather forcing as the external
driving force in their calculations [4–7].

Observations of future weather are unavailable. When future water budget projections
are made using a water balance model, future weather is provided as input forcing. Stochas-
tic or random realizations of future weather sampled from a physical process-based climate
representation can provide future weather forcing to a water balance model. A collection of
sampled realizations from a climate scenario representation is an ensemble. Global climate
model (GCM) simulation results have been used to generate future weather ensembles for
input to water balance models. GCMs are coupled atmosphere–ocean, general circulation
models that simulate global weather with a sub-daily time step. GCMs simulate stochastic
future weather to generate a physics- and process-based description of future climate [7,8].
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Another option for the creation of stochastic realizations of future weather is a stochas-
tic weather generator (WG) [7,8]. A WG is a statistical model of daily weather sequences
that is designed to simulate or represent key statistical properties of observed meteorolog-
ical records, like means, variances, frequencies, and extreme occurrences. When used in
Monte Carlo simulations to generate many stochastic realizations of day-to-day weather, a
WG is essentially a random number generator whose time-aggregated outputs statistically
describe climate [9].

WGs that statistically reproduce a future climate description obtained from GCM sim-
ulation results have been previously used to attribute hydrologic changes to global climate
change, e.g., Refs. [7,8,10–15]. This study employs the unique approach of calibrating or
training a WG to reproduce drought likelihood and drought magnitude from an attribution
study. The calibrated WG provides a means to incorporate weather attribution into future
water budget projections. The attribution-constrained future climate is compared to the
projected climate from GCM simulation results and the historically observed climate. It
indicates an increased likelihood for droughts of historically severe magnitudes relative to
those projected by GCM simulations.

2. Data and Methods

A study area, discussed in Section 2.1, is used to facilitate the acquisition of observed
weather and future projected climate on the watershed scale. Observed weather for the site
is discussed in Section 2.2, and a future climate description is presented in Section 2.3.

An attribution study combined with drought index calculations constrains WG formu-
lation. Weather attribution is discussed in Section 2.4, two drought indexes are presented
in Section 2.5, and WG formulation is described in Sections 2.6 and 2.7. Finally, automated
calibration implementation is discussed in Section 2.8.

2.1. Study Site

The study area was the Frio River basin in south-central Texas (TX), which is shown in
Figure 1. This basin is about 134 km west of San Antonio, TX. The Frio basin is important
from a water budgeting perspective because the Frio and Dry Frio Rivers cross the Balcones
Fault Zone (BFZ) Edwards Aquifer Recharge Zone within the watershed. In the Recharge
Zone, direct communication between surface water and subsurface storage is feasible and
likely to occur due to the karstic nature of the Edwards Aquifer.

2.2. Weather Observations

Daily precipitation depth, maximum temperature, and minimum temperature observa-
tions were acquired for the study area, see Figure 1, for 1 January 1980 through 31 December
2022 from the Daymet version 4 repository [16,17]. Daymet provides long-term, continu-
ous, gridded estimates of daily weather and climatology variables by interpolating and
extrapolating ground-based observations through statistical modeling techniques [16].

These datasets are available on a 1 km × 1 km spatial grid, which is displayed in
Figure 1. Gridded estimates of daily weather are regionalized to provide a time series of
daily weather parameters for the Frio basin. This regionalization is implemented using
proportional area weighting, where grid cell values are weighted by the ratio of the grid
cell area within the Frio basin to the entire area of the Frio basin. Monthly-averaged
temperature and precipitation during 1991–2020 are presented in Figure 2.
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Figure 1. The study area is the Frio River watershed or basin near Uvalde, Texas (TX), USA. Uvalde
is 134 km (83 mi) west of San Antonio, TX. Two different gridded weather data products are used in
this study: (1) Daymet v4, as discussed in Section 2.2, and (2) LOCA2, as discussed in Section 2.3. The
study area is important for water budgeting because the Frio and Dry Frio Rivers cross the Balcones
Fault Zone (BFZ) Edwards Aquifer Recharge Zone in the southern portion of the basin and provide
direct communication between surface and subsurface water.

2.3. Future Climate Projections

The Coupled Model Intercomparison Project (CMIP) is a foundational element of
climate science because it coordinates the design and distribution of GCM simulations of
the past, current, and future climate [18]. The most recent ensemble of CMIP-endorsed
model intercomparison projects is Phase 6 or CMIP6. It contains 23 endorsed or approved
GCMs [19].

Each CMIP6 model may be used to simulate one or more scenarios, as defined in
the CMIP6 experimental design. In this study, the shared socioeconomic pathway (SSP)
5 with a 2100 radiative forcing level of 8.5 watts per square meter (W/m2) is the only
CMIP6 scenario examined; this scenario is commonly labeled as ssp585. SSP5 represents
a development path that is fossil-fueled and carbon emissions-intensive. It is predicated
on the assumption of increasing integrated global markets, leading to innovations and
technological progress. The social and economic development in this scenario is based on
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intensified exploitation of fossil fuel resources, characterized by a high percentage of coal
usage and an energy-intensive lifestyle worldwide [20,21].

CMIP6 provides a collection of 23 global-scale climate simulation models. For ap-
plication to a relatively small region like the Frio basin, as seen in Figure 1, the CMIP6
results need to be downscaled or interpolated to a more refined grid. CMIP6 results for the
ssp585 scenario that were downscaled using the Localized Constructed Analogs version
2 (LOCA2) approach [22–25] were used for future climate projections. The LOCA2 grid
configuration is shown in Figure 1.

LOCA2 statistical downscaling uses a 6-km resolution. The primary improvement of
LOCA2, compared to the earlier version of LOCA, is in the representation of precipitation
extremes [22,23]. LOCA2 downscaled CMIP6 ssp585 simulation results were obtained
for daily maximum air temperature, daily minimum air temperature, and daily precipi-
tation depth for the period from 1 January 2021 through 31 Decemebr 2065. The LOCA2
CMIP6 ssp585 results were regionalized to provide a unified time series of daily weather
parameters for the Frio basin from each of the 23 CMIP6 models. This regionalization is
implemented using proportional area weighting, where grid cell values are weighted by
the ratio of the grid cell area within the Frio basin to the entire Frio basin area. Hereafter,
“LOCA2” will refer to the ensemble of LOCA2 downscaled results from the 23 CMIP6
models for emissions scenario ssp585.

LOCA2 projected future climate is compared to the historically observed climate in
Figures 2–4. Figures 2 and 3 show that temperature is expected to consistently increase in
the future. Figures 2 and 4 suggest that annual and seasonal precipitation depths will be
similar, but decline slightly, for future conditions, relative to the historical observations.
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Figure 2. Frio basin observed weather parameter (Climate Normals) from 1991 to 2020 compared
to LOCA2 Climate Normals from 2031–2060. “Precip.” denotes the total precipitation depth for the
month. “Max. Temp.” denotes the daily maximum temperature, and “Min. Temp.” denotes the
daily minimum temperature. Climate Normals are the monthly averages of the weather parameters
across the specified 30-year period. Temperature is expected to consistently increase for the 2031–2060
period compared to the 1991–2020 period. Precipitation depth is expected to decrease slightly for the
2031–2060 period relative to the 1991–2020 period.
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Figure 3. The LOCA2 annual average temperature cone of uncertainty along with the observed
annual average temperature for the Frio basin. The annual average temperature is calculated as the
average across the year of the daily average temperature, as detailed in Appendix A.2. Temperature
is projected to consistently increase in the future. By 2065, the expected annual average temperature
values are projected to be about 3 ◦C higher than the observed annual average temperatures in the
early 2020s. “LOCA2 5th to 95th envelope” represents the range of temperature magnitudes for a
given year, bounded by the 5th and 95th percentile values, across the 23 ensemble members. The
percentile envelopes would be smoother with more realizations or ensemble members.
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Figure 4. The LOCA2 annual total precipitation depth cone of uncertainty along with the observed
annual precipitation depth for the Frio basin. The annual precipitation depth is projected to remain
similar to the historically observed annual precipitation depth with an expectation of a slight decrease
in magnitude. “LOCA2 25th to 75th envelope” represents the precipitation depths for a given year
bounded by the 25th percentile and 75th percentile values. There are 23 ensemble members. The
percentile envelopes would be smoother if more realizations or ensemble members were employed.

2.4. Weather Attribution

Event attribution studies calculate if—and to what degree—a specific extreme event is
made more likely or intense by climate change [1]. World Weather Attribution (WWA) refers
to a collaboration of scientists from various organizations that have conducted numerous
human-induced climate change attribution studies since the 2000s. The goal of WWA is
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to produce scientifically defensible attributions on short time scales following events with
large impacts. WWA’s experience in attribution studies has led to the development of an
eight-step procedure [26]: (1) analysis trigger, (2) event definition, (3) observational trend
analysis, (4) climate model evaluation, (5) climate model analysis, (6) hazard synthesis,
(7) analysis of trends in vulnerability and exposure, and (8) communication.

A detailed discussion of event attribution procedures is provided in Ref. [27]. Typically,
the result of an attribution study takes the form of a probability ratio (PR). The PR is
generally expressed as “the event has become X times more/less likely due to climate
change with a 95% confidence interval of Y to Z”. The PR is often combined with an
intensity impact summary, such as “the heat wave has become T (T1 to T2) degrees warmer
due to climate change [26]”.

2.4.1. Summer 2022 Attribution Study

North America experienced an unusually warm summer in 2022, compared to prior
observations, accompanied by abnormally dry soil conditions. High temperatures lead
to increased land evapotranspiration and are, consequently, the main drivers of dry soil
conditions. The WWA conducted an attribution study for the combined drought and heat
wave in the summer of 2022. For the Northern Hemisphere extratropics, i.e., the region
between the Tropic of Cancer (23.5° north of the equator) and the Arctic Circle (66.5° north
of the equator), human-induced climate change made the observed soil moisture drought
in June, July, and August of 2022 at least five times more likely for surface soil moisture,
relative to the null hypothesis of no human-induced climate change [28].

To determine that the observed summer of 2022 surface soil moisture deficit was
five times more likely to occur under human-induced climate change, Ref. [28] used
three multi-model ensembles from different climate modeling experiments. One ensemble
came from CMIP6, which used historical simulations from 1850 to 2015 compared to the
ssp585 scenario for the 2016–2099 period. The second ensemble included the AM2.5C360
and FLOR high-resolution climate models developed at the Geophysical Fluid Dynamics
Laboratory (GFDL). The HighResMIP SST-forced model ensemble, where SST stands for
sea surface temperature, provided the third ensemble.

2.5. Drought Indexes

Drought is defined as “a deficiency of precipitation over an extended period of time
(usually a season or more), resulting in a water shortage [29]”. Different types of droughts
are sometimes labeled as meteorological and hydrological droughts. Meteorological
drought refers to a period of extended precipitation deficiency. Hydrological drought
refers to a period of extended low water supply [29].

Overallocation of resources to agricultural, domestic, and industrial consumption
is at least as significant as precipitation deficiency in creating extended periods of low
water supply. Overallocation is a widespread issue, often resulting from a combination
of overly optimistic assessments of expected water resources and gross resource misman-
agement [30,31]. This study focuses on weather and climate parameters, employing the
standard definition of drought as an extended period of precipitation deficiency.

Drought indices are commonly used as probabilistic, statistical tools to identify
drought severity and guide resource conservation and management. The probabilistic
component of these indices is important because it allows for their use in risk and deci-
sion analysis [32]. Two different drought indexes are used: (1) standardized precipitation
index (SPI) and (2) standardized precipitation evapotranspiration index (SPEI).

2.5.1. Standardized Precipitation Index (SPI)

SPI was developed to provide a better representation of abnormal wetness and dryness
than previous indices. It is computed from a precipitation total over a pre-selected duration,
like 3, 6, or 12 months [33,34]. The SPI is a probability-based index, designed to be a
spatially invariant indicator of drought that acknowledges the importance of time scales
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in analyzing water availability and use. Essentially, it is a standardizing transform of the
probability of observed precipitation [32], which is equivalent to the power transform
algorithm used for the standardization of features and outcomes in machine learning [35].

The probabilistic component of the SPI involves fitting a probability distribution to
collections of cumulative monthly precipitation totals for each year in a dataset. An SPI
value is calculated for each month in the underlying precipitation dataset. Because the
SPI is derived from a collection of annual values, it provides an intrinsic return period
calculation. Table 1 presents SPI drought intensity definitions. Negative SPI values denote
precipitation deficiency, i.e., drought, and positive SPI values denote precipitation excess.
The sum of SPI values over consecutive months can be used as a drought magnitude index
to compare different periods of historical drought periods [34].

Table 1. Drought intensity definitions for SPI values from Ref. [34].

SPI Values Drought Category Time in Category 1

0 to −0.99 Mild drought ≈24%
−1.00 to −1.49 Moderate drought 9.2%
−1.50 to −1.99 Severe drought 4.4%

≤−2 Extreme drought 2.3%
1 SPI values conceptually correspond to standard deviations from the mean for the standard normal distribution,
and “Time in Category” corresponds to one-sided confidence intervals.

Figure 5 graphically demonstrates the standardizing transform that constitutes the
SPI calculation. This figure shows the fitted distribution type for the SPEI; however, the
SPI transform is identical to the SPEI transform. The SPEI uses deficit and a log-logistic
distribution while the SPI uses precipitation and a gamma distribution. It should be noted
that the implementation of the SPI in this work follows the approach of using the gamma
distribution as per Refs. [33,34], rather than the Pearson type III distribution recommended
by Ref. [32].

The calculation of the SPI is subject to the “problem of zeros”, where it is possible for
the cumulative precipitation across 3- and 6-month intervals in the study area to be zero.
This results in an undefined return period due to a cumulative probability, F, as shown
in Figure 5, of zero. Cumulative precipitation must be greater than zero for the return
period estimation. To address this issue, a minimum F value of 0.16667 = 1.0/(2 × 30)
is enforced. A gamma distribution is fit to the annual values across 1981–2010, which is
30 years. N denotes the number of years, and the minimum F value respects the 2 × N
maximum recurrence interval rule-of-thumb as outlined in Ref. [36].

2.5.2. Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI was developed to provide a climatic drought index that is sensitive to global
warming. It is based on precipitation and temperature data, thus incorporating sensitivity
to temperature increases and global warming considerations. The SPEI has the advantage of
combining multiple parameters, providing the ability to include the effects of temperature
variability on drought assessment [37].

The SPEI is congruent with the SPI, with the primary difference being the use of
monthly water deficit (D) values in place of monthly precipitation (P) values. Equation (1)
presents the definition of D where PET denotes potential evapotranspiration. PET in this
study is calculated using the approach described in Appendix A.2.

The purpose of including PET in the drought index calculation is to obtain a relative
estimation of time-varying dryness potential; consequently, the method used to calculate
PET is not critical to SPEI implementation. “Temperature-only” PET estimates are generally
used to provide a direct tie to global warming projections [37]. A positive D value denotes
a monthly water surplus, and a negative D value identifies a monthly water deficit.

D = P − PET (1)
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Figure 5 provides a graphical description of the SPEI standardizing transform. Note
that because the SPEI is a Z-score transform, just like the SPI, the drought intensity defini-
tions in Table 1 also apply to the SPEI.
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Figure 5. Standardizing transform that is the basis of the SPEI and SPI calculations. The example
transform provided in this figure is for the SPEI. The left-side plot displays the probability distribution
fit to a collection of cumulative monthly totals for the deficit for SPEI (precipitation is used for SPI). A
log-logistic distribution is used for the SPEI calculation, and a gamma distribution is used for the SPI
calculation. Cumulative probability, F, calculated from the fitted distribution is used to transform
to a Z-score, Z, which identifies the number of standard deviations from the mean in the standard
normal distribution. The Z value on the right-hand panel is the calculated SPEI value; reproduced
from Ref. [35].

2.6. Using Drought Indexes with Weather Attribution

The standardizing transform integral to drought index determination assigns a prob-
ability value to each cumulative D for SPEI or cumulative P for SPI. Ref. [28] conducted
a human-induced climate change attribution study for North America focusing on the
drought during the summer of 2022. The study found that climate change made the
observed soil moisture drought five times more likely, as discussed in Section 2.4.1.
This attribution study, in conjunction with the SPEI calculated using the 1981–2010 Cli-
mate Normals, is used to establish targets for weather generator calibration through the
following steps

1. Log-logistic distribution fit to 3-month cumulative D values from 1981–2010.

• 1981–2010 is within the historical period of 1850–2015 used in the attribution study.

2. Observed 3-month cumulative D transformed to SPEI using Figure 5 for 1993–2022
and the log-logistic distributions fit to the 1981–2010 observed values.

• The lowest SPEI identified from July and August 2022 has the target drought
magnitude, and July 2022 for the Frio basin has the lowest SPEI.

3. The observed 3-month cumulative D for July 2022 SPEI provides the drought magnitude.

• Historical probability, F, of the July 2022 drought magnitude is determined as
part of the SPEI calculation in item no. 2.

4. Historical July 2022 likelihood, F, is multiplied by 5 to obtain the target, human-
induced climate change probability for the July 2022, 3-month cumulative D.

• The July 2022, 3-month cumulative, D, denotes the observed drought magnitude.
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• 5 × F denotes the “new” likelihood of the observed drought magnitude under
human-induced climate change conditions.

2.7. Weather Generators (WGs)

A WG is a stochastic, statistical model of daily weather sequences. When a weather
generator reproduces key statistical properties of meteorological records, it provides a
concise distillation of the climate. WGs are commonly used in water resource planning
and design, and agricultural, ecosystem, or climate change analysis applications because
meteorological data may lack temporal or spatial coverage for the area of interest. WGs
are not weather forecasting algorithms or deterministic weather models; consequently,
it is not expected that a stochastically simulated weather sequence will be duplicated
exactly by historical or future weather observations [9]. In the same way, it is not expected
that weather sequences observed in the future will exactly duplicate historically observed
weather sequences because the atmosphere provides an inherently chaotic system.

Daily precipitation depth, maximum air temperature, and minimum air temperature
are stochastically simulated using a weather generator in this study. The simulation
of precipitation depth includes the depiction of precipitation occurrence and intensity.
Occurrence is represented by two states: (1) wet and (2) dry. In the dry state, precipitation
depth is always zero. In the wet state, intensity, or daily precipitation depth, is stochastically
simulated. Air temperature simulation is conditional upon the current state. Figure 6
provides a schematic showing weather generator formulation and operation.
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Figure 6. Schematic of weather generator (WG) implementation, including extreme events. WGs
facilitate the stochastic simulation of precipitation occurrence and intensity, as well as maximum
and minimum daily temperature. The precipitation occurrence process is represented using an
alternating state, spell length approach based on negative binomial distributions. Precipitation
intensity is represented by daily, wet-state precipitation depth sampled from two-parameter gamma
distributions. Simulated air temperature is conditioned on the current state and calculated using a
first-order vector autoregression. Extreme events are incorporated into this formulation, with events
implemented using a Poisson distribution for interarrival times of event occurrence and a uniform
distribution for event magnitude
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2.7.1. Precipitation Occurrence with Spell Lengths

Alternating spell lengths are used to represent precipitation occurrence. The duration
of a spell length for a state is sampled from a negative binomial distribution for that state.
When the spell length duration has elapsed, a duration for the spell length of the other
state is sampled from a negative binomial distribution for the new state. Every time a spell
length elapses, the process is repeated, toggling to the other state for the selection of a new
spell length, creating an alternating renewal process representation [9].

Negative binomial distributions are used to represent the spell-length likelihood and
magnitude for both states and each month. This means that precipitation occurrence is
represented by 24 (2 states × 12 months = 24) negative binomial distributions. The negative
binomial probability distribution represents a discrete random variable. It describes a
sequence of independent and identically distributed (i.i.d.) Bernoulli trials, repeated until a
predefined, non-random number of successes occurs [38].

The negative binomial discrete random variable object from the SciPy stats library [38]
is used in this study. It is defined using two shape parameters, N and P, and a location
specification. N denotes the number of successes, and P denotes the probability of a single
success [38]. N and P are the parameters for each of the 24 negative binomial distributions
that are determined through calibration. The location parameter is set by the state. For
wet-state distributions, a location parameter value of one is used, and a location parameter
value of two is used for dry-state distributions.

2.7.2. Precipitation Intensity

The two-parameter gamma distribution provides precipitation intensity representation.
A unique gamma distribution is used for each month, providing a total of 12 gamma
distributions within the WG. The two-parameter gamma distribution is commonly used to
represent precipitation intensity in weather generators [9].

A generalized form of the gamma probability distribution for a continuous random
variable from the SciPy stats library [38] is used in this study. The generalized form accepts
a location and scale parameter in addition to the two shape parameters, a and c. The scale,
a, and c are the three parameters determined through calibration. The location is set to
0.255 mm for all gamma distributions and specifies the minimum precipitation intensity
(0.255 mm/day) that can be simulated.

A truncation threshold is also used for each month to cap the maximum allowable
daily precipitation depth estimated by the WG. This threshold is set to the 95th percentile
daily precipitation depth observed for the month from 1991 to 2020.

2.7.3. Air Temperature

Other weather parameters, besides precipitation depth, have been simulated in WGs.
Examples include temperature, solar radiation, and wind speed [39,40]. Here, the maximum
and minimum daily temperatures are non-precipitation parameters.

The representation of maximum and minimum daily temperature is conditioned
upon the precipitation state. Conditioning temperature on the presence or absence of
precipitation serves as a simplistic proxy for unrepresented processes like cloud cover [41].

Air temperature is conditioned on the precipitation state and calculated during stochas-
tic simulation using methods from the WGEN weather generator [39,40,42]. This approach
for non-precipitation variables is based on a first-order vector autoregression, which re-
quires that the statistics of the current day’s values are fully determined by the values
on the previous day [9]. The conditional calculation for air temperature is presented in
Appendix A.3.

One modification to the state-conditional temperature calculation described in
Appendix A.3 is the inclusion of an additive scalar, C, for daily minimum and maximum
air temperatures and for each state, as shown in Equation (2). The additive scalar term
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provides a simple means to uniformly increase stochastically simulated temperatures, and
it is determined through calibration.

Tk(t) =

{
µk,0(t) + Ck,0 + σk,0(t) zk(t) if day is dry
µk,1(t) + Ck,1 + σk,1(t) zk(t) if day is wet

(2)

In Equation (2), subscript k denotes the index number that identifies non-precipitation
weather variables. It ranges from 0 to 1, where 0 represents the daily maximum air
temperature, and 1 represents the daily minimum air temperature. Subscript 0 in “k, 0”
signifies the dry state and 1 in “k, 1” signifies the wet state. µ and σ in Equation (2) denote
the mean and standard deviations, respectively. z denotes Z-scaled or normalized residual
elements that provide white noise-type adjustments to calculated temperature values.
Finally, t identifies the Julian daytime index, which goes from 1 to 365 for “standard” years
and 1 to 366 for leap years.

2.7.4. Extreme Precipitation Events

Extreme precipitation events are expected to become more intense as average temper-
atures increase. Additionally, consistent temperature increases are expected to produce
more frequent drought conditions [43]. An extreme event representation was included
within the WG to statistically represent the contrasting impacts of consistent warming:
(1) more intense and frequent droughts combined with (2) more intense extreme precipita-
tion events.

Extreme events are included in the WG, as shown schematically in Figure 6. When an
event is triggered, the event magnitude overwrites the next wet day precipitation depth.
This formulation allows wet spell length distributions, see Section 2.7.1, and wet day
precipitation depth distributions, see Section 2.7.2, to portray the expectation for more
intense droughts while including more intense extreme precipitation through the extreme
precipitation event representation.

An event formulation includes the timing and magnitude of the event. Event objects
follow Poisson distributions for interarrival times, enabling a stochastic representation of
the occurrence time. They also employ uniform distributions for event magnitude. The
Poisson distribution for interarrival times is parameterized using the mean recurrence in-
terval in years for the event. The uniform distribution, which determines event magnitude,
is parameterized with lower and upper magnitude bounds. The lower boundary is set at
the current estimated event depth for the basin centroid for the average recurrence interval,
as per Ref. [44], which is NOAA Atlas 14. The upper boundary magnitude is a calibration
parameter. Table 2 outlines the extreme event configuration for calibration, along with 24-h
point precipitation depth estimates from Ref. [44].

Table 2. Extreme event configuration and estimated 24-h point depths for the Frio basin.

Event Label
Recurrence Interval Uniform Distribution for Event Magnitude 24-h Event 1

(Year) Lower Bound (mm) Upper Bound (mm) 2 Depth (mm)

2-year 2 96 105 to 250 96
5-year 5 141 135 to 250 141

10-year 10 179 190 to 350 179
25-year 25 236 250 to 400 236
50-year 50 285 300 to 500 285
100-year 100 343 370 to 550 343

1 The 24-h event magnitude for the basin centroid location from Ref. [44]. 2 The upper bound varies across the
stated range as part of the weather generator calibration.

2.8. Calibration

The automated calibration or training was implemented with PEST, which stands for
“parameter estimation” [45,46]. Parameter estimation with PEST employs an inverse-style
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approach where model parameters are estimated by varying parameter values to find
values that produce the “best-fit” between simulated values and target observations. PEST
provides data assimilation (DA) that seeks to combine information from model simulations
with observations to obtain the “best” description of a system along with an accompanying
description of uncertainty. Consequently, PEST really provides “calibration-constrained
uncertainty analysis” rather than just “parameter estimation” [45].

The parameters, for which PEST seeks optimal values in this study, are mostly defi-
nition parameters for the probability distributions that comprise the WG, as discussed in
Section 2.7. Appendix A.4 provides calibration parameters along with the ranges of values
examined. Target observations are derived from the SPEI and weather attribution analyses;
they are discussed in Section 3.1 and summarized in Appendix A.4.

3. Results

A weather attribution study is used to develop the target outcomes for WG training.
A WG is then calibrated to simulate the best-fit outcomes and applied to produce weather
attribution-guided future climate projections for the Frio basin.

3.1. Drought Targets from Weather Attribution

Target drought magnitude and likelihood, given human-induced climate change, are
developed according to the procedures outlined in Section 2.6. The observed 3-month
cumulative D for July 2022 is −540 mm, which serves as the target drought magnitude for
July. A historical SPEI of −1.9 for July 2022, with an associated cumulative probability, F, of
0.030, is determined using a log-logistic distribution. This distribution is fit to the collection
of 30 observed July 3-month cumulative D values from 1981 to 2010.

As noted in Section 2.6, July 2022 provides the lowest SPEI and 3-month cumulative D
from the June, July, and August 2022 periods examined in the attribution study. Table 3
SPEI- and SPI-related values from May to September 2022. There was some precipitation,
P, in August 2022, as indicated by the August 2022 3-month P and SPI values, which broke
the severe drought earlier in this localized region than what was experienced across the
majority of the Northern Hemisphere extratropics.

Table 3. Summer 2022 drought index-related values for the Frio basin.

May 2022 Jun 2022 Jul 2022 Aug 2022 Sep 2022

3-month D, mm −400 −473 −540 −434 −367
corresponding F 0.09 0.06 0.030 0.25 0.43
historical SPEI −1.4 −1.6 −1.9 −0.7 −0.2

3-month P, mm 87 93 88 175 183
corresponding F 0.11 0.08 0.052 0.46 0.59

historical SPI −1.2 −1.4 −1.6 −0.1 0.2

The target likelihood for the observed July magnitude of −540 mm is five times the
historical likelihood [28], or 5 × 0.030 = 0.149. This drought likelihood analysis under
human-induced climate change is extended to the other calendar months by extracting
the 3-month cumulative D for each month corresponding to a cumulative probability
of F = 0.030. The extracted, cumulative D denotes the drought magnitude target for
each month. The corresponding cumulative probability target for each month is then
F = 5 × 0.030 = 0.149. Table 4 provides the drought magnitude and likelihood targets for
each month.

3.2. Weather Generator Calibration

The purpose of calibration is parameter estimation. Optimal parameter values are
those that produce the closest match between simulated values and target observations.
Parameters, which are varied as part of calibration, are listed in Tables A1–A5, along with
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the “optimal” or final parameter values. Target observations are described in Table A6.
Best-fit simulated target values are provided in Tables A6 and 4.

The annual average precipitation depth, P, was used as a target observation in addition
to the monthly drought likelihood and magnitude values. Simulated annual average climate
parameters from 2031 to 2060—from the calibrated WG—are compared to the historical
observations from 1991 to 2020 and LOCA2 projected values from 2031 to 2060, as seen in
Table 5.

Table 4. Frio basin drought-related WG calibration targets from weather attribution with results.

Month

3-Month D for
Historical
F = 0.030

Target F Calibrated WG Results

mm 5 × 0.030 Simulated F # of Times

Jan −219 0.149 0.157 5.3
Feb −221 0.149 0.162 5.4
Mar −283 0.149 0.129 4.3
Apr −360 0.149 0.172 5.8
May −464 0.149 0.162 5.4
Jun −509 0.149 0.104 3.5
Jul −540 0.149 0.170 5.7

Aug −554 0.149 0.128 4.3
Sep −528 0.149 0.133 4.5
Oct −418 0.149 0.180 6.0
Nov −328 0.149 0.145 4.9
Dec −270 0.149 0.142 4.8

Table 5. Frio basin annual average climate parameters.

Climate Parameter Dataset Annual Average Depth mm

Precipitation P
Observed 1991–2020 782

WG 2031–2060 780
LOCA2 2031–2060 688

ETo = PET
Observed 1991–2020 1532

WG 2031–2060 1996
LOCA2 2031–2060 1659

Deficit D
Observed 1991–2020 −750

WG 2031–2060 −1216
LOCA2 2031–2060 −970

3.3. Attribution-Constrained Future Climate Projections

The calibrated WG was used to make future climate projections from 1 January 2024
to 31 December 2065. A total of 1000 stochastic realizations of daily weather are used to
generate the future climate description. The weather generator (WG) 2031–2060 future
climate description is compared to the LOCA2 2031–2060 future climate description and
the observed 1991–2020 climate description. Table 5 provides a comparison of the annual
average P, PET, and D.

Figure 7 compares the monthly-average P, monthly-average daily maximum tem-
perature, and monthly-average daily minimum temperature among WG 2031–2060 pro-
jected values, LOCA2 2031–2060 projected values, and 1991–2020 observed values. The
attribution-constrained WG produces consistently warmer daily maximum temperatures
and consistently cooler daily minimum temperatures than the LOCA2 2031–2060 values.

Figure 8 presents the WG-projected annual average temperature cone of uncertainty.
In this case, the cone of uncertainty is flat because the WG formulation is stationary in time.
Figure 9 displays the WG-projected annual precipitation depth cone of uncertainty. The
distribution of annual precipitation depth is compared in Figure 10 among WG 2031–2060
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projected values, LOCA2 2031–2060 projected values, and 1991–2020 observed values. The
WG 2031–2060 mean annual P is approximately equal to the observed 1991–2020 mean
annual P. LOCA2 projects a smaller mean annual P than the other two datasets.
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Figure 7. Frio basin calibrated weather generator (WG) Climate Normals from 2031–2060 compared
to observed 1991–2020 Climate Normals and LOCA2 projected Climate Normals for 2031–2060.
“Precip.” is the total precipitation depth, P, for the month. “Max. Temp.” is the daily maximum
temperature, and “Min. Temp.” is the daily minimum temperature. Climate Normals are the monthly
averages of these weather parameters across the specified 30-year period. Temperature is expected to
consistently increase for 2031–2060 compared to 1991–2020.
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Figure 8. WG annual average temperature cone of uncertainty. The annual average temperature is
the average across the year of the daily average temperature calculated per Appendix A.2. The WG
formulation is stationary in time; consequently, the cone of uncertainty is flat. The mean temperature
in this plot is approximately equal to the mean temperature during the 2050s in the LOCA2 cone
of uncertainty in Figure 3. The “5th to 95th envelope” refers to the temperature magnitudes for a
given year bounded by the 5th percentile and 95th percentile values. Similarly, the “25th to 75th
envelope” refers to the temperature magnitudes for a given year bounded by the 25th percentile and
75th percentile values. A total of 1000 stochastic realizations are used, creating relatively smooth
value distributions.
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Figure 9. WG annual precipitation depth cone of uncertainty. The mean annual precipitation depth
in this plot is lower than the 10-year rolling average, observed precipitation depth in Figure 4. The
“5th to 95th envelope” denotes the precipitation magnitudes for a given year bounded by the 5th
percentile and 95th percentile values. Similarly, the “25th to 75th envelope” denotes the precipitation
magnitudes for a given year bounded by the 25th percentile and 75th percentile values. A total of
1000 stochastic realizations are used, creating relatively smooth value distributions.
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Figure 10. Comparison of the distribution of annual precipitation depth, P, among 2031–2060 WG
projections, 2031–2060 LOCA2 projections, and 1991–2020 observations. The mean annual P is identi-
fied with green triangles and is the smallest in the LOCA2 2031–2060 projections. It is approximately
equal between WG 2031–2060 projections and observed 1991–2020 values. Outliers—or extreme P
years—are identified with the black diamonds. The WG 2031–2060 distribution has the most outliers
because of the use of extreme events in the WG formulation.

Drought Conditions

The WG is calibrated or trained to portray a drought magnitude, which has a recur-
rence interval of approximately 33 years (33.3 = 1.0/0.030) under historical 1981–2010
conditions, with a recurrence interval of approximately seven years (6.7 = 1.0/0.149)
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for future projected conditions. The cumulative 3-month D is used to define a drought
magnitude, as shown in Table 4.

The observed 3-month D from 1993 to 2022 is used in Figure 11 to compare the relative
drought conditions among the observed 1981–2010, LOCA2 projected 2031–2060, and
WG-projected 2031–2060 conditions. When 1993–2022 observations are analyzed from
the perspective of the WG 2031–2060 climate, there are no severe drought periods during
the 1993–2022 period. A severe drought has an SPEI of ≤ −1.5 from Table 1. Figure 11
demonstrates that the WG 2031–2060 climate is significantly warmer and drier than the
LOCA2 2031–2060 climate and the observed 1981–2010 climate.
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Figure 11. Comparison of the SPEI drought index values for the observed 1993–2022, 3-month
cumulative D values: Panel (a) SPEI based on 1981–2010 observations, Panel (b) SPEI based on LOCA2
projected 2031–2060 conditions, and Panel (c) SPEI based on WG-projected 2031–2060 conditions.
An SPEI ≤ −1.5 represents severe drought conditions. According to the observed 1981–2010 climate
description in Panel (a), severe drought conditions occurred 17 times from 1993 to 2022 with a
minimum calculated SPEI of −2.1. Using LOCA2 2031–2060 conditions, severe drought occurred
four times between 1993 and 2022, with a minimum SPEI of −1.9. For the 1993–2022 observations
analyzed using WG 2031–2060 conditions, no severe droughts occurred, and the minimum SPEI
was −1.4. This comparison demonstrates that the WG 2031–2060 climate description is significantly
warmer and drier on average than the LOCA2 2031–2060 description.

The observed P from 1993 to 2022 is used in Figure 12 to compare SPI-derived rela-
tive drought and wetness conditions among the observed 1981–2010, LOCA2 projected
2031–2060, and WG-projected 2031–2060 conditions. SPI depends only on P. Figure 10
shows that the annual average P values are approximately equal for the WG-projected
2031–2060 and observed 1991–2020 conditions and that the annual average P is expected to
be smaller for the LOCA2 projected 2031–2060 conditions. Additionally, the WG-projected
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2031–2060 conditions have the most large and small outliers, denoting an increased expec-
tation for extreme events while maintaining a constant annual average P from the observed
1991–2020 conditions. Comparative results in Figure 12 agree with the comparisons among
WG, LOCA2, and observed conditions in Figures 7 and 10.
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Figure 12. Comparison of SPI drought index values for the observed 1993–2022 3-month cumulative
P among: Panel (a) SPI based on 1981–2010 observations, Panel (b) SPI based on LOCA2 projected
2031–2060 conditions, and Panel (c) SPI based on WG-projected 2031–2060 conditions. “Severe” wet
periods are identified with SPI ≥ 1.5. According to the observed 1981–2010 climate description in
Panel (a), severe wet conditions occurred 17 times from 1993 to 2022 with a maximum calculated
SPI of 3.1. Using LOCA2 2031–2060 conditions, severe wet periods occurred 37 times between 1993
and 2022 with a maximum SPI of 3.2. Looking at the 1993–2022 observations using WG 2031–2060
conditions, severe wet periods occurred 41 times and the maximum SPI was 5.3. These results agree
with the comparisons among the three datasets for precipitation provided in Figures 7 and 10.

4. Discussion

CMIP6 simulations offer stochastic, day-to-day weather that is derived from a robust
physical representation of future climate, based on idealized initial conditions and forcing
scenarios. CMIP6 models represent the physics and physical processes in the atmospheric
system. From the viewpoint of stochastic simulation, CMIP6 results provide stochastic
day-to-day weather, sampled from the governing or underlying “climate” process, as well
as a physics-based description of the “climate” process and its functions under varying
initial and forcing conditions.

Stochastic WGs produce stochastic day-to-day weather, which is sampled from an
underlying stochastic “climate” process that is specified when the WG is formulated. The
underlying “climate” process is primarily specified through configuration and parameteri-
zation of the probability distributions that comprise the WG, as shown in Figure 6. For WG,
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the underlying “climate” process is external to the WG and must be derived or depicted
based on other sources of information.

CMIP models are clearly superior to WGs in many cases because they provide stochas-
tic day-to-day weather sampled from the underlying “climate” process and the physics-
based description and representation of the “climate” process. A WG can only provide
stochastic day-to-day weather sampled from an externally specified “climate” process. One
scenario for which WGs provide additional utility relative to CMIP models is the case
where the “climate” process has been described from other sources and datasets and is
different in some manner from the “climate” process representation provided by CMIP
models. An example of this scenario is the representation of extreme events.

Extreme events fall within the tails of the long-term aggregated description of weather
that constitutes climate. A climate description can provide a probability for the occurrence
of a generic event magnitude. However, for analyzing the likelihood of a regional-scale
event, CMIP models alone are insufficient, as they are global in scale. In such analyses,
CMIP simulation results are often augmented with other information sources, such as
high-resolution, regional geophysical models and sea surface temperature models.

An observed event is weather, not climate. Weather attribution is a formalized and
scientific approach used to identify the change in likelihood or PR for an observed event
under two different climate regimes. Attribution provides the “new” or future probability
of occurrence for event magnitude. Weather attribution is used in this study to generate
drought magnitude and likelihood targets for WG calibration, and attribution provides the
“climate” process description that is different from that contained within CMIP results.

Two advantages to using WGs are: (1) WGs can represent a “climate” process that
is different from that represented in CMIP results and (2) WGs can easily produce large
numbers of stochastic realizations, i.e., tens to hundreds of thousands. A large number of
realizations is required to ensure robust sampling of the stochastic weather forcing input
variables to a water balance model for every model input time in a water balance model.
If biased forcing, resulting from the use of too few realizations, is propagated through a
water balance model, then the resulting water budget estimates will also be biased.

As an example of the importance of robust sampling, the 95th percentile time history in
Figure 4 shows a peak of about 1750 mm in 2030. This is not a future prediction contained
within the LOCA2 results for the increased likelihood of a very wet year in 2030. The
occurrence of a wet year in 2030 is a weather event and is only evident in Figure 4 because
23 stochastic realizations of day-to-day weather are employed to generate the figure.

A climate description used for the forcing of a water budget model should provide
approximately the same likelihood for an annual precipitation depth value for every year
between 2030 and 2040. In Figure 9, the 95th percentile time history ranges between
1048 and 1102 mm between 2030 and 2040. A total of 1000 stochastic realizations were used
to produce Figure 9; the 95th percentile time history is not as flat as would be necessary
to indicate the same likelihood for an annual precipitation depth of about 1075 mm for
each year between 2030 and 2040. As the number of stochastic realizations of day-to-day
weather increases, probabilistic time histories, such as the 95th percentile, will become
flatter within an interval of assumed stationarity.

Time stationarity is the assumption that time series statistical properties do not change
across an interval. Strict stationarity is generally too restrictive, and a reduced requirement,
called weak stationarity, is often used. Weak stationarity imposes restrictions on the first
two statistical moments of the time series; it formally requires a constant mean and an
autocovariance function that depends only on the time difference or lag and is independent
of the specific points in time that are differenced [47,48]. The WG formulation presented in
Figure 6 enforces strict stationarity across the simulation interval because the probability
distributions that comprise the WG are defined in generalized form, requiring three to four
parameters, and the parameters that define the probability distributions are held constant
across the simulation interval.
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Two disadvantages of using WGs relative to CMIP results are: (1) WGs are purely
statistical and probabilistic, relying on robust sampling to produce a meaningful climate
description, and (2) WGs inherently require the assumption of time stationarity and cannot
represent the physics-based evolution of process functions to produce trends. An example
of the first shortcoming can be seen in Figure 7, where the structure of the PET calculation
employed in this study pushes the calibrated WG daily maximum and minimum tempera-
tures apart in order to increase the calculated PET to meet the constraint of the drought
targets. The LOCA2 results in Figure 7 suggest a more likely future climate description,
where both maximum and minimum temperatures increase uniformly and there is rela-
tively constant increase in the projected future temperature. An example of the second
shortcoming is presented in Figure 8, where the calibrated WG simulated annual average
temperature is relatively flat or constant across the simulation interval. An improved
representation is provided in Figure 3, where there is a trend of an increasing average
annual temperature across the analysis interval. One approach that can be implemented
with WGs to partially represent trends is to use several intervals of assumed stationarity to
reproduce the trend in a step-wise fashion [7,8].

Stochastic simulation is a system simulation that uses variables that can change
randomly with individual probabilities for each variable [49,50]. When an ensemble of
stochastic realizations of day-to-day weather is used for input water budget model forcing,
then the water budget simulation framework is stochastic. When observed weather forcing
is used for input water budget model forcing and resulting water budget calculation
outputs are compared to observations, like in traditional model calibration, the water
budget simulation framework is deterministic. For both types of inputs (stochastic and
observed), the water budget model itself, in contrast to the simulation framework, is
deterministic if it always produces the same results for the same inputs.

For stochastic simulation, the sampling of variables, which change randomly with
individual probability distributions, directly controls the quality of the results obtained.
Sampling bias is an error in estimates or simulation results due to a sampling procedure
that is not representative of the underlying population described by the probability distri-
bution [51]. In many cases, the sampling of the stochastic inputs is more important than
the deterministic water budget model used to propagate uncertainty from stochastic inputs
to estimates or outputs.

When stochastic inputs or variables are used and the water budget modeling frame-
work is stochastic, simulation results must be presented probabilistically with cones of
uncertainty, similar to what is done in Figures 8 and 9, or as long–term ensemble averages,
as done with the Climate Normals in Figure 7. The simulation results for a single outcome
realization always present sampling bias because a single outcome realization is derived
from a single input forcing sample.

Future Work

WG formulation in this study focuses on reproducing attribution study likelihoods
and historically observed annual average precipitation depth. CMIP6 ssp585 simulation
results are used in the attribution study to determine the change in likelihood but are not
directly employed as targets for WG training.

Future work will examine explicitly combining CMIP simulation results and weather
attribution to generate a comprehensive set of targets for WG calibration. Specifically,
it would be interesting to use the annual average precipitation depth and 2031–2060
average monthly precipitation depths, see Figure 7, from the LOCA2 2031–2060 climate
description, in addition to the drought likelihood and magnitude values, see Table 4, as
calibration targets.

5. Conclusions

Weather attribution provides drought magnitude and likelihood targets for WG cali-
bration. Drought conditions of the magnitude observed for the study area during June, July,



Hydrology 2023, 10, 219 20 of 27

and August 2022 are expected to be five times more likely to occur under human-induced
climate change conditions relative to the historical conditions. A WG is calibrated for the
study area to approximately reproduce the five-time increase in probability for historically
severe droughts. The 2031–2060 climate description produced by the calibrated WG is
significantly hotter and has lower expected soil moisture compared to the 2031–2060 climate
description obtained from LOCA2 simulation results.

Projected future day-to-day weather provides stochastic forcing when used to generate
water balance model projected outcomes. A WG that is calibrated to reproduce observed
weather event magnitude and likelihood for a “new” or different climate regime, such as
human-induced climate change relative to pre-industrial conditions, offers an alternative to
the climate description provided by GCM simulation results. The attribution-constrained
WG future climate description can portray more extreme conditions and events than those
obtainable from a global-scale model driven by idealized forcing and initial conditions.
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SPI standardized precipitation index
SSP shared socioeconomic pathway
WG stochastic weather generator
WWA World Weather Attribution

Appendix A

Appendix A.1. Source Code Availability

The “New” weather generator source code and associated calibration files are available
online from the project GitHub repository at:

https://github.com/nmartin198/wattrib_wg_frio (accessed on 10 October 2023)

https://github.com/nmartin198/wattrib_wg_frio
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Appendix A.2. Potential Evapotranspiration (PET) Calculation

Evapotranspiration (ET) is typically the primary way water is subtracted from a wa-
tershed. It includes water loss from the leaves of plants, known as transpiration, and water
that evaporates from the soil surface, puddles, ponds, lakes, and rivers. Transpiration and
evaporation are usually considered together as ET at the watershed scale. ET dominates the
water balance and controls the availability of water for soil moisture storage, groundwater
recharge, and runoff. PET denotes the rate of water loss to the atmosphere when not limited
by water supply. In contrast, actual evapotranspiration (AET) is the actual rate of water
loss to the atmosphere, constrained by the amount of water available from precipitation
and irrigation [5].

Precipitation and temperature are the historical, observed, and future projected
weather parameters for this study. PET is estimated using temperature, as it is the available
weather parameter for the PET calculation, along with expected solar radiation, which is
based on the study area’s latitude and season.

PET can be estimated from the reference crop evapotranspiration, ETo, using a crop
coefficient, Kc, as shown in Equation (A1). In this study, Kc = 1.0 and PET = ETo, so the
calculated future PET is primarily dependent on the projected future temperature.

A modified version of the Hargreaves–Samani 1985 (HS85) equation [52,53] from
Ref. [54] is used to estimate ETo, with Equation (A2), from the daily average temperature,
Tave, calculated using Equation (A3). Equation (A2) is the modified version of the HS85
equation, and the modification involves the use of the monthly-average difference in the
daily maximum and minimum temperatures rather than the annual difference.

PET = Kc ETo (A1)

ETo = 0.0023 So δ̄0.5
T (Tave + 17.8) (A2)

Equation (A2) provides the reference crop evapotranspiration, ETo, in millimeters
per day. In this equation, So represents the water equivalent of extraterrestrial radiation
in millimeters per day. δ̄T denotes the difference between the monthly-average daily
maximum temperature, T̄max, and the monthly-average daily minimum temperature, T̄min,
as shown in Equation (A4). All temperature values in these equations are in degrees Celsius.

Tave = 0.5 (Tmax − Tmin) (A3)

Tmax denotes the daily maximum temperature, and Tmin denotes the daily mini-
mum temperature.

δ̄0.5
T =

√
(T̄max − T̄min) (A4)

The water equivalent of extraterrestrial radiation in millimeters per day, So, is calcu-
lated using Equation (A5), where dr denotes the relative distance between the earth and
the Sun, as derived from Equation (A6), ωs denotes the sunset hour angle in radians using
Equation (A7), φ denotes the site latitude in radians, and δ denotes the solar declination in
radians from Equation (A8).

So = 15.392 dr (ωs sin φ sin δ + cos φ cos δ sin ωs) (A5)

dr = 1 + 0.033 cos
(

2π

365
J
)

(A6)

J denotes the Julian day number.

ωs = arccos (− tan φ tan δ) (A7)
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δ = 0.4093 sin
(

2π

365
J − 1.405

)
(A8)

Appendix A.3. Conditional Temperature Formulation

In the weather generators used in this study, air temperature is calculated as conditional
upon the precipitation state. This conditional formulation is presented in Equations (A9)–(A14).
The day of the year mean, µ, and standard deviation, σ, in Equation (A9) for each state
were determined using Fourier series smoothing—or low-pass filtering—of the day of the
year mean and standard deviation series derived from data. The smoothed mean series was
subtracted from the original data series, and the smoothed standard deviation series was
used to normalize the result to produce Z-scaled residual elements, zk. Residual elements
are used to calculate M0, Equation (A13), and M1, Equation (A14), matrices which are used
to calculate the A, Equation (A11), and B, Equation (A12), matrices [40,42].

Tk(t) =

{
µk,0(t) + σk,0(t) zk(t) if day is dry
µk,1(t) + σk,1(t) zk(t) if day is wet

(A9)

t denotes the Julian daytime index. k denotes the index for the number of non-
precipitation weather variables. k, 0 denotes a dry-state non-precipitation weather variable,
and 0 signifies the dry state. k, 1 denotes a wet-state non-precipitation weather variable,
and 1 signifies the wet state.

z(t) = [A] z(t − 1) + [B]ε(t) (A10)

ε signifies a k-dimensional vector of independent standard normal variables that
provides white-noise forcing for each variable.

A = M1 M−1
0 (A11)

M0 denotes the lag 0 covariance matrix from Equation (A13), and M1 denotes the lag
1 covariance matrix from Equation (A14).

B BT = M0 − M1 M−1
0 MT

1 (A12)

M0 =

[
1 ρ0(1, 2)

ρ0(2, 1) 1

]
(A13)

ρ0 denotes the lag 0 cross-correlation coefficient between variables.

M1 =

[
ρ1(1, 1) ρ1(1, 2)
ρ1(2, 1) ρ1(2, 2)

]
(A14)

ρ1 denotes the lag 1 cross-correlation coefficient between variables.

Appendix A.4. Calibration Parameters

A total of 94 parameters are adjusted during calibration: 4 parameters are additive
scalar temperature factors, as per Table A1; 6 parameters define the upper bounds for
extreme event magnitudes in Table A2; 24 parameters (12 months × 2 parameters) deter-
mine the dry-state spell length distributions, detailed in Table A3; another 24 parameters
12 months × 2 parameters) are for wet-state spell length distributions, as shown in Table A4.
Additionally, 36 parameters (12 months × 3 parameters) are set for precipitation intensity
distributions, as seen in Table A5.

Moreover, 13 observations are used for targets, as shown in Table A6.
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Table A1. Additive scalar temperature parameter specifications for calibration and “best-fit” values.

Parameter
Name Description Transform Change

Limit Initial Value Lower
Bound

Upper
Bound Group Calibrated

parnme partrans parchglim parval1 parlbnd parubnd pargp Final Value

tmax_wet_add C0,1 Equation (2) log factor 5.1 2.0 8.0 temp 5.1
tmax_dry_add C0,0 Equation (2) log factor 6.1 2.0 8.0 temp 6.9
tmin_wet_add C1,1 Equation (2) log factor 0.9 0.1 3.0 temp 0.9
tmin_dry_add C1,0 Equation (2) log factor 0.9 0.1 3.0 temp 0.8

Table A2. Extreme event scalar temperature parameter specifications for calibration and “best-fit” values.

Parameter
Name Description Transform Change Limit Initial Value Lower Bound Upper Bound Group Calibrated

parnme partrans parchglim parval1 parlbnd parubnd pargp Final Value

ev_2yr_max 2-yr, upper log factor 148.7 105.0 250.0 event 153.7
ev_5yr_max 5-yr, upper log factor 240.4 150.0 250.0 event 247.6
ev_10yr_max 10-yr, upper log factor 252.5 190.0 350.0 event 255.7
ev_25yr_max 25-yr, upper log factor 288.6 250.0 400.0 event 290.9
ev_50yr_max 50-yr, upper log factor 419.6 300.0 500.0 event 415.5
ev_100yr_max 100-yr, upper log factor 506.1 370.0 550.0 event 498.1

Table A3. Dry-state parameter specifications for calibration and “best-fit” values.

Parameter
Name Description Transform Change Limit Initial Value Lower Bound Upper Bound Group Calibrated

parnme partrans parchglim parval1 parlbnd parubnd pargp Final Value

m1_drysl_n Jan, N log factor 4.1285 2.50 6.00 dry 3.9152
m1_drysl_p Jan, P log factor 0.2838 0.13 0.50 dry 0.2978
m2_drysl_n Feb, N log factor 5.2657 3.00 7.00 dry 5.3127
m2_drysl_p Feb, P log factor 0.1970 0.13 0.50 dry 0.1989
m3_drysl_n Mar, N log factor 3.8175 2.50 6.00 dry 3.6036
m3_drysl_p Mar, P log factor 0.3413 0.15 0.50 dry 0.3428
m4_drysl_n Apr, N log factor 3.0979 2.50 6.00 dry 2.7049
m4_drysl_p Apr, P log factor 0.3154 0.13 0.50 dry 0.3296
m5_drysl_n May, N log factor 6.5347 2.50 7.00 dry 6.9531
m5_drysl_p May, P log factor 0.3166 0.15 0.50 dry 0.3176
m6_drysl_n Jun, N log factor 5.4729 3.00 7.00 dry 5.0589
m6_drysl_p Jun, P log factor 0.3072 0.13 0.55 dry 0.3010
m7_drysl_n Jul, N log factor 6.0853 3.00 8.00 dry 6.0960
m7_drysl_p Jul, P log factor 0.3610 0.13 0.50 dry 0.3670
m8_drysl_n Aug, N log factor 3.0576 2.50 6.00 dry 3.1775
m8_drysl_p Aug, P log factor 0.4844 0.13 0.55 dry 0.5094
m9_drysl_n Sep, N log factor 4.0605 3.00 8.00 dry 3.7355
m9_drysl_p Sep, P log factor 0.2466 0.13 0.50 dry 0.2371
m10_drysl_n Oct, N log factor 4.5288 2.50 6.00 dry 4.6063
m10_drysl_p Oct, P log factor 0.2157 0.13 0.55 dry 0.2057
m11_drysl_n Nov, N log factor 3.3773 3.00 7.00 dry 3.0000
m11_drysl_p Nov, P log factor 0.1710 0.13 0.50 dry 0.1761
m12_drysl_n Dec, N log factor 4.3691 3.00 7.00 dry 3.7565
m12_drysl_p Dec, P log factor 0.3802 0.10 0.50 dry 0.4118

Table A4. Wet-state parameter specifications for calibration and “best-fit” values.

Parameter
Name Description Transform Change Limit Initial Value Lower Bound Upper Bound Group Calibrated

parnme partrans parchglim parval1 parlbnd parubnd pargp Final Value

m1_wetsl_n Jan, N log factor 4.3562 1.00 5.00 wet 4.5109
m1_wetsl_p Jan, P log factor 0.6688 0.25 0.75 wet 0.6452
m2_wetsl_n Feb, N log factor 2.2829 1.00 5.00 wet 2.4751
m2_wetsl_p Feb, P log factor 0.6875 0.30 0.80 wet 0.6697
m3_wetsl_n Mar, N log factor 1.6459 1.00 6.00 wet 1.6756
m3_wetsl_p Mar, P log factor 0.4956 0.25 0.70 wet 0.4655
m4_wetsl_n Apr, N log factor 2.2912 1.00 5.00 wet 2.5563
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Table A4. Cont.

Parameter
Name Description Transform Change Limit Initial Value Lower Bound Upper Bound Group Calibrated

parnme partrans parchglim parval1 parlbnd parubnd pargp Final Value

m4_wetsl_p Apr, P log factor 0.6879 0.30 0.80 wet 0.6366
m5_wetsl_n May, N log factor 3.6249 0.80 4.00 wet 3.4692
m5_wetsl_p May, P log factor 0.5919 0.20 0.70 wet 0.6070
m6_wetsl_n Jun, N log factor 2.8204 1.00 5.00 wet 3.1153
m6_wetsl_p Jun, P log factor 0.4191 0.25 0.70 wet 0.3393
m7_wetsl_n Jul, N log factor 1.7890 1.00 5.00 wet 1.8310
m7_wetsl_p Jul, P log factor 0.4647 0.20 0.70 wet 0.4184
m8_wetsl_n Aug, N log factor 1.7892 1.00 5.00 wet 1.7144
m8_wetsl_p Aug, P log factor 0.6289 0.25 0.75 wet 0.6526
m9_wetsl_n Sep, N log factor 2.3895 0.80 4.00 wet 2.3559
m9_wetsl_p Sep, P log factor 0.3722 0.30 0.80 wet 0.3354
m10_wetsl_n Oct, N log factor 2.3231 1.00 5.00 wet 2.3811
m10_wetsl_p Oct, P log factor 0.5622 0.25 0.70 wet 0.5459
m11_wetsl_n Nov, N log factor 2.1365 1.00 6.00 wet 2.1385
m11_wetsl_p Nov, P log factor 0.6472 0.30 0.90 wet 0.6513
m12_wetsl_n Dec, N log factor 2.3852 0.80 4.00 wet 2.4403
m12_wetsl_p Dec, P log factor 0.7126 0.30 0.90 wet 0.6922

Table A5. Intensity parameter specifications for calibration and “best-fit” values.

Parameter
Name Description Transform Change Limit Initial Value Lower Bound Upper Bound Group Calibrated

parnme partrans parchglim parval1 parlbnd parubnd pargp Final Value

m1_pdep_a Jan, a log factor 0.7680 0.60 2.00 wet 0.7837
m1_pdep_c Jan, c log factor 1.3650 0.60 2.50 wet 1.3476

m1_pdep_sca Jan, scale log factor 5.2462 4.00 10.00 wet 5.6106
m2_pdep_a Feb, a log factor 0.9932 0.70 1.50 wet 1.0628
m2_pdep_c Feb, c log factor 1.3919 0.75 3.00 wet 1.3411

m2_pdep_sca Feb, scale log factor 6.1045 5.00 12.00 wet 6.3915
m3_pdep_a Mar, a log factor 1.0821 0.75 2.00 wet 1.1007
m3_pdep_c Mar, c log factor 1.3407 0.75 3.00 wet 1.2724

m3_pdep_sca Mar, scale log factor 8.0910 4.00 10.00 wet 8.3487
m4_pdep_a Apr, a log factor 1.0476 0.75 2.00 wet 1.1018
m4_pdep_c Apr, c log factor 1.2321 0.75 3.00 wet 1.2110

m4_pdep_sca Apr, scale log factor 6.7718 4.00 10.00 wet 6.9914
m5_pdep_a May, a log factor 1.1472 0.60 1.50 wet 1.1768
m5_pdep_c May, c log factor 1.6042 0.75 3.00 wet 1.5349

m5_pdep_sca May, scale log factor 7.2901 5.00 12.00 wet 7.5088
m6_pdep_a Jun, a log factor 1.4406 0.60 1.60 wet 1.4941
m6_pdep_c Jun, c log factor 1.4084 0.60 2.50 wet 1.3724

m6_pdep_sca Jun, scale log factor 10.0258 4.00 12.00 wet 10.5265
m7_pdep_a Jul, a log factor 1.0064 0.60 1.50 wet 1.0484
m7_pdep_c Jul, c log factor 1.5092 0.60 2.50 wet 1.4917

m7_pdep_sca Jul, scale log factor 9.5083 5.00 12.00 wet 9.7313
m8_pdep_a Aug, a log factor 0.8642 0.75 1.60 wet 0.8287
m8_pdep_c Aug, c log factor 1.6246 0.60 2.50 wet 1.6187

m8_pdep_sca Aug, scale log factor 8.6894 5.00 12.00 wet 8.6297
m9_pdep_a Sep, a log factor 1.0726 0.75 1.60 wet 1.1017
m9_pdep_c Sep, c log factor 1.4573 0.60 2.50 wet 1.4268

m9_pdep_sca Sep, scale log factor 9.4930 5.00 12.00 wet 10.0139
m10_pdep_a Oct, a log factor 1.5557 0.75 1.60 wet 1.5368
m10_pdep_c Oct, c log factor 1.2989 0.50 2.50 wet 1.2947
m10_pdep_sc Oct, scale log factor 9.6408 4.00 10.00 wet 10.0000
m11_pdep_a Nov, a log factor 0.7766 0.70 1.60 wet 0.7815
m11_pdep_c Nov, c log factor 1.3903 0.70 3.00 wet 1.3964
m11_pdep_sc Nov, scale log factor 6.7797 5.00 12.00 wet 6.7561
m12_pdep_a Dec, a log factor 0.7686 0.70 1.60 wet 0.7952
m12_pdep_c Dec, c log factor 1.3511 0.75 3.00 wet 1.3694
m12_pdep_sc Dec, scale log factor 5.3636 4.00 10.00 wet 5.5408
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Table A6. Target specifications and calibrated model simulated values.

Observation Name Description Observed Value Weight Group Simulatedobsnme obsval weight obsgnme

ann_ave_pre_dep Annual average P 782 100.0 annpre 780
mon_1_cum_prob Jan F 0.149 10,000.0 spei 0.157
mon_2_cum_prob Feb F 0.149 10,000.0 spei 0.162
mon_3_cum_prob Mar F 0.149 10,000.0 spei 0.129
mon_4_cum_prob Apr F 0.149 10,000.0 spei 0.172
mon_5_cum_prob May F 0.149 10,000.0 spei 0.162
mon_6_cum_prob Jun F 0.149 10,000.0 spei 0.104
mon_7_cum_prob Jul F 0.149 10,000.0 spei 0.170
mon_8_cum_prob Aug F 0.149 10,000.0 spei 0.128
mon_9_cum_prob Sep F 0.149 10,000.0 spei 0.133

mon_10_cum_prob Oct F 0.149 10,000.0 spei 0.180
mon_11_cum_prob Nov F 0.149 10,000.0 spei 0.145
mon_12_cum_prob Dec F 0.149 10,000.0 spei 0.142
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