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Abstract: Floods are the most common and costliest natural disaster in Australia. Australian flood
risk assessments (FRAs) are mostly conducted on relatively small scales using modelling outputs.
The aim of this study was to develop a novel approach of index-based analysis using a multi-criteria
decision-making (MCDM) method for FRA on a large spatial domain. The selected case study
area was the Hawkesbury-Nepean Catchment (HNC) in New South Wales, which is historically
one of the most flood-prone regions of Australia. The HNC’s high flood risk was made distinctly
clear during recent significant flood events in 2021 and 2022. Using a MCDM method, an overall
Flood Risk Index (FRI) for the HNC was calculated based on flood hazard, flood exposure, and
flood vulnerability indices. Inputs for the indices were selected to ensure that they are scalable
and replicable, allowing them to be applied elsewhere for future flood management plans. The
results of this study demonstrate that the HNC displays high flood risk, especially on its urbanised
floodplain. For the examined March 2021 flood event, the HNC was found to have over 73% (or over
15,900 km2) of its area at ‘Severe’ or ‘Extreme’ flood risk. Validating the developed FRI for corre-
spondence to actual flooding observations during the March 2021 flood event using the Receiver
Operating Characteristic (ROC) statistical test, a value of 0.803 was obtained (i.e., very good). The
developed proof-of-concept methodology for flood risk assessment on a large spatial scale has the
potential to be used as a framework for further index-based FRA approaches.

Keywords: flood hazard; exposure and vulnerability; flood risk assessment and mapping; flood risk
index; Hawkesbury-Nepean catchment; Australia

1. Introduction
1.1. Floods as a Natural Hazard

Floods are among the most hazardous and destructive natural disasters that affect
global, regional, and local communities [1–3]. The Australian Bureau of Meteorology (BoM)
describes a flood as “an overflow of water beyond the normal limits of a watercourse” [4]
and is experienced in three major forms—fluvial (the overflow of a water body), pluvial (a
result of extreme rainfall, also known as flash-flooding), and coastal inundation (caused
by storm surge) [5]. Recent Australian flood events of 2021–2022 have been particularly
destructive [6]. The year 2022 alone has seen, notably along the east coast of Australia in
southern Queensland (QLD) and New South Wales (NSW), flood events repeatedly devas-
tate communities. As the devastation of these flood events is analysed in their aftermath,
crucial questions are being raised in Australia’s flood-prone regions regarding flood assess-
ment and management. It is evident that research into how these frequently flooded regions
experience flood risk is required to inform future flood management strategy.

Australia’s highly variable hydroclimate has historically subjected widespread regions
to extreme rainfall events that lead to flooding [7]. In many traditional Australian water-
based ecosystems, flood events were once a routine occurrence which is typically beneficial
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to the ecosystem. Such benefits include the distribution of sediments and nutrients across
vegetated areas, which greatly assists agriculture, for example [8,9]. It is only after human
communities begin to urbanise in these areas, with their infrastructure becoming more
exposed, that destructive damages from flood events are experienced. This has become
highly problematic in post-colonisation Australia, which commonly features settlements
on floodplains [10]. The ensuing damages on a recurring basis in these settled communities
have led floods to become Australia’s most expensive natural disaster [11]. More recently,
the Insurance Council of Australia has estimated that flood events in 2022—as of May—are
responsible for nearly AUD 3.3 billion in insured losses [12]. Deloitte (2021) have estimated
that by 2060, flood events, as well as other natural disasters, will lead to a combined
annual economic cost for the country of approximately AUD 73 billion [13]. Therefore, the
preservation, restoration, mitigation, and resilience-building of flood-prone communities
are of crucial importance.

Extreme rainfall events in Australia, especially in areas of NSW, have become in-
creasingly concerning, with research suggesting that they are growing in intensity [14,15].
Multiple factors can be attributed to the intensification of pluvial floods, including impor-
tant climate drivers such as the Indian Ocean Dipole, the Southern Annular Mode, the
Madden–Julian Oscillation, and importantly the El Niño Southern Oscillation (ENSO) [16].
The negative phase of ENSO in particular, La Niña, is typically associated with elevated
rainfall totals across eastern regions of Australia [17]. Coupled with anthropogenic climate
change, which can contribute approximately 7% more moisture to the atmosphere per de-
gree of warming, La Niña events have been found to be at risk of intensifying [18,19]. The
three-year period of 2020–2022 saw three consecutive La Niña events, with corresponding
flood events devastating areas of eastern Australia. This underscores the need for a more
proactive approach to flood risk assessment.

1.2. Flood Risk Assessment
1.2.1. Risk Assessment

Risk is typically characterised as the probability of a loss and can be calculated as the
product of hazard, exposure, and vulnerability elements (Equation (1)) as per Crichton’s
Natural Hazard Risk Triangle [20,21]. This representation describes the complex interplay
that exists between a given hazard and the corresponding area the hazard impacts, which
modulates the extent of loss for a given event.

Risk = Hazard × Exposure × Vulnerability (1)

The quantitative assessment of natural hazards risk is an important method of risk
reduction and, in the case of flooding, this is no different. Being a highly trusted and
influential body, the Intergovernmental Panel on Climate Change’s (IPCC) definitions
provide strong context and guidance to this research, with some important terms being
adapted for this study’s scope (see Section 2). In the context of climate change impacts, risks
result from dynamic interactions between climate-related hazards with the exposure and
vulnerability of the affected human or ecological system to the hazards [22]. In the context
of climate change responses, risks result from the potential for such responses not achieving
the intended objective(s), or from potential trade-offs with, or negative side-effects on, other
societal objectives, such as the Sustainable Development Goals [22].

Exploring the concept of flood risk, the IPCC states that “the risk from flooding
to human and ecological systems is caused by the flood hazard (the frequency and/or
magnitude of flood events), the exposure of the system affected (e.g., topography, or
infrastructure in the area potentially affected by flooding) and the vulnerability of the
system (e.g., design and maintenance of infrastructure, existence of early warning systems).
Statements about changes in the frequency and/or magnitude of flood events on their own
should not be characterised as changes in flood risk, since this covers only the climate-
related hazard part. Whether and how much the actual risk, i.e., adverse consequences for
human and ecological systems will increase in future (or have changed in the past), will



Hydrology 2023, 10, 26 3 of 32

depend also on changes in the exposure and vulnerability of such systems. For example,
the damage from flooding could be reduced, even if the frequency of flooding increases,
if measures are taken that reduce the exposure and/or vulnerability of affected systems
(noting river management in many parts of the world has reduced flood risk)” [22].

Thus, this research defines flood risk as “the potential for adverse consequences for
human or ecological systems, recognising the diversity of values and objectives associated
with such systems” [22]. Flood Risk Assessments (FRAs) are quantitative evaluations of a
region’s risk of flooding using spatial-based inputs such as modelling and remote sensing
data, as well as indicator methods [23]. Ali et al. (2016) [24] also describe “essential” tools
such as Geographical Information Systems (GIS) software, which is frequently used to
compile and evaluate the data in an FRA as well as to produce flood risk indices and maps.
Proactive FRAs comprise a vital component of the concept of flood risk management and
are a critical resource required to reduce both flood risk and flood losses in vulnerable
communities. The ultimate role of an FRA is to highlight the most at-risk areas for flooding,
which allows relevant decision makers to allocate resources and initiate mitigatory measures
more effectively. As defined by Tiepolo et al. (2021) [25], FRAs typically comprise the
following four steps: (i) Context definition; (ii) Risk identification; (iii) Risk analysis; and
(iv) Risk evaluation.

1.2.2. Flood Risk Assessment Methods

FRAs are widely conducted using modelling outputs and multi-criteria decision-
making (MCDM) methods (e.g., indices). The former is a common approach to FRAs on rela-
tively small scales, and typically produces any of the following: flood hazard/depth/extent
models (hydraulic and hydrologic flood models), flood vulnerability/hazard curves, and
flood loss models, (e.g., [26–28], respectively). These assessments provide highly accurate
flood behaviour data at high resolutions; however, this comes with the drawback of being
resource intensive [29]. Additionally, this approach generally requires river and basin data,
which limits these studies to smaller study areas with appropriate data availability [30].

Conversely, index-based MCDM methods use spatial data inputs with relatively
lower resolution (e.g., from remote sensing) to assess flood risk. Completing this with
a consideration of each of the risk elements creates a holistic FRA [31]. To do this, sub-
indicators of each of the risk elements are standardised and then combined, typically using
a form of MCDM such as the Analytical Hierarchy Process, Random Forest Technique,
and Fuzzy Logic, (e.g., [32–34], respectively). In some instances, flood modelling data is
used to provide data for indicator-based assessments, therefore crossover is seen between
these two categories of assessment (e.g., [35]). However, whenever modelling data is not
used, these MCDM FRAs are considered to be proxy assessments, as they are effectively
carried out from afar and do not require any field measurements, for example. These index
methods are frequently used to assess the risk of a wide variety of natural hazards, and are
commonplace among the international scientific community.

1.2.3. Flood Risk Assessment in Australia

Australian FRAs primarily follow the Australian Institute for Disaster Resilience
(AIDR) Flood Hazard Guidelines [27], which outlines best-practice FRA methods using
modelling-based approaches. Despite this well-established practice, [36] found significant
nationwide variability when it came to the level of flood planning in each Australian Local
Government Area (LGA), of which FRAs are a key component. Local councils are given the
responsibility of conducting local FRAs, and typically outsource to consulting companies.
Consequently, this has created a system of individualistic FRAs on river basin or LGA
scales; these studies are often limited in their public data availability. Additionally, FRAs
using modelling approaches are flood hazard-centric in their tendency to focus on the
flood behaviour characteristics they are modelling, and less so on the other traditional
risk components of flood exposure and vulnerability. In a sense, this can lead to a subcon-
scious conflation of the concept of hazard with risk, leading to hazard-based FRAs. This
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nature of the current Australian FRA landscape exposes two relevant research gaps, as
described below.

Firstly, the prominence of modelling-based methods to conduct FRAs in Australia
highlights a glaring absence of FRAs using alternative indicator-based methods, as was
noted by [37]. The broader popularity and versatility of MCDM methods in natural hazard
risk assessment suggests that their absence from Australian FRAs may be a perspective
that is missing. Only [34,38] specifically assessed inland flood risk using indicator-based
MCDM methods in Australia. As thus, the established nature of indices as a risk assessment
method contrasts their sparse usage in an Australian flood context.

Secondly, the predominant modelling-based method is restricted to smaller study
areas, both due to the resource-intensive nature of flood modelling data as well as the
responsibility being given to local councils to assess their LGA. Yet, the NSW Govern-
ment’s recent Flood Inquiry [39] highlights the need for larger-scale catchment-wide level
knowledge, acknowledging that individual councils are under-resourced. The Inquiry
further notes that state governments may be better positioned in managing and mapping
catchment-scale flood risk. A greater focus upon catchment-wide flood risk management
would prove valuable for decision-making on a local scale because of the importance of
river catchment context to localised flood risk characteristics, NSW’s Hawkesbury-Nepean
Catchment (HNC) being a prominent example of this. This notion of the need for large-
scale FRAs is already supported by studies such as [40], which call for the need for an
“evolutionary leap” in this form of assessment.

Ultimately, the use of indicator-based methods in flood risk management is a largely
underrepresented perspective that provides a more detailed quantification of flood expo-
sure and vulnerability risk elements. As such, it is clear that Australian communities stand
to benefit from expanding this method, given the potential to draw new insights. This
aligns with the explicit urging of the NSW Government Floods Inquiry [39] to develop
community awareness of local flood risk and to invest in proactive disaster management
across all levels of society. Assessments using a more well-rounded indicator-based ap-
proach stand as a method to build a holistic understanding of flood risk, being one that
quantifies all risk elements. They also give equal focus to exposure and vulnerability in
addition to hazard [31]. Linking assessments of different spatial scales to comprise a holistic
understanding and assessment of flood risk has been identified as a “challenging task” [41],
with this study looking to fit as an intermediary scale between local and national/global as-
sessments. Thus, this research scoped a scalable and potentially replicable indicator-based
methodology for assessing flood risk over larger spatial scales in inland Australia.

2. Data and Methodology
2.1. Study Area

The study area of this research was the HNC, which lies to the west of Sydney in NSW,
Australia. It spans over 21,700 km2, contains twenty-six LGAs (Figure 1), and is NSW’s
longest coastal catchment, stretching from Goulburn, through the Blue Mountains City
Council, to the latitude of Newcastle. Figure 2 illustrates the topography of this region, as
well as the layout of the rivers in the study area.
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Figure 1. Australia’s Hawkesbury-Nepean Catchment, visualised through its twenty-six Local
Government Areas, as of 2022. Map generated using QGIS 3.24 software.

Version January 30, 2023 submitted to Journal Not Specified 2 of 7

Figure 2. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 3. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 2. Topographical and river outline maps of the Hawkesbury-Nepean Catchment region.
(A) illustrates the topography, and (B) depicts the conservation areas and river system. Maps
generated using ArcMap10.7 software.

There were several reasons for selecting the HNC as the study area for this research.
Firstly, this region is widely considered to have the highest flood risk in NSW, if not po-
tentially in all of Australia [42]. This is in part due to the fact that a well-known ‘bathtub
effect’ is observed in the heart of the catchment in the Hawkesbury River [42]. The 2019
Hawkesbury-Nepean Valley flood study [43] documents the 18 ‘major’ floods (>12.5 m)
that have occurred in the catchment since records began in 1790 to 2019, with a plethora
of ‘moderate’ floods (>8 m) also occurring in this period. This alone highlights the severe
propensity for flooding in this catchment area. This occurs because there are four major
tributaries that feed into the Hawkesbury River, illustrated in Figure 2B, those being the
Warragamba, Nepean, Grose, and South Creek tributaries, in addition to other smaller
contributing waterways. Crucially, instead of widening closer to the sea, the Hawkesbury
River features several tight ‘choke points’ which can quickly cause inundation of the flat
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floodplain when heavy rainfall events occur and overwhelm the river system (the bathtub
effect). Figure 2A highlights the low-lying and flat nature of this central floodplain area, as
well as the several surrounding higher-elevated areas that drain into it. Thus, this region
is particularly susceptible to flood events in the wake of extreme rainfall events. This,
in combination with the highly developed nature of the floodplain area, especially with
some parts being of lower average socio-economic status, combines to create a particularly
high flood risk catchment. This flood risk is set to increase in the future, with projec-
tions outlining a doubling in this catchment’s risk by 2041 due to anthropogenic climate
change impacts [39].

Secondly, a catchment with an established propensity for flooding was selected given
the better likelihood for relevant data availability for this proof-of-concept work in compar-
ison to a less characterised basin. This is particularly important in relation to the validation
aspect of this research, of which the HNC had more available flood observation data to use
for validating the Flood Risk Index (FRI) in comparison to other catchments.

Section 2.2 outline the methodology used for the FRA for this study. The novelty of this
methodology lies in datasets, including satellite remote sensing data, which were utilised
to measure specific indicators, and which are integral to the simplicity and scalability of
the study. The overall simplicity ensures that the method has the potential to be replicated
over larger spatial scales than are typically studied.

2.2. Flood Risk Assessment Methodology
2.2.1. Scope

The FRA aspect of this research utilised the March 2021 significant flood event that
occurred in this area as a case study event [43]. Spatial data used for calculating the FRI,
namely the Maximum 3-Day Precipitation (M3DP) and Soil Moisture (SM) indicators, were
acquired for this time period. This allowed for an assessment of this catchment area during
a high rainfall event that was known to have regional impacts, and thus test our system
during a period when high risk values may be expected from this index. The flood event
occurred between the 17th and the 26th of March, whereby heavy rainfall over several
days in the HNC resulted in the major Warragamba Dam spilling over 450 gigalitres in
the downstream floodplain area (as context, this is close to the volume of NSW’s Sydney
Harbour, being 500 gigalitres). This led to severe flooding in large parts of the floodplain
area [43]. An intense East Coast low pressure system driven by the antecedent La Niña
conditions was largely responsible for the extreme rainfall observed [43].

Specifically, the scope of this research entails using data from the March 2021 flood
event as a temporal case study; time-dependent data (rainfall and soil moisture) came from
within this period. This flood event occurred from the 17th to the 26th of March 2021. Large
parts of eastern Australia experienced devastating floods, which killed five people and
forced eighteen thousand people to evacuate. Heavy rainfall and wet antecedent conditions
influenced by the 2020–21 La Niña event were largely attributed to causing this flooding to
occur [43]. Persistent heavy rainfall resulted in the Warragamba Dam, the major dam in
the HNC, releasing over 450 gigalitres of water per day for several days. The nearby major
city of Sydney receives an average of approximately 1200 mm of rainfall, meaning that
the catchment-wide 4-day rainfall average of just above 200 mm comprises a considerable
amount of a given year’s rain all across the catchment. This resulted in an estimated AUD
65–97 million in insurance claims alone in this catchment [42]. Nearby regions received
over 1200 mm of rainfall for the month of March 2021, which constitutes an entire year of
annual rainfall in Sydney [42].

2.2.2. Indicators and Data Collection

There were several factors that contributed to the selection of the indicators that
comprised each of the hazard, exposure, and vulnerability inputs that are used to calculate
the overall FRI. Firstly, relevant prior literature was thoroughly consulted and strongly
informed the inputs that were desired to be used. Secondly, characteristics of this study
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area and the Australian environment were also taken into account. For example, SM
was employed as one of the indicators for the hazard index, as it was deemed to be an
important representative of antecedent conditions across various hydrological literature.
Data availability issues became an additional factor which limited some inputs from being
used in this research. Given that a key element of novelty in this proof-of-concept FRA is
the simplicity of the indices, risk components were limited to only 3–4 inputs.

Flood Hazard Indicators and Data Collection

This research defined flood hazard as an adaptation of the IPCC’s definition, being:
“the potential occurrence of a natural or human-induced physical flood event or trend that
may cause loss of life, injury, or other health impacts, as well as damage and loss to property,
infrastructure, livelihoods, service provision, ecosystems and environmental resources” [22].

One of three flood hazard indicators was the Maximum 3-Day Precipitation input.
This indicator is quantified as the maximum amount of rainfall received in a given 3-day
period. Satellite-based rainfall estimates were used to provide data for this indicator. Rain
gauge estimates would also be applicable; however, these are limited to the locations of
gauge installations and do not always have a homogenous spatial distribution, which
means that the use of satellite data makes this indicator more replicable to other study
areas. FRAs using index methods frequently use a form of rainfall indicator, as rainfall
is logically a key modulator of pluvial and fluvial flooding events. Some earlier studies,
such as [44,45] quantify rainfall in their FRAs using annual rainfall; however, in this study,
a 3-day period was chosen given how much more important rainfall over a shorter time
frame is in a flooding context. This 3-day precipitation concept is observed sparsely in
other literature, such as by [46]; however, it has not been applied in an Australian context.
Ultimately, this 3-day period was chosen as a compromise to cover both single-day pluvial
floods and multi-day fluvial flooding.

It is acknowledged that radar data are considered the most accurate precipitation
estimates over large areas. However, in absence of radar data, precipitation estimates from
satellite remote sensing provide an alternative to gauge- or radar-based measurements with
greater spatial coverage and improving accuracy. Although meteorological services keep
rain gauge records usually dating back decades, satellite precipitation data can complement
and potentially improve conventional precipitation records, leading to an improved ability
to place extreme precipitation events within a climatological context. This leads to better
heavy precipitation and drought monitoring, amongst numerous other applications.

For this study, satellite precipitation data were obtained from the World Meteoro-
logical Organization’s (WMO) Space-based Weather and Climate Extremes Monitoring
(SWCEM) [47]. For the SWCEM, satellite precipitation datasets were provided by the Japan
Aerospace Exploration Agency (Global Satellite Mapping of Precipitation, or GSMaP) and
the U.S. National Oceanographic and Atmospheric Administration (Climate Prediction Cen-
ter morphing technique, or CMORPH). The SWCEM datasets for the East Asia and Western
Pacific region (50◦ E–120◦ W; 40◦ N–45◦ S) are available from the WMO SWCEM website
(https://public.wmo.int/en/programmes/wmo-space-programme/swcem accessed on
13 January 2023). A comprehensive analysis of the SWCEM satellite precipitation data
performed over Australia showed that blended satellite-gauge products had higher correla-
tions and smaller errors than gauge analysis [48–53]. Similarly, earlier studies demonstrated
the usefulness of satellite precipitation data not only for Australia but also for countries in
the Pacific region [54,55], which means that the SWCEM data as well as the developed in
this study flood risk assessment methodology could potentially be used in other countries
in the Asia-Pacific region.

Evaluating satellite precipitation estimates, earlier studies found that the Global Satel-
lite Mapping of Precipitation (GSMaP) dataset had high performance over Australia [48–51].
GSMaP uses the Global Precipitation Mission (GPM) constellation and NOAA Climate
Prediction Center 4 km infrared product [56,57]. The version used in this study is the
Gauge Near-Real-Time (GNRT) version where the Climate Prediction Center daily global

https://public.wmo.int/en/programmes/wmo-space-programme/swcem
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dataset of rain gauges is used to calibrate the GSMaP estimates by roughly matching their
values across the past 30 days. Based on extensive validation of GSMaP data over Australia
conducted in earlier studies [48–51] and conclusions that is it a high performing dataset,
in this study, using GSMaP data, 3-day precipitation estimation periods from the 17th to
the 26th of March 2021 (the length of the flood event; see Appendix D for detail) were
calculated, and the highest 3-day precipitation total at each specific grid cell (0.1 degrees
resolution) was used for the indicator. The resultant input was a gridded dataset of 3-day
accumulation values from a combination of date ranges, depending on which was the
highest at each point.

The second of three flood hazard indicators used was Distance to River—Elevation-
Weighted (DREW). This input quantifies the distance of any point in the study area to
the nearest river. This is an important metric in an FRA context because of how strongly
the river locations modulate the locations of flooding in fluvial and pluvial scenarios.
Particularly in the HNC, the proximity of a given point to the lower-elevated, downstream
Hawkesbury River areas corresponds strongly to flooding outputs. This is the motivation
for combining a typical Distance to River input (seen commonly in FRAs) (e.g., [58,59])
with an elevation layer, to capture that lower-elevated areas are more likely to flood after
an extreme rainfall event, as opposed to weighting all river areas at different elevation
levels equally.

This input was created by calculating the distance of each grid point to the nearest
river line using an ‘Euclidean Distance’ function. Then, this layer was multiplied with an
elevation layer to account for the influence of elevation. The resulting input described the
distance of each point to the nearest river, whilst being weighted as more hazardous if the
elevation were lower.

Finally, Soil Moisture was the third input used for the flood hazard quantification. SM
is considered an important modulator and representative of the antecedent conditions of
an environment. SM has been found to have a direct influence on Australian flood timing,
particularly in southern Australia [60]. Other recent literature notes the consensus among
Australian research that consideration of changes in the antecedent conditions are crucial
to predictive flood modelling [61–63]. As thus, SM prior to the case study flooding event,
being representative of the antecedent conditions, was quantified in this FRA.

The SM data were collected from the BoM’s Australian Water Resources Assessment
Landscape model (AWRA-L), which is a daily gridded SM dataset measuring absolute
moisture content in the root zone (0–1 m) [64]. SM content is measured as the amount of
water in the soil as a volumetric quantity, for example, a SM percentage of 50% would
mean that half of the soil’s total water carrying capacity has been filled. To represent
the antecedent conditions of this study area, a 7-day SM average was taken prior to the
beginning of the flood event (11 March 2021–17 March 2021).

Flood Exposure Indicators and Data Collection

This research utilised the IPCC’s flood exposure definition as “the presence of people;
livelihoods; services and resources; infrastructure; or economic, social, or cultural assets in
places and settings that could be adversely affected by a flood event” [22]. Three indicators
were chosen to capture flood exposure in the HNC for this study: population density, land
use type, and critical infrastructure density.

Population density was selected as an indicator for flood exposure because it is
commonly used in FRAs to capture population exposure to floods (e.g., [65,66]). Population
density is positively correlated with flood exposure in that an increase in population
density results in a proportional increase in people directly exposed to flood exposure.
This indicator was available at the Statistical Area 2 (SA2) level and was sourced from the
Australian Bureau of Statistics (ABS) via a 2021 regional population estimate dataset. It
was then rasterised using QGIS 3.24 software, being cut to boundaries applicable to that of
the HNC. Importantly, density was calculated in particular as this standardises between
differently sized SA2s.
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Land use type is an important indicator for a Flood Exposure Index (FEI) because it
ranks different land use types based on the extent to which they are flood-exposed, indicat-
ing which land use types are associated with the greatest cost (e.g., [65,67]). This indicator
can be correlated to flood exposure by assigning values to land types (e.g., [58]), where
higher values indicate greater flood exposure. The land use type analysis for this study
prioritised the built environment, such as infrastructure and roads (note that it remains
different to the critical infrastructure density indicator described below). Capturing these
elements is critical to a flood exposure analysis as inland flooding is, as mentioned, preva-
lent in urban environments, which may present poorer flood-conscious urban planning.
For this study, this indicator was sourced as a 50 m vector from the NSW Government’s
2017 Land use v1.2 dataset. It was then rasterised and cut to HNC boundaries. Impor-
tantly, this clipped dataset had thirty-one land use types, which was too complex for this
study’s scope. Therefore, the dataset was reclassified into a subset of eight: water bodies,
nature conservation, forestry, cropping, grazing, horticulture, infrastructure, and other.
Such reclassification is common in the literature (e.g., [68,69]). Having done this, a flood
exposure value with a respective rating was then assigned to each reclassified land use
type, as described in Table A1, Appendix A.

Critical infrastructure (CI) density, which describes the amount of CI over a given land
area, is critical to an FRA because it again captures the flood-exposed built environment
(e.g., [70,71]). This study assumes eight CIs: roads (including State Emergency Service
(SES) evacuation routes), power stations, power substations, electricity transmission lines,
hospitals, police stations, SES offices, and broadcast transmission towers. Importantly,
these CIs capture important services and utilities such as transport, emergency services,
and communication. CI density is positively correlated with flood exposure in that an
increased CI density results in greater flood exposure. All CI datasets were downloaded as
vectors, rasterised, and cut to HNC boundaries. It should be noted that roads were defined
as dual carriageways, principal roads, secondary roads, and SES-recommended evacuation
routes. CI density was calculated in particular because SA2s in the HNC vary significantly
in size and CI density is a way of standardising between such SA2s.

Flood Vulnerability Indicators and Data Collection

In accordance with the IPCC definition, flood vulnerability was defined as “the propen-
sity or predisposition to be adversely affected. It encompasses a variety of concepts and
elements, including sensitivity or susceptibility to harm and lack of capacity to cope and
adapt” [22]. In this study, three categories of flood vulnerability were addressed: environ-
mental, social, and economic. The indicators that were chosen to measure these categories
were elevation, degree of slope, Index of Relative Socio-economic Disadvantage (IRSD),
and Hydrologic Soil Groups (HSG).

The elevation of the area was investigated as a component of the topography of the
HNC. The height at which land lies impacts the movement and drainage of water [72,73]. As
a physical indicator, elevation shows the highest vulnerability where the lowest-lying areas
occur, as water flows from higher- to lower-elevated areas. It was important to investigate
this indicator in order to understand the influence of topography on the vulnerability of
communities. The elevation at which communities place their residencies and infrastructure
could contribute to the overall risk of the area.

Often found coupled with elevation in many datasets, the degree of slope is the
percentage of change in elevation over a certain distance [74]. It describes the shape and
relief of the land as opposed to the height of the land. Slope is calculated using Equation (2):

Slope = Difference in Height/Horizontal Distance (2)

This indicator was chosen as it complements elevation data and has been frequently
used in past international flood vulnerability assessments [75–77]. Slope influences the
speed at which water travels, meaning that in areas with a higher degree of slope, water
will run off more readily. The result can be highly sloping areas receiving less pooling of
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rainwater and thus a lower flood risk. The runoff from sloping areas can also result in a
high vulnerability region if directed into a low-lying, flat area [76,78]. In this scenario, low
slope is associated with higher vulnerability.

The Index of Relative Socio-economic Disadvantage (IRSD) is an index designed by
the ABS as a component of the Socio-Economic Indexes for Areas (SEIFA) product. It
comprises sixteen indicators that describe the relative disadvantage of areas. The IRSD is
beneficial as a chosen indicator as it encompasses both social and economic aspects of the
HNC. IRSD scores are mapped using quintiles. The lowest scoring 20% of areas are given a
quintile number of 1, the second-lowest 20% of areas are given a quintile number of 2 and
so on, up to the highest 20% of areas which are given a quintile number of 5. Low IRSD
scores indicate that an area has a relatively greater disadvantage in general. For example,
areas that have low IRSD scores may have (i) many households with low incomes, and/or
(ii) many people with long-term health conditions or disabilities, and/or (iii) many dwellings
that are overcrowded. Conversely, areas with a high IRSD score would present a lack
of disadvantage, meaning, for example, (i) few households with low incomes, and/or
(ii) few people with long-term health conditions or disabilities, and/or (iii) few overcrowded
dwellings. Low IRSD scores indicate higher vulnerability to loss during a flood event.

Hydrologic soil groups (HSG) were used as an additional environmental indicator.
HSG measures the ability of different soil types to absorb water. Soil properties play an
important role in flood water and runoff behaviour [79,80]. HSG infiltration behaviour
ranges from group D (very low) to group A (high). Lower infiltration rates mean that water
is not readily absorbed into the soil. High infiltration means that water is very readily
absorbed into the soil. The variation of infiltration behaviour is dependent on soil type,
texture, grain size, and aggregate size. Low infiltration rates and their subsequent high
runoff potential result in greater vulnerability. Table 1 contains a description of each HSG
and its relationship with runoff.

Table 1. Hydrologic soil classes with corresponding infiltration behaviours and runoff potential.
Information sourced from [81].

Hydrological Soil Class Infiltration Behaviour Runoff Potential

A High infiltration rates Low
B Moderate infiltration rates Moderate
C Low infiltration rates High
D Very low infiltration rates Very high

Table 2 outlines the Data Collection process for each of the flood risk inputs across the
three risk elements.

Table 2. Flood Risk Index data collection. All data is licensed under the Creative Commons CC BY
4.0 license.

Indicator Data Used Original Resolution Source Date

Flood Hazard Indicators

Maximum 3-Day
Precipitation GSMaP precipitation data 0.1◦

World Meteorological
Organisation’s Space-based

Weather and Climate
Extremes Monitoring

(SWCEM)

2021

Distance to River
(Elevation-Weighted)

Custom HNC Rivers layer
via Bureau of Meteorology

Geofabric
30 m Bureau of Meteorology

Geofabric 2020

Soil Moisture AWRA-L model Soil
Moisture data 0.05◦ Bureau of Meteorology 2021
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Table 2. Cont.

Indicator Data Used Original Resolution Source Date

Flood Exposure Indicators

Population Density
Australian Bureau of

Statistics Regional
Population Estimate

Statistical Area 2 Australian Bureau of
Statistics 2021

Land Use Type NSW 2017 Landuse v1.2 50 m NSW Government 2017

Critical Infrastructure Density

Broadcast transmission
towers

Broadcast Transmitter
Data—AM/FM Radio,

Digital TV and Radio, and
temporary stations

Point data

The Australian
Communications and Media

Authority (Australian
Government)

2017

Electrical transmission
lines

Foundation Electricity
Infrastructure dataset Polyline data Geoscience Australia 2021

Hospitals MyHospitals database Point data
The Australian Institute of

Health and Welfare
(Australian Government)

2022

Police stations ArcGIS Online database Point data ArcGIS Online 2021

Power stations Foundation Electricity
Infrastructure dataset Point data Geoscience Australia 2021

Power substations Foundation Electricity
Infrastructure dataset Point data Geoscience Australia 2021

Roads GEODATA TOPO 250K
Series 3 dataset Polyline data Geoscience Australia 2006

SES headquarters ArcGIS Online database Point data ArcGIS Online 2019

Flood Vulnerability Risk

Index of Relative
Socio-economic

Disadvantage (IRSD)

Socio-Economic Indexes
for Areas 2016 Statistical Area 2 ABS 2016

Slope Degree of Slope v0.1 30 m Australian Government
(data.gov.au) 2021

Elevation Hydrologically Enforced
Digital Elevation Model 5 m Australian Government

(data.gov.au) 2017

Hydrologic Soil Groups Hydrologic Soil Groups of
NSW 50 m

Sharing and Enabling
Environmental Data—NSW

Government
2021

2.2.3. Data Standardisation and Index Creation

The data in the FRI was standardised using Fuzzy Logic methods, a two-step process
using the fuzzy membership and fuzzy gamma overlay functions in ArcMap10.7 software,
which takes raw inputs and produces standardised (values from 0 to 1) data. Appendix B
features a Table A2 that describes how each of the indicators has been standardised in this
process, and describes the fuzzy gamma overlay equations. This form of data standardi-
sation and index creation is common in FRAs (e.g., [35,58,82,83]). Fuzzy large and small
membership sets are created using a ‘midpoint’ and ‘spread’ value; the midpoint being the
middle value that the data is standardised away from (becoming 0.5), and the spread value
being how strongly the data is spread away from the midpoint. Once all of the individual
data were standardised, these were processed with fuzzy gamma overlay to create each of
the risk component indicators. Following this step, the three risk components were then
combined using fuzzy gamma overlay function to create the overall FRI. Figure 3 outlines
the general methodology for creating indices using a fuzzy methodology. For more detailed

data.gov.au
data.gov.au
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information regarding the creation of the risk component sub-indicators, see [84–86] for
flood hazard, exposure, and vulnerability, respectively.
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2.2.4. Index Validation

A newly created index requires validation in order to ensure the results are valid
and possess utility for decision makers. Validation of an FRI is a common element of a
scientific publication of this form of research, e.g., [58,87]. The methodology for validating
an FRA varies across the literature; however, [88] notes that there are three predominant
flood risk model validation methods, (i) comparison with observed data, (ii) benchmarking
with other models, and (iii) using expert knowledge and expectations. According to this
current practice study, (i) is most preferred when observed data is available, followed by
(ii) and (iii), in that order. A popular form of comparison with observed data is using
the Receiver Operating Characteristic (ROC) statistical test (also known as the Relative
Operating Characteristic), as seen in, for example, [33,44,45,89,90]. In the context of a
predictive FRA, a better ROC score relates to higher index values aligning to observed
flood points [91]. The ROC test calculates the ratio of true positive rates to false positive
rates (in this case, high index values that corresponded to flooding observations against
high index values that did not flood), and quantifies this test score as the Area Under the
Curve (AUC). These true positive and true negative rates are calculated in accordance with
Eq. 3 and Eq. 4. The AUC scores on this test range from 0.5 (on par with random guess)
to 1 (theoretically perfect alignment), which, according to [92], scales from “0.5–0.6: poor,
0.6–0.7: medium, 0.7–0.8: good, 0.8–0.9: very good, and 0.9–1: excellent”. This was the test
used to validate this FRI.

True Positive rate = True Positives/(True Positives + False Negatives) (3)

False Positive rate = False Positives/(True Negative + False Positive) (4)

In this research, the ROC test was calculated using ArcMap10.8 software. This was
carried out using the ArcSDM package available online. The flood observation points used
for this validation were sourced from [93]. This dataset features flood observation maps
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from the Wiseman’s Ferry and Western Sydney areas located in the HNC from the March
2021 case study event. Figure 4A illustrates the location of this combined observation
area relative to the HNC, and Figure 4B shows the flood observation data itself. These
two observation areas combined comprise 2332.61 km2, which is approximately 11% of
the catchment area and considered sufficient in size to validate the index (as this size is
larger than most FRAs themselves). An arbitrary rectangular area was chosen around these
validation areas to encompass a full range of index values from “Very Low” to “Extreme”
for the validation study, illustrated in Figure 5. In this figure, one can see that the flood
area is relatively small according to Copernicus satellite data, which describe the spread of
the flood. Further reasoning for this decision was that the Copernicus dataset highlights
the areas that experienced flooding in this event, so it follows that the regions around the
Copernicus dataset did not. Thus, this arbitrary area was utilised as a further section of
‘Not flooded’ data in order to encompass this wider range of “Very Low” to “Extreme” data
to properly calibrate the validation model.

Version January 30, 2023 submitted to Journal Not Specified 3 of 7

Figure 4. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.
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should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
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are cited. A caption on a single line should be centered.

Figure 4. (A) The location of the observation area relative to the HNC study area. (B) The flood
observation data via Copernicus.
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Figure 5. The location of the FRI data used for validation as well as the flood observation area.
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3. Results
3.1. Flood Risk Index

In this study, standard quintile classifications were chosen for the Flood Risk Index
along with a severity class according to Table 3.

Table 3. Breaks assigned to fuzzy values for flood risk indicator maps as well as the overall index map.

Break Fuzzified Values

Very low 0–0.2
Low 0.2–0.4

Moderate 0.4–0.6
Severe 0.6–0.8

Extreme 0.8–1

Standard quintile classifications are used to simplify the dataset into five basic classes.
This is to improve the readability of the data and allows labels to be attributed to these
classes (Very Low–Extreme) in the same manner to any similar literature cited. In this sense,
these standard classifications are deemed appropriate. Fuzzy Membership and Gamma
Overlay are used as standard practice in this field of research, e.g., [58,82]. Essentially,
the usage of Fuzzy Membership allows for higher risk index values to have a stronger
weighting in the dataset, and lower risk datapoints to contribute less and have lower
weighting—this is commonplace in flood risk assessment literature using Fuzzy Logic.

3.1.1. Indicator Maps

Figure 6A–C illustrates the flood risk components: flood hazard, exposure, and vul-
nerability, respectively. The inputs used to create each of these risk component indices are
shown in Figure A1, Figure A2, and Figure A3, (respectively) (Appendix C).

3.1.2. Index Map

Figure 7 illustrates the Flood Risk Index for the Hawkesbury-Nepean Catchment.
Table 4 illustrates the breakdown of the relative and true size of each flood risk category.

The FRI, as expected, comprises some of the major features of each of the flood risk
components, particularly those mentioned in Section 3.1.1. Namely, this index visibly
features prominent imprints of the river layer in parts, some characteristics of the FEI (the
elevated Goulburn area and central Blue Mountains corridor), and general accentuation of
the floodplain region, which is particularly characteristic of the Flood Vulnerability Index
(FVI). The FRI has additional pockets of isolated extreme flood risk, located in the south of
the floodplain in the Upper Nepean State Conservation Area, north-east of the floodplain in
Wiseman’s Ferry, and to the north of Lithgow City Council in the HNC’s north-west. As per
Table 4, these Extreme areas comprise 24.10% of the study area. Beyond this, the study area
demonstrates areas of Very Low–Moderate FRI values, particularly in the central and west
of the HNC surrounding the floodplain, approximately accounting for a combined 27.00%.
Filling in all other areas are the Severe risk areas, which are the majority of the catchment
(49.10%). There is a broader trend, particularly forthcoming in the FEI, of reducing index
values away from the coastline and this is similarly discernible in the FRI.
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Figure 6. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 6. The three flood risk components: (A) hazard, (B) exposure, and (C) vulnerability. Darker
areas indicate greater index values.
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Table 4. Percentage and total area breakdown of the FRI per each risk class.

Flood Risk Category Area (Kilometres Squared) Percentage of Total

Very Low (0 ≤ 0.2) 3.42 0.015
Low (0.2 ≤ 0.4) 57.01 3.81

Moderate (0.4 ≤ 0.6) 4979.50 22.91
Severe (0.6 ≤ 0.8) 10,674.64 49.11
Extreme (0.8 ≤ 1) 5238.61 24.10

Total 21,735 100

3.2. Index Validation

Figure 8 depicts the result of the ROC validation test, which, according to the afore-
mentioned scale by [92], illustrates a ‘Very Good’ validation result of 0.803 area under
the curve.
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4. Discussion
4.1. Flood Risk

Global, regional, and local communities around the world are prone to hydro-meteorological
hazards, such as floods, which often turn into disasters threatening livelihoods and causing
economic damage to at-risk communities [1–3]. In a changing climate, the frequency and
severity of hydro-meteorological extreme events, including floods, is increasing [22] and
developing novel FRA methodologies which could be easily replicated is an important topic
of risk assessment research. To address this topic, a number of regional and national flood
risk indexes have been recently developed. For example, the use of the Geomorphic Flood
Index (GFI) method for hazard classification has been recognised as a reliable approach.
The GFI was proposed by Samela et al. (2017) [94] and Manfreda and Samela (2019) [95] to
generate flood extent maps and the methodology is particularly suitable for data-scarce
areas. The method is effective for a large study area, in which the flow accumulation values
of the whole river basin are needed for the GFI calculation and floodwater depths analysis.

Recently developed multi-criteria decision-making (MCDM) methods are also being
used to construct a decision-making process that is more participatory, rational, and efficient.
Pathan et al. (2022) [96] used a statistical MCDM approach to generate flood risk maps
together with hazard and vulnerability maps in a GIS framework for Navsari city in
Gujarat, India, to identify the vulnerable areas that are more susceptible to inundation
during floods. Quesada-Román (2022) [97] analysed and classified the 82 Costa Rican
municipalities in terms of hazard, exposure, and vulnerability to floods, and then designed
an index for flood risk at a local (municipal scale) level. Regional flood risk assessment in
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mountain catchments in Costa Rica impacted by tropical cyclones was also conducted [98].
The flood risk assessment was based on a high-resolution mapping of infrastructure,
population density (as a measure of exposure), and a social development index (to represent
vulnerability) and it was shown that regional flood risk assessments can be performed in
large-scale catchments if both coarse and detailed inputs are used [98]. Importantly, the
results of this study could be useful for the development of flood risk schemes promoting
the resilience of local populations. A MCDM method was also used by Ikirri et al. 2022 [99]
for the developing flood hazard index and mapping of the flood zones of the Taguenit
basin in southern Morocco. The flood risk public perception in flash flood-prone areas
of Punjab, Pakistan was examined, contributing to the development of an appropriate
management plan for flood risk and communication strategies [100]. A regional study
for Europe on future-oriented flood risk management across policy domains on the scale
of river sections and catchments has also been conducted, exploring an approach which
builds on the understanding of floodplains as coupled human and natural systems [101].

This brief overview demonstrates the breadth and depth of FRA research and appli-
cation conducted for different regions around the world—Central and Latin Americas,
Africa, Asia, and Europe. Further information on modern approaches to the modelling
and management of flood risk, with a focus on urban areas, can be found by readers in a
comprehensive review by Cea et al. 2022 [102].

In the following sections, we discuss the findings of our case study for the Hawkesbury-
Nepean Catchment (HNC), outlining the novelty of the applied MCDM method for Aus-
tralian FRAs, examining the performance of flood hazard, exposure, and vulnerability
indices and overall flood risk index.

4.1.1. Indicators

In this section, the flood risk components (hazard, exposure, and vulnerability) as well
as the overall flood risk index (FRI) will be discussed; an analysis of the indicators that
comprise them are excluded for brevity.

Note the prominence of the river locations in the Flood Hazard Index (FHI) in Figure 6a.
Visually, this input is highly dominant in comparison to the other layers, particularly in
the floodplain region where river density is high and tributary convergence is occurring
to create the aforementioned bathtub effect. Also noticeable in this index is the signature
of the Soil Moisture gridded data in the floodplain region to the west of the Sydney CBD
marker. Figure 6b’s FEI highlights a significant concentration of exposure in the floodplain
region. This index also features other isolated areas such as Goulburn in the HNC’s south
and the central corridor that lies between the major central areas of National Park (see
Figure 6c for reference). Similarly, the FVI underscores the extreme flood vulnerability of
the floodplain area given its low elevation and widespread lack of slope. This is contrasted
with broad regions of low vulnerability in the large areas of National Park directly to the
west of the floodplain, where rainfall easily runs off into the floodplain.

Figure 6a’s illustration of the FHI clearly demonstrates the dominance of the Distance
to River—Elevation-Weighted (DREW) input, as noted earlier by [84]. One can observe
the lines of the rivers strongly modulating the hazard risk values. Given the river lines
correspond to a maximum index value of 1 after the standardisation process, these strong
results are a logical result as there is no other input to the FHI features values that reach this
maximum value. Another consequence of the strength of the DREW input in the FHI is the
large block of ‘Extreme’ flood hazard risk situated in the floodplain area of the catchment.
This occurred due to high river density and low elevation in this region in addition to the
high rainfall and broadly high soil moisture during the case study flood event. Additionally,
as aforementioned, the gridded SM data is directly visible in the FHI specifically in the
floodplain area. The gridded signature of the SM data is visible, potentially indicating
consistency in M3DP and DREW; hydrologically this seems reasonable as soils are likely
to experience lagged moisture absorption compared to M3DP and DREW layers, which
capture relatively real-time rainfall and river conditions. Ultimately, having the ability to
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clearly attribute trends to single indicators in this manner is in part a benefit of using only
three sub-indicators for each risk element to maintain the novelty of simplicity. This makes
analysis of indices such as this far easier than in studies with more inputs, which often
require tools such as ‘spider plots’ to assess indicator contribution (e.g., [90]).

The FEI shown in Figure 6b is comparable in this analytic sense. The close relationship
between urban growth and flood exposure risk as described by this FRI was noted in earlier
research [86]. Importantly, the highly urbanised area in this case study again aligns with
the floodplain, the same region which features high index values in each of the three risk
component indices—each for separate reasons. In this case, the floodplain zone contains a
large majority of the infrastructure and population density of the HNC, resulting in this
area being the most flood-exposed according to this index. This is corroborated by the
recent NSW Flood Inquiry [39], which details that development in the floodplain is the
single largest driver of flood risk in the region. This is also due to the way in which this
study was designed; as flood exposure was defined with a focus on human health and
livelihoods, it is logical that human infrastructure was placed as the highest priority when
it came to quantifying critical infrastructure, leading to this index’s result. Overall, this FEI
successfully quantified the extreme flood exposure in the floodplain in a manner that is
widely supported by the existing knowledge of this catchment. This includes examples such
as the reference by the Insurance Council of Australia that the Hawkesbury-Nepean Valley
has the “highest flood exposure in New South Wales, if not Australia” [103]. Therefore, the
FEI is sufficiently capable to capture flood exposure in studies with replicated methodology.

The FVI shown in Figure 5c demonstrates the vulnerable nature of the floodplain re-
gion in particular [85]. This area is denoted by its widespread ‘Extreme’ flood vulnerability,
which is largely a result of the low elevation and lack of slope across the district. The result
of this index accurately reflects the highly vulnerable nature of this catchment, particularly
with respect to the aforementioned hydrological environmental conditions, which have cre-
ated the bathtub effect. These conditions are well-documented, with studies such as [104]
noting the ability of the rivers here to rise much higher than similar catchments in a flood
event with a similar frequency. In addition to the characterisation of the physical vulner-
ability of the study area, the socio-economic vulnerability of the HNC is also quantified
through the IRSD input. This indicator highlighted the disadvantage that is observed in
the western suburbs of Sydney (especially compared to central Sydney areas), and this only
contributes further to the overall vulnerability of the HNC. Furthermore, there appears to
be an interplay between these physical and socio-economic vulnerabilities, whereby an area
that is prone to and experiences natural hazards (and is evidently physically vulnerable)
can attract those experiencing socio-economic disadvantage given the reduced demand,
and thus cost, to live in this area. Thus, the HNC is an example of an area with complex
vulnerability interplay that is well-captured by this FVI.

4.1.2. Flood Risk Index

The FRI produced uses the three flood risk component sub-indices to comprise an
index that highlights areas at risk of flooding, in this case in the HNC. Continuing the
trend of each of the incorporated indices, the floodplain area located in the central-eastern
quadrant of the study area demonstrated broad regions of ‘Extreme’ flood risk during the
March 2021 flood event. Given that each of the risk components produced high index
values in this area, it is unsurprising that parts of the floodplain resulted in ‘Extreme’
results. Additionally, smaller isolated regions demonstrated comparatively elevated values
of ‘Extreme’ and ‘Severe’ flood risk during this time. Goulburn, in the far south of the
HNC, showed ‘Extreme’ FRI values that are most prominently attributable to the ‘Extreme’
flood exposure in addition to elevated flood hazard. Parts of the National Park area to the
floodplain’s north were another such outlier of sorts, with multiple tributary rivers and
the downstream parts of the Hawkesbury River flowing in this region, in addition to high
FEI values. As the Hawkesbury River is the key outflowing waterway to the sea in the
HNC—and this National Park area is downstream of the aforementioned ‘choke points’
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that heighten flood risk in the floodplain—it is understandable that this area should have
elevated flood risk given the sheer amount of water that would flow through here in a flood
event. The LGA of Lithgow City Council in the HNC’s north-west was a final example
of comparatively elevated flood risk. This area displays ‘Extreme’ flood vulnerability
in combination with high river density (thus leading to ‘Extreme’ flood hazard), which
together are strong contributors to this final result.

The lingering fingerprint of the river locations in the FRI is similar to the FHI. Visible
across the central-western and northern regions of the HNC where lower flood risk is
observed, the river lines have been relatively clearly imprinted onto the FRI. In a similar
manner to the FHI, this may occur due to consistency across the other indicators, meaning
that high values from this indicator are the major point of difference. It is logical that
an index focused primarily on flood risk to human health and populations will naturally
comprise lower flood exposure and vulnerability index values in areas lacking population
and infrastructure. This has ultimately meant that any strong variability across these
regions will come from the FHI, of which the DREW indicator displays the strongest
variation. Furthermore, there often seems to be one risk component being low in particular
that tends to make these areas relatively low risk—this can be understood through the
Natural Hazard Risk Triangle, conceptualised in Section 1.2. Based on this framework,
a triangle with two long sides and one short side will have a considerably lower area
(and thus risk in this case). For example, the north-west region showing lower FRI values
may be specifically linked to extremely low FEI values, as there is no population and no
infrastructure there. Similarly, the central-western region experiences consistently low FVI
values in addition to lower FEI in parts. This may be strongly linked to the high slope and
elevation observed in this area, as this is largely the Blue Mountains National Park. It is
this broader pattern of lower FEI and FVI towards the western boundary of the HNC that
explains this similar trend observed in the FRI. In summary, this research analyses multiple
catchment-wide trends that would not have been possible without such a large study area.

4.2. Index Validation

The ROC validation test of the initial FRI produced an AUC score of 0.803, as illustrated
in Figure 7. Copernicus data provide aerial coverage and suits this validation exercise best,
while data available from just a few locations would not be able to present an accurate
representation of the entire study area. Furthermore, the use of Copernicus data ensures
consistency and uniformity across the dataset as opposed to a few standalone key locations.
This study draws great benefits from the ability to observe a validation study from long
lengths of the key rivers. According to the test ranking scale outlined in Section 2.2.4,
this is a ‘Very Good’ result [92]. Given the frequency at which this test is used in relevant
literature to validate FRAs (e.g., [33,44,45,89,90]), this result is very positive, and highlights
the validity of our created index. This validation shows the FRI is a reliable source for
decision makers in the HNC, something that was originally a key goal of this work. This
retroactive proof-of-concept research can now add to the pool of legitimate research and
evidence that exists for this extremely flood-prone catchment. Being the first FRA of this
size and nature completed here, it has potentially revealed new data and insights for
this catchment.

The FRI presented in this study puts forward a simple, low-cost resource, yet scalable
methodology assessment of fluvial and pluvial flood risk. The majority of Australian FRAs
currently completed by consulting companies at LGA levels do not possess the above traits,
which highlights the novelty of this research. Whilst the current popular methodology may
provide more detailed results for smaller study areas, there is potential for this presented
methodology to complement what is already used. Therefore, this validated methodology
stands as a viable alternative, with the potential to assess large areas more efficiently than
is carried out presently. It could be successfully used in addition to the current methods
to reveal catchment-wide information and trends, as well as serve as a middle spatial
scale to help link national/global and local scale assessments [39]. At the very least, this
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methodology can be replicated and applied to other at-risk catchments in Australia, if
not beyond.

4.3. Future Research Opportunities

Although shown to be valid, this work may ultimately exclude other relevant risk
factors given the lesser number of indicators used in comparison to other similar studies
(e.g., [34,44,90]). An additional noteworthy point is that data availability strongly limited
what indicators were able to be selected for this research. However, there does exist some
balance between an overly simplistic FRA and one that is too convoluted and features
overlapping risk factors. For example, [85] outlines an instance in [87] which features both
‘River Distance’ and ‘Waterway and River Distance’ as separate flood hazard indicators,
both of which may be considered to be overlapping inputs. Thus, there may be additional
inputs that could add value to this index, but given the good performance on the validation
test, this is not the most pressing issue. A potentially more important problem is the
presence of ‘gaps’ that are visible in the FRI.

Upon visual inspection of the FRI, one may notice small data ‘gaps’ present in the index
that contain ‘No Data’ and show the base map underneath. This means that somewhere in
the index creation process, there was either a ‘0’ or ‘No Data’ value that, when combined
with the other indices, was carried through to the final index. These areas mostly comprise
water bodies such as the notably large Warragamba Dam to the south-east of the floodplain,
indicating that this issue is linked to an input’s quantification of water bodies. Analysing
the data that comprised this index, one can note gaps of similar appearance in the FVI,
highlighting that this issue must have originated from here, specifically from a combination
of the Hydrologic Soil Groups and slope datasets after analysis of [85]. Having gaps such
as these present in the dataset is problematic and potentially limiting because it may alter
any statistical analysis as the data from these spots are not present in the analysis, for
example in the validation study. It may also limit utility to decision makers as there may
be data lacking in areas that are important to them. However, these gaps are a common
occurrence in this field of research, with one method of addressing this issue being the use of
data interpolation.

Future research involving this FRI should primarily surround the expansion of the
index to other study areas, as this element of potential replicability was a key aspect
of novelty for this research. The capability of this index to assess large-scale regions
means that it has the potential to cover large places (such as Australia) with relative
ease in comparison to other more resource-intensive methods. As such, it appears that
a logical next step for this FRI would be to expand across Australia, based on catchment
divisions. Ultimately, the expansion of this index into new study areas would allow for the
production of new insights from an FRA perspective, which is relatively unheard of in the
Australian landscape.

Additionally, future research involving this FRI should address the aforementioned
limitations. For example, the relevant layers in the FVI should be reproduced to remove
the ‘gaps’ that exist within this index—chiefly over water bodies. This could require the
changing of any ‘0′ or unavailable data areas to real values, which could be carried out by
taking an average of all the points surrounding the hole, by applying interpolation methods.
Secondly, the Distance to River—Elevation-Weighted (DREW) input could be reiterated
to better account for the differences in flow and how this relates to differences in flood
hazard. Additionally, the validation study could benefit from iterating on the observation
dataset by seeking a dataset that is more representative of the catchment as a whole, which
could produce improved findings. Similarly, the FEI could be reiterated to better capture
the variability in the amount of people that each sort of critical infrastructure services. For
example, this could be carried out by creating a multiplier for each type of infrastructure
based on the relative amount that each is used by the community (e.g., number of hospital
admissions, number of SES/police callouts, or road usage statistics).
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Developing flood risk maps considering the magnitude of precipitation could also be
an interesting avenue to further explore risk research approach, e.g., using a 100-year return
period [105]. Furthermore, a key feature of this (and all) assessments is the comparative
nature of the risk analysis. Whilst it is true that the exact risk percentages will change
depending on the event, this data is in some ways relative as it strongly considered the
rainfall input, which changes from event to event. An important aspect of this study is
simply to note the areas that demonstrate higher risk than others comparatively in the
catchment. This reveals important information to decision makers regarding resource
allocation and aids the prioritisation of flood risk mitigation in higher-risk areas.

Finally, an evaluation of the performance of the developed FRI with other state-of-
the-art methods is recommended for future research. The use of the Geomorphic Flood
Index (GFI) method for hazard classification [94,95] has been recognised as a reliable
approach and thus could be applicable for comparison with the developed FRI for flood
risk assessment over large study areas in Australia.

5. Conclusions

The overall aim of this study was to create and map a scalable and replicable proof-of-
concept Flood Risk Index for New South Wales’ Hawkesbury-Nepean Catchment (HNC).
The indicators chosen for the FRI were based on flood hazard, exposure, and vulnerability
subcomponents. While earlier studies have presented results for flood risk mapping using
GIS for relatively small areas, e.g., for the Greater Toronto Area [106] and the Shangyou,
China [107], this study, to the best of our knowledge, is the first attempt to develop this
novel approach of index-based analysis using satellite remote sensing data, GIS, and a
MCDM method for FRA on a large spatial domain (HNC, over 21,700 km2).

The developed FRI suggests that extreme flood risk largely occurs on or near the
floodplain of the catchment, that is, in broad areas to the west of Sydney CBD. The HNC
was found to have over 73% (or over 15,913 km2) at ‘Severe’ or ‘Extreme’ flood risk
during the March 2021 flood event. The positive result of the Receiver Operator Charac-
teristic validation test highlights the validity of the index-based methodology for flood
risk assessment.

This study represents a robust proof-of-concept for an inland flood risk index for
NSW’s Hawkesbury-Nepean catchment on a novel spatial scale and simplistic method that
is novel in the Australian FRA landscape. It is hoped that both the methodology and key
findings of this research can be applied elsewhere in Australia, so that relevant stakeholders
can assist those communities most affected by potentially more frequent and intense floods.
A number of local and regional stakeholders, such as the disaster management offices, City
Council planning departments including spatial and urban planners, water management
authorities, politicians, NGOs, and representatives of at-risk communities could be involved
in and benefit from such FRA. The use of an open source data and the overall simplicity of
the developed methodology ensures that it has the potential to be replicated over larger
spatial scales, e.g., for a state, territory, or even on the national scale. To assess and map
flood risk using the developed methodology, a basic set of skills for stakeholders is needed,
e.g., familiarity with ArcGIS. Additionally, as we used the SWCEM satellite data which
are provided by the WMO for the East Asia and Western Pacific, we believe this approach
could be beneficial for countries in the Asia-Pacific region.
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This study presents a contribution to the discussion of flood mitigation and adaptation
in Australia and has the potential to be used as a framework for further index-based flood
assessment approaches. The logical next steps for the Flood Risk Index surround the
expansion to wider areas of Australia and beyond. This is given the focus of creating
an index that can easily assess larger areas in a replicable manner. Overall, assessment
and mapping of flood risk for at-risk communities (locally, nationally, and regionally) is a
valuable contribution to implementing the Sustainable Development Goals, particularly
the Sustainable Cities and Communities (goal 11), Climate Action (goal 13), and Life on
Land (goal 15).
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Appendix A

Table A1. Reclassified land use types for the land use type indicator, with respective flood exposure
values and ratings.

Reclassification Value Rating

Other 0.1 Very low
Water bodies 0.1 Very low

Nature conservation 0.5 Moderate
Forestry 0.5 Moderate

Cropping 0.7 High
Grazing 0.7 High

Horticulture 0.7 High
Infrastructure 0.9 Very high

Appendix B

Table A2. Fuzzy standardising metadata for the Flood Risk Index (via ArcMap 10.7 software).

Indicator Membership Type Midpoint Value Spread Value

Flood Hazard Indicators
Maximum 3-Day
Precipitation Fuzzy Large 27.5 1.5

Distance to River
(Elevation-Weighted) Fuzzy Small 0.15 2

Soil Moisture Fuzzy Large 0.49 2
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Table A2. Cont.

Indicator Membership Type Midpoint Value Spread Value

Flood Exposure Indicators
Population Density Fuzzy Large 500 2
Land Use Type Fuzzy Large 50 5
Critical Infrastructure
Density Fuzzy Large 0.2 2

Flood Vulnerability Indicators
Index of Relative
Socio-economic
Disadvantage (IRSD)

Fuzzy Small 835.5 5

Slope Fuzzy Small 38.48 5
Elevation Fuzzy Small 679.97 5
Hydrologic Soil
Groups Fuzzy Large 0.5 5

Fuzzy sum and fuzzy product equations used in the fuzzy gamma overlay function
via ArcMap 10.7 software, as per [105].

µsum = 1−
n

∏
i=1

(1− µi) and µproduct = 1−
n

∏
i=1

(µi)

Appendix C

Version January 30, 2023 submitted to Journal Not Specified 2 of 7

Figure 2. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 3. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure A1. Cont.
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Figure A1. Fuzzy flood hazard indicator maps (distance to river – elevation weighted, maximum 3 

day precipitation, and soil moisture), which contributed to the final Flood Hazard Index 

(ArcMap10.7 software). 

Figure A1. Fuzzy flood hazard indicator maps (distance to river–elevation weighted, maxi-
mum 3 day precipitation, and soil moisture), which contributed to the final Flood Hazard Index
(ArcMap10.7 software).



Hydrology 2023, 10, 26 26 of 32
Hydrology 2023, 10, 26 26 of 32 
 

 

  

 

Figure A2. Fuzzy flood exposure indicator maps (population density, land use type, and critical 

infrastructure density), which contributed to the final Flood Exposure Index (QGIS 3.24 software). 

Note that maps for population density and critical infrastructure density were visualised at the SA2 

level. 

Figure A2. Fuzzy flood exposure indicator maps (population density, land use type, and critical
infrastructure density), which contributed to the final Flood Exposure Index (QGIS 3.24 software).
Note that maps for population density and critical infrastructure density were visualised at the
SA2 level.
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Figure A3. Fuzzy flood vulnerability indicator maps (elevation, Index of Relative Socio-economic 
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Figure A3. Fuzzy flood vulnerability indicator maps (elevation, Index of Relative Socio-economic
Disadvantage, degree of slope, and hydrological soil groups, which contributed to the final Flood
Vulnerability Index (QGIS 3.24 software).
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