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Abstract: Streamflow prediction plays a vital role in water resources planning in order to understand
the dramatic change of climatic and hydrologic variables over different time scales. In this study, we
used machine learning (ML)-based prediction models, including Random Forest Regression (RFR),
Long Short-Term Memory (LSTM), Seasonal Auto- Regressive Integrated Moving Average (SARIMA),
and Facebook Prophet (PROPHET) to predict 24 months ahead of natural streamflow at the Lees Ferry
site located at the bottom part of the Upper Colorado River Basin (UCRB) of the US. Firstly, we used
only historic streamflow data to predict 24 months ahead. Secondly, we considered meteorological
components such as temperature and precipitation as additional features. We tested the models
on a monthly test dataset spanning 6 years, where 24-month predictions were repeated 50 times
to ensure the consistency of the results. Moreover, we performed a sensitivity analysis to identify
our best-performing model. Later, we analyzed the effects of considering different span window
sizes on the quality of predictions made by our best model. Finally, we applied our best-performing
model, RFR, on two more rivers in different states in the UCRB to test the model’s generalizability.
We evaluated the performance of the predictive models using multiple evaluation measures. The
predictions in multivariate time-series models were found to be more accurate, with RMSE less than
0.84 mm per month, R-squared more than 0.8, and MAPE less than 0.25. Therefore, we conclude that
the temperature and precipitation of the UCRB increases the accuracy of the predictions. Ultimately,
we found that multivariate RFR performs the best among four models and is generalizable to other
rivers in the UCRB.

Keywords: streamflow prediction; machine learning; time series regression; upper colorado river basin

1. Introduction

Streamflow is a spatially and temporally integrated response of a watershed to pre-
cipitation input, storage, and runoff processes. It is a very useful indicator of water avail-
ability and hydro-climatic changes [1–4]. From a water resources management perspective,
streamflow forecasting plays a vital role in water resources planning for understanding the
dramatic change of climatic and hydrologic variables over different time scales, especially
under extreme weather events such as floods and droughts [5]. Therefore, accurately
predicting streamflow is needed by hydrologists, watershed managers, planners and stake-
holders in planning for flood control and designing engineering structures, industrial
operations, irrigated agricultural production, municipal water supplies, and recreations [6].
Streamflow prediction lies under the subject of hydrologic modeling as an application to
enhance our understanding of hydrologic phenomena and watershed behavior. Forecasting
the streamflow is a difficult task since the atmosphere is nonlinear and chaotic, which
affects groundwater and streamflow on the Earth [7].

One of the biggest challenges of streamflow forecasting is to define a reasonable long-
time lead (aka horizon/prediction window) streamflow predicting approach that could
provide accurate information to help water resources managers and decision makers to
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understand the system and plan for future management scenarios. Streamflow prediction
at different time scales, such as hourly, daily, monthly, and yearly, is very important for
optimizing the water use in different applications. For example, prediction on a yearly scale
provides water managers with a long overview of the watershed [8], while a monthly scale
allows more detailed insights in the following months [9,10]. According to previous studies,
a lead-time length greater than 24 months is considered as large lead-time streamflow
prediction when working with monthly data [11,12]. As a result, an effective model is
the one that can precisely predict streamflow values after the lead-time of greater than
24 months, providing water managers with adequate time to decide and prepare for
future disasters.

At present, there are two prevalent approaches used for streamflow forecasting [13].
The first approach is the model-driven, which is a physical model that represents different
hydrological processes and variables, such as rainfall-runoff, infiltration, groundwater
process, and evapotranspiration [14]. Although this approach is widely used in hydro-
logic simulation and forecasting, and can help in understanding the underlying physical
processes [15], there are various weaknesses identified in previous studies in terms of per-
formance or uncertainty analysis. Physically-based models usually require a large amount
of data input, such as forcing (meteorological) data and domain static data (e.g., land cover
maps, soil maps, or digital elevation models) along with model parameters that require
complex calculation to calibrate to match the watershed characteristics [16]. Another disad-
vantage of using this approach is that sometimes the collected data are inconsistent or not
available at data sources for some regions, making this process very time-consuming and
work-intensive [17,18]. Another possible issue in developing rainfall-runoff models is the
close dependency on precipitation. However, precipitation in some cases is not the driving
force of downstream flood occurrence and could be due to the flow regulation of large
numbers of dams or reservoirs, especially for large scale river basins [19]. While there is a
growing tendency for improving the performance of process-based hydrologic modeling
by incorporating more detailed characteristics, there are still parametric and structural
uncertainties in the model formation that may not lead to more accurate prediction [20].

In addition to process-based models, the data-driven approach is based on statistical
modeling of both linear and non-linear relationships between input and output [21,22].
This is usually achieved by optimizing the model parameters by closing the gap between
the model’s predictions and true measurements [23]. This method recently demonstrated
advantages and attracted significant interests due to their accuracy in streamflow fore-
casting with low information requirements. According to recent studies [24], data-driven
models usually outperform physically-based models. Traditional statistics and machine
learning (ML) models have been used very frequently in time series forecasting [25,26].
Lately, deep learning models have demonstrated significant improvements and shown
better results in time series forecasting compared with physics-based models [27]. In this
work, we aim to analyze several ML-based models, including traditional statistical methods
along with machine learning and deep learning methods.

Among the statistical forecasting models, autoregressive integrated moving average
(ARIMA) [28] is widely used for forecasting time series data without considering the
seasonality. ARIMA leverages series differentiation in the earlier autoregressive mov-
ing average (ARMA) model for improving prediction accuracy. Several research efforts
have been conducted to evaluate the accuracy of the ARIMA model compared to the
previous forecasting models. One study on the prediction of the inflow of a dam reser-
voir in the past 12 months demonstrates that the ARIMA model has less error rate than
the ARMA model [29]. Therefore, ARIMA is considered as one of the viable solutions
for river streamflow forecasting [30]. An improvement to the ARIMA model is the Sea-
sonal ARIMA (SARIMA), where seasonality is considered. In comparison to ARIMA and
ARMA, SARIMA has shown better accuracy and R-squared metric in long-term runoff
prediction [31].
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Another successful statistical model for time-series forecasting is Facebook’s Prophet
model, which is based on an additive model to forecast the future [32]. The Prophet model
has been recently used in drought forecasting [33], evapotranspiration estimation [34],
and runoff simulation [35]. A comparison between Prophet model and Support Vector
Regression (SVR) shows that the Prophet model outperforms SVR variants with similar
data input and target tasks [34].

Random Forest Regression (RFR) is another model used for streamflow prediction,
in which the ensemble learning method is used to forecast the future data [36]. A compar-
ative analysis of different regression methods for predicting runoff signatures has been
done by Ref. [37], where the result shows that the regression tree ensemble is superior to
the multiple linear regression approaches, particularly in predicting dynamic flow signa-
tures. Random Forest models result in better predictions with higher accuracy compared
to other machine learning models such as Support Vector Machine (SVM) and Linear
Regression [38–40].

One of the most recent models is the Long Short-Term Memory (LSTM) network, which
is a widely used deep learning model for learning sequence data (e.g., text, speech, time
series). The LSTM is an artificial neural network that is an improvement of the Recurrent
Neural Network (RNN) and is thoroughly capable of addressing the challenge of long-
range dependencies of the sequence data [41,42]. LSTM and GRU models are specific types
of RNN, where GRU is computationally faster than LSTM, and LSTM has more learnable
parameters and takes more training time. For the ability to handle long sequences, LSTM
has been preferably used in hydrology applications [43]. LSTM models have been shown
to predict the rainfall-runoff with outstanding performance compared to the baseline
hydrological models including vanilla RNN-based models [44,45]. Furthermore, attention-
based LSTM models significantly improve the accuracy of streamflow prediction models in
daily-data cases [46]. Several other LSTM-based models have been proposed in recent years
to forecast the streamflow in varying time scales [47,48]. In addition to the deep sequence
learning models, spatial dependency capturing models based on Convolutional Neural
Network (CNN) have been used to predict streamflow from image data. LSTM and CNN
have also been used together to make more accurate predictions [49]. However, a recent
study reveals that even a simple LSTM-based model outperforms the CNN model in river
streamflow prediction [50].

In addition, regardless of the forecasting approaches, most analyses contain only
historic streamflow data in order to forecast the future values. However, we may observe
improvements by considering meteorological features such as temperature and precipita-
tion since these features are the most influential factors in water flow changes on Earth.
Refs. [51,52] indicate that the streamflow is sensitive to climate changes, and it shows a
strong dependency to temperature and precipitation. Figure 1 shows the impact of temper-
ature and precipitation on the river’s streamflow. These meteorological components cause
snow and rain near the surface, resulting in melt and runoff on the ground. Eventually,
the groundwater ends in the streamflow on rivers.

Considering previous works of streamflow prediction, we select a set of statistical, ma-
chine learning, and deep learning models for comparing their performances, and to choose
the best model that can help hydrologists in effective streamflow forecasting. Therefore,
our analyses cover four different ML models: Seasonal Auto-Regressive Integrated Moving
Average (SARIMA), Prophet (PROPHET), Random Forest Regression (RFR), and Long
Short-Term Memory (LSTM). Later, we consider meteorological components such as tem-
perature and precipitation as new features to find potential improvements to the models
mentioned earlier, since the studies indicate that temperature and precipitation are among
the most fundamental indicators that can influence the climatic changes of the water bod-
ies. In this regard, we aim to understand the impact of those factors on the streamflow
prediction. Therefore, we analyze multiple approaches for streamflow forecasting. Our
first approach consists of analyzing univariate data. For this, we only consider historic
streamflow data to forecast the future streamflow data. Our second approach consists of
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employing more features rather than using solely historic streamflow data. This approach
is an instance of multivariate time-series analysis, in which the model contains multiple
time-dependent variables. An example of related multivariate analysis is the snow flow
prediction that used hybrid models trained by meteorological data [53]. Moreover, Ref. [54]
shows that streamflow predictions using SVMs were improved when considering atmo-
spheric circulations. In addition, Ref. [55] concludes that the Pacific sea surface temperature
provides us with better streamflow predictions in the Upper Colorado River Basin. Eventu-
ally, we pick the best model to perform further analysis, and evaluate in more detail using
sequence analysis. We also performed a sensitivity analysis to explore the robustness of the
model. The former is done to find the impacts of lead-time, which can result in different
accuracies, and the latter is performed since there is a need to evaluate the robustness of
the models with the presence of noise in data.

Figure 1. Impact of meteorological components on a river’s streamflow.

While many catchment areas are enthralling to observe, we focus on the Colorado
catchment in our study. We aim to forecast future discharges for this area using historic
streamflow data and additional climate data. The river basin is an essential source of water
for several states of the United States, including Colorado, Wyoming, Utah, New Mexico,
Arizona, Nevada, California, and also the Republic of Mexico [56]. The Colorado river
catchment currently faces uncommon stresses. The problem with the Colorado catchment
is the shortage of water, which has become an important and controversial issue lately.
The dry conditions over the past 20 years, along with the global climate change, affect
this catchment, which covers a large area in the United States and may affect many other
states in the near future. Studies reveal that the Colorado river basin will be faced with
reductions in runoff of approximately 19% by the middle of the 21st century [57]. On the
other hand, prolonged rainfalls over several days in some seasons cause flooding in this
area [58]. For these reasons, making timely decisions and taking actions in advance have
become critical in this area. Therefore, streamflow prediction in this area would assist
water resource managers and basin stakeholders in reducing the risks of disasters, help
policy-makers assess whether there is adequate water in drought periods, and facilitate
the decision-making on efficient water allocation. In particular, we concentrate on the Lees
Ferry site, which lies in the very bottom part of the Upper Colorado River Basin. Since the
last century, Lees Ferry has been the site of a stream gauge where the hydrologists monitor,
test, and measure the water level, streamflow, etc. Studies indicate that the Lees Ferry will
be faced with a shortage of water and reductions in streamflow in the near future. Precise
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streamflow prediction can be valuable to overcome the impact of global climate change in
this region, which serves and provides millions of people with water.

In this study we will address the following questions—(1) Which one of the ML ap-
proaches is robust for streamflow forecasting? (2) Do climate variables such as precipitation and
temperature improve the streamflow prediction? and (3) How do the accuracies of the prediction
models vary with the input and output sequences?

2. Study Site

The Colorado River is a vital water supply for the southwestern United States and
northwestern Mexico [56]. It provides water for nearly 40 million people and is used to
irrigate 2.5 million acres of farmland [59,60]. The river’s watershed covers parts of seven US
states, including Wyoming, Colorado, Utah, New Mexico, Nevada, Arizona, and California.
Given the large domain extension of the Colorado River Basin, it is divided into two regions;
the upper basin lies north of Lees Ferry, Arizona; and the lower basin lies south of Lees
Ferry [61].

In this study, we focused only on the Upper Colorado River Basin (UCRB), which
spans parts of four US states, including Colorado, New Mexico, Utah, and Wyoming.
The drainage area of the basin is approximately 113,347 square miles in area with the
outlet at Lees Ferry, Arizona [62]. The elevation of UCRB is ranging from 12,800 feet at
its headwaters to 4325 feet near the Colorado- Utah state line [63]. The primary stream in
the UCRB is the Upper Colorado River, with major tributaries including Williams Fork,
Blue River, Muddy Creek, Eagle River, Roaring Fork River, Rifle Creek, Gunnison River,
Plateau Creek, and Fraser River. The major water use in the UCRB is irrigation, with several
irrigation ditches diverting from the main-stem Colorado River and its tributaries crossing
many mountains within the basin [64]. Other water uses include industrial, municipal,
and power generation [65].

A critical feature of the natural streamflow system is the significant variation in hy-
droclimate conditions of the basin due to land topography and elevation, which play a
critical role in driving the sharp gradients in precipitation and temperature [66]. In the
UCRB, most mountain ranges are oriented north-south, creating a physical barrier and
enhancing orographic lift (air is forced to rise and subsequently cool). As a result, the con-
densation increases, leading to increased precipitation rates in a given storm event on
the windward mountainside [67]. The basin has consistently high monthly precipitation
in the winter season (November–April), where 50$ of precipitation falls as snow [63,68].
The average monthly precipitation over the UCRB is between 7.11 mm (0.28 inches) and
33.2 mm (1.31 inches) [69,70]. The temperature of the basin has a persistent significant
warming trend of about +0.5 per decade due to anthropogenic climate change and natural
variability [71]. The mean monthly temperature is between −3.6 ◦C (25.4 F) and 24.3 ◦C
(75.8 F) [69,70]. The high water demand is expected to increase due to population growth,
which is projected to increase to a million by 2020. Moreover, climate change is another
factor expected to further exacerbate the water problem in the UCRB. According to climate
models forecasting, UCRB experiences warmer temperature and reduction in precipitation,
leading to reduction in the water availability for humans and ecosystems [72].

3. Data

We used two datasets for our studies: (1) historic streamflow data for the univariate
time series forecasting, and (2) historic streamflow data associated with spatiotemporal
temperature and precipitation features for the multivariate time series forecasting. The dis-
charge data in both our studies is collected from the United States Bureau of Reclamation
(USBR) website (https://www.usbr.gov/lc/region/g4000/NaturalFlow/previous.html
(accessed on 1 January 2023)). We collected 113 years of monthly discharges, the natu-
ral flow at the Lees Ferry site in Acre-feet per month (ac-ft/month). Figure 2 shows the
Colorado river basin containing our study area. We show the result in millimeter per
month (mm/m) by dividing the streamflow values by the UCRB area and performing a

https://www.usbr.gov/lc/region/g4000/NaturalFlow/previous.html
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unit conversion. The dataset ranges from December 1905 to January 2019. It is important to
mention that the data is divided into train and test sets that contain 107 years and 6 years of
monthly data, respectively. The testing period starts in December 2012 and ends in January
2019. The test set is chosen to evaluate the performance of our models on unseen data.
The sliding window for the test data is chosen to be equal to one due to the inadequate
data. As a result, 6 years of monthly test data is considered to assess the predictions of
the models.

Figure 2. Colorado River Basin (https://www.usbr.gov/lc/region/programs/PilotSysConsProg/
report_to_congressW_appendices2021.pdf (accessed on 1 January 2023)).

The spatiotemporal data for our second task contains the additional features such
as temperature, and precipitation of the Upper Colorado River Basin. They are obtained
from the PRISM Climate Group (https://prism.oregonstate.edu/ (accessed on 13 Decem-
ber 2022), which provides climate observations such as temperature and precipitation.
The PRISM website contains historical past and recent years data that are stabilized af-
ter 6 months. We add a single measure of monthly temperature and precipitation by
computing the average of those spatial observations for the Upper Colorado River Basin.
Figures 3 and 4 illustrate the samples of spatial temperature and precipitation of the UCRB
in January 2018, respectively. Each pixel shows the intensity of temperature and precipita-
tion on the corresponding Figure. For example, the average of the temperature in January
2018 is computed by calculating the mean of the values in Figure 3.

https://www.usbr.gov/lc/region/programs/PilotSysConsProg/report_to_congressW_appendices2021.pdf
https://www.usbr.gov/lc/region/programs/PilotSysConsProg/report_to_congressW_appendices2021.pdf
https://prism.oregonstate.edu/
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Figure 3. Temperature mean (◦C) of the Upper Colorado River Basin in January 2018.

Figure 4. Precipitation (mm) of the Upper Colorado River Basin in January 2018.

The evaluation of both tasks is done by repeating each model’s prediction 50 times
to ensure their consistent performances on unseen data. In addition, we used multiple
techniques to test the generalization capability of the models and ensure the robustness of
the results. Figure 5 illustrates the past and observed streamflow at Lees Ferry. The red line
represents the ground truth (observations) that we aim to compare with our predictions,
while the blue one shows the past streamflow at Lees Ferry in millimeter per month from
December 1905 to January 2019. As shown in Figure 5, Lees Ferry experienced a severe lack
of water in 2013 and 2018. As a result, the actual streamflow values from December 2012 to
October 2013 differ from most values in the training dataset; therefore, this may cause a
divergence between predictions and actual values and reduce the overall performance of
our work. However, ML-based models should handle this issue by training more samples
with low discharge values.
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Figure 5. Past and observed streamflow at Lees Ferry.

4. Methodology

This section introduces the methods that we used to forecast the streamflow. We ex-
plain mathematical expressions for the models and evaluation metrics in detail. We divide
this section into three subsections: (1) univariate time-series prediction model, (2) multi-
variate time-series prediction model, and (3) evaluation metrics.

4.1. Univariate Time-Series Prediction Model

In univariate time series prediction model, we considered only past discharges without
additional features to predict the natural streamflow at Lees Ferry for the next 24 months.
We trained RFR, LSTM, SARIMA, and PROPHET to predict the next months of discharges.
A pre-processing technique was applied for RFR and LSTM to convert the data into se-
quences of past and future values (input-output pairs), where each value represents a
discharge for its corresponding month. We considered a couple of input sequences such
as 12, 24, 36, 48, 60, and 72 months of streamflow data and for RFR and LSTM, in which
the lengths 24 and 72 were found to be optimal for the models, respectively. Therefore, we
accumulated sequences of 24 months of input data with their corresponding 24 months out-
put sequence for RFR, and sequences of 72 months of input data with their corresponding
24 months output sequence for LSTM. In this way, we modeled the problem as a supervised
learning task, where the sequences are made by crossing through the entire dataset by
moving one month at a time. In addition, a standardization technique is performed on
the data before we feed input-output sequences to LSTM. More specifically, we performed
z-normalization for the train and test sets prior to prediction. Z-normalization is defined
by the following equation:

Znorm =
x− µ

σ
(1)

where µ and σ are the mean and standard deviation of the data. Z-normalization is
preferred over other normalization techniques due to the presence of outliers in the dataset
that affects the training phase [73]. On the other hand, statistical models SARIMA and
PROPHET were trained for each trial to predict the next 24 months of natural streamflow
since they require the entire past data instead of receiving sequences of data. For the sake
of fairness, an equal number of training data were considered at each trial.

4.1.1. RFR

As a representative of the tree-based induction model, we use Random Forest Regres-
sion (RFR). RFR is a model based on Decision Tree (DT), where predictions of numerous
DTs are averaged to calculate the final prediction. Figure 6 illustrates a simplified structure
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of random forest regression in which the depth of each tree is 2. In general, random forest
regression can be defined as the following equation:

RFR(x) =
1
N

N

∑
i=1

Ti(x) (2)

where N is the number of decision trees, Ti(x) is the prediction made by the tree i on input
x, and RFR(x) is the average prediction.

Figure 6. A simplified structure of Random Forest Regression.

We performed hyperparameter tuning to build the optimal models. RFR was trained
with 1000 estimators, minimum samples split of 2, minimum samples leaf of 1, maximum
depth of 8, and with bootstrapping. In addition, the random state is fixed to generate the
reproducible result. Different lengths of look-back windows were studied to find the best
possible one. As a result, it was set to 24 as the best sequence for univariate time-series RFR.

4.1.2. LSTM

Recurrent Neural Network (RNN) is a type of Artificial Neural Network (ANN) that
learns sequence representations through recurrent connections of cells made of fully con-
nected neural networks [74]. Long Short-Term Memory (LSTM) network is a RNN variant
that handles long-term dependencies and solves the problem of vanishing and exploding
gradients using the gates included in its architecture. Figure 7 shows the functions of a
memory unit of LSTM. The sigmoid layers transform the input to a probability in the range
of 0 and 1. The first sigmoid layer in the LSTM cell decides how much information the cell
should throw away, and the second sigmoid layer with tanh nonlinearity helps the network
store the information that needs to be kept in the cell state. Finally, the rightmost sigmoid
layer decides which portion of the input will be returned as output. The tanh activation
function pushes the output to be in the range of −1 and 1. The cell state, the straight
horizontal line on top of the network, takes the updates every time and outputs the result.

In general, LSTM is defined by the following equations:

it = σ(Wi[Ht−1, Xt] + bi) (3)

ft = σ(W f [Ht−1, Xt] + b f ) (4)

C̄t = tanh(Wc[Ht−1, Xt] + bc) (5)

Ct = ft ∗ Ct−1 + it ∗ C̄ (6)

ot = σ(Wo[Ht−1, Xt] + bo) (7)
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Ht = ot ∗ tanh(Ct) (8)

where σ is sigmoid function, Xt is input vector at time t, Ct is cell state and Ht−1 is hidden
state. The Equations (3), (4) and (6) are the input, forget, and output gates, respectively. W
represents weight and b denotes bias. Eventually, ∗ represents element-wise multiplication.

Figure 7. The structure of LSTM memory unit.

For LSTM-based streamflow forecasting, we need the full sequence as the output.
To produce the output similar to the input sequences, we use the many-to-many structure
of LSTM by returning the hidden states’ representations. In this work, Rectified Linear Unit
(ReLU) is used as the activation function for hidden layers which is defined as:

ReLU(z) = max(0, z) (9)

LSTM was trained with 3 hidden layers of 100 neuron units each and a dense layer
of 24 units with a linear activation function to predict the next two years. We added
the dropout regularization factor of 0.2 to avoid overfitting, and added ReLU activation
functions to each hidden layer. Twelve epochs with a batch size of 8 and a validation set
of 30% of training data were used to train the model. The loss function was set as Root
Mean Square Error (RMSE) between the observations and predictions during the training
period. A random seed is set to generate reproducible results each time we run the training
phase. It is important to mention that the input shape is set to (72, 1) since the look back
window size is 72 months. This look back length has been chosen by manually setting the
hyperparameter to provide us with the best possible model.

4.1.3. SARIMA

SARIMA, Seasonal Autoregressive Integrated Moving Average model, considers past
data in order to predict its future, and it is defined as:

SARIMA = c +
p

∑
n=1

αnyt−n +
q

∑
n=1

θnεt−n +
P

∑
n=1

φnyt−mn +
Q

∑
n=1

ηnεt−mn + εt (10)

Here, p is the trend autoregression order, d is the trend difference order, and q is the
trend moving average order. Other parameters P, D, Q, and m are seasonal autoregressive
order, seasonal difference order, seasonal moving average order, and the number of time
steps for a single seasonal period respectively. We trained SARIMA with the best possible
hyperparameters. The differencing term has been ignored by automatic hyperparameter
tuning since there is no observable trend in our data. Therefore, we considered p = 3,
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d = 0, q = 2, P = 2, D = 0, and Q = 1 as the best parameter set found by auto ARIMA.
The term m was set to 12 since the data is monthly and the seasonality repeats every year.

4.1.4. PROPHET

PROPHET was trained with a change point prior scale of 0.1, number of change points
of 150, multiplicative seasonality mode, yearly seasonality, and interval width of 95%.
The following expression defines the mathematics behind Facebook’s PROPHET model:

y(t) = g(t) + s(t) + h(t) + εt (11)

where g(t) is the piecewise linear or logistic growth curve for modeling non-periodic
changes in time series, s(t) is the periodic changes, h(t) is effects of holidays (disabled
in our work), and ε is the error term. PROPHET, as a regressor, fits several linear and
nonlinear functions to the model [74]. As an example, a nonlinear model for non-periodic
changes is defined as follows:

g(t) =
C

1 + exp(−k(t−m))
(12)

where C, k, and m are carrying capacity, growth rate, and offset parameter.
Finally, the seasonal effect is defined by the following Fourier series:

s(t) =
N

∑
n=1

ancos(
2πnt

P
) + bnsin(

2πnt
P

) (13)

where P is the period for seasonality effect, that is set to 30 for monthly seasonality.

4.2. Multivariate Time-Series Model Prediction

Meteorological components such as temperature and precipitation of the watershed
can affect the streamflow. In this regard, we added these variables to our data as extra
features to be considered in addition to the past streamflow. The spatiotemporal data were
used to compute the average temperature and precipitation of the Upper Colorado River
Basin for each month. Accordingly, the average of those features was calculated and added
to our new data.

To do so, we applied the shapefile of the Upper Colorado River Basin to subset the
monthly temperature and precipitation of the Upper Colorado River Basin from the PRISM
data, which covers the conterminous United States. Figures 3 and 4 show the result of
such processes. We use the similar machine learning models as introduced earlier in the
univariate model section. However, the input data size was increased since we added two
more features. Model-specific changes for the multivariate data are listed below.

• RFR: RFR’s input sequence is tripled in which the first 24 elements represent the
discharge values, the second 24 elements represent the temperature values, and the
last 24 elements represent the precipitation values.

• LSTM: LSTM’s input is a 2-dimensional matrix of shape (72, 3). The first dimen-
sion represents the number of elements, and the latter represents the three features,
i.e., discharge, temperature, and precipitation.

• SARIMAX: Since we added extra features to the model, SARIMAX has been used
instead of SARIMA. The exogenous factor of SARIMAX allows us to forecast future
streamflow using external factors such as temperature and precipitation [75,76]. SARI-
MAX, as a seasonal auto-regressive integrated moving average model with exogenous
factors, is defined as:
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SARIMAX = c +
p

∑
n=1

αndt−n +
q

∑
n=1

θnεt−n +
r

∑
n=1

βnxnt+

P

∑
n=1

φndt−mn +
Q

∑
n=1

ηnεt−mn + εt

(14)

• PROPHET: Two additional regressors have been added to consider temperature and
precipitation for the PROPHET model.

Hyperparameter tuning was performed to build the best possible models. As dis-
cussed in the previous subsection, the random seed was fixed to generate reproducible
results each time we run the training phase. RFR was trained with 500 estimators, minimum
samples split of 2, minimum samples leaf of 7, maximum depth of 5, and with bootstrap-
ping. LSTM has trained with 3 hidden layers of 400 units each and a dense layer of 24 units
with a linear activation function to predict the next two years. We added dropouts of 0.5,
and ReLU activation functions to each hidden layer. Twelve epochs with a batch size of
8 and a validation size of 30% were used to train the model. SARIMAX was trained with
p = 3, d = 0, q = 3, P = 2, D = 0, Q = 1, and m = 12. This parameter set is the best
parameter set found by auto Arima. We also added temperature and precipitation to the
model as exogenous variables. PROPHET was trained with a change point prior scale of
0.1, number of change points of 100, multiplicative seasonality mode, yearly seasonality,
and interval width of 95%.

4.3. Evaluation Metrics

To evaluate the models, we use multiple metrics on the test dataset such as Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute
Percentage Error (SMAPE), R-squared (R2), Nash–Sutcliff Efficiency (NSE), and Kling–
Gupta Efficiency (KGE). The evaluation metrics based on predicted values fi, observed
values ri, and number of observations n are discussed below.

• Root Mean Square Error (RMSE): RMSE is widely used in regression-based prediction
tasks, and it quantifies the closeness between predictions and observations. RMSE is
defined as follows:

RMSE =

√
1
n

n

∑
i=1

( fi − ri)2 (15)

• R-squared (R2): R-squared metric, as a coefficient of determination, is used to measure
how the prediction is aligned with the observation. R2 is defined as:

R2 = 1− RSS
TSS

(16)

where RSS is the sum of the squared residuals, and TSS is the total sum of squares.
The closer the value of R-squared to 1, the better the model’s predictions compared to
the actual values.

• Mean Absolute Percentage Error (MAPE): MAPE is one of the most widely used
metrics in the literature, and is defined as:

MAPE = (
1
n
)

n

∑
i=1
| ri − fi

ri
| (17)

However, there are some shortcomings with MAPE in some tasks [77]. Assume that f = 1
and r = 3, then the division is 2/3. Now, assume that f = 3 and r = 1, then the division
is 2, which implies an inaccurate information, especially, when working with MAPE as a
percentage. Therefore, the denominator plays a crucial role in providing a fallacious result
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in some conditions. Symmetric Mean Absolute Percentage Error (SMAPE) is a reformed
version of MAPE that addresses those shortcomings, and is defined as follows:

SMAPE =
1
n

n

∑
i=1

|ri − fi|
| fi|+ |ri|

(18)

Nash–Sutcliff Efficiency (NSE): NSE [78] is a widely used metric in hydrology that is
defined as follows:

NSE = 1− ∑n
i=1(ri − fi)

2

∑n
i=1(ri + r̄i)2 (19)

where r̄i represents the mean of observed values.
Kling–Gupta efficiency (KGE): We use KGE, which is a revised version of NSE [79]. KGE
is defined as below:

KGE = 1−
√
(CC− 1)2 + (α− 1)2 + (β− 1)2 (20)

where CC is the linear correlation between observations and predictions, also called Pearson
coefficient, α denotes flow variability error, and β denotes bias.

5. Experimental Results

The experimental result section is presented in four subsections: (1) comparison of
ML models, (2) univariate and multivariate time series forecasting, (3) sensitivity anal-
ysis, and (4) sequence analysis. Figure 8 shows the flowchart of the experiment design
in this paper. In each subsection, we will discuss different models and evaluate their
prediction performances.

Figure 8. The flowchart of streamflow prediction using ML-based models.

As discussed earlier in this paper, long-range streamflow prediction helps water
managers to decide and act ahead of time. Although choosing an appropriate lead-time is
important, forcing a long lead-time may affect the performance, resulting in low accuracy.
Various lead-time predictions have been presented by researchers ranging from days to
months and years. We conduct our analysis with a lead-time of 24 months, where we
compare ML models, and analyzed the effects of temperature and precipitation. Two
years of prediction is reasonably long enough for the stakeholders to approximate the
future streamflow of the UCRB. Moreover, we perform a sequence analysis for our best
model at the end of this section to indicate how choosing a various range of look-back and
look-ahead (lead-time) sequences affects the performance of streamflow prediction. We
plot prediction values against the observations to demonstrate the results qualitatively.
As mentioned earlier, we use multiple metrics on the test dataset such as RMSE, MAPE,
SMAPE, NSE, and KGE to quantitatively assess the models.

5.1. Comparison of the ML Models

First, we demonstrate the RMSE of our models as a normal distribution to compare
them qualitatively. As shown in Figure 9, RFR has the least RMSE among the four models.
Both the median and average RMSE in RFR is less than 1.1 mm/month, which indicates
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RFR’s superior performance in this experiment. In addition, SARIMA performed well,
resulting in low RMSE on average. On the other hand, LSTM and PROPHET performed the
worst, where the median and average RMSE are in the range of 1.79 and 1.82 mm/month.
Furthermore, the predictions of all models have low variance, which means that there are
only a few unsatisfactory predictions out of 50 trials. To be specific, the predictions of the
models are well-generated and robust.

Figure 9. RMSE distribution of univariate time-series Models.

Figure 10 illustrates all metric values for those models over 50 trials in box plots.
Each box plot contains the corresponding metric values of 50 trials of the forecast on the
test dataset. RFR and SARIMA show less SMAPE and MAPE since their predictions are
very close to the observations. This can be further justified by comparing RMSE values.
RFR shows a better RMSE, while SARIMA is superior considering the MAPE. In addition,
R-squared allows us to observe the relationship between the independent variable (time)
and the dependent variable (discharge). It reveals how well the model predicts against
the ground truth. The first observation is that the predictions of SARIMA follow the
ground truth more precisely than the other models. The predictions of LSTM result in
smaller R-squared values, and come with higher variance in comparison with other models.
Nevertheless, a smaller R-squared does not necessarily mean that we have an inapplicable
model. Considering other criteria such as RMSE and MAPE along with the R-squared
assures a fair evaluation. Eventually, RFR and SARIMA show outstanding result with mean
NSE and KGE of 0.85. Therefore, RFR and SARIMA are very competitive in univariate
time-series prediction.

Next, we demonstrate the distributions of model predictions over 50 trials in the
multivariate case, as shown in Figure 11. Similar to the univariate case, RFR has the least
RMSE. RFR achieved a better result by reducing the median and average RMSE from
1.1 mm/month to 0.9 mm/month. Similarly, LSTM attained lower RMSE with less than
1.65 mm/month. Correspondingly, SARIMAX showed less RMSE for multivariate cases
compared with the univariate ones. On the other hand, PROPHET achieved similar RMSE
in the multivariate case.
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Figure 10. RMSE, SMAPE, MAPE, R-squared, NSE, and KGE results of univariate time-series ML models.

The box plots of all performance metrics for each ML model in the multivariate case
are shown in Figure 12. RFR has a higher median in R-squared, but it has a high variance.
We observe that the predictions of RFR follow the ground truth more precisely than the
other models. Most of the R-squared values for all models are high enough to approximate
the ground truth. According to the definition of R-squared, the result of 0 means that
the quality of the predictions is worse than setting a straight horizontal line among the
data points. In this regard, the prediction values of our models are satisfactory, since the
mean R-squared of 0.92 for RFR represents sufficient accuracy. Additionally, we compared
the predictions in terms of SMAPE and MAPE metrics, which show that RFR and LSTM
are superior to the other models. NSE and KGE improved to 0.86 in RFR multivariate
time-series predictions.

Figure 13 demonstrates predictions against the ground truth of 24 months ahead for
2 trials in both univariate and multivariate cases, which include the periods of May 2013
to April 2015, and from May 2015 to April 2017. It is worth mentioning that Figure 13
shows a subset of the testing period that starts from December 2012 and ends in January
2019. Visually, all models are prominent and decent. For the sake of fair evaluation of
the performance of models in detail, we employed the previously-mentioned metrics
and repeated them over 50 different test datasets to validate our results. As it had been
estimated earlier, we observed higher errors in predictions starting from December 2012 to
October 2013. However, the rest of the predictions had a lower error margin, as shown in
Figure 16.
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Figure 11. RMSE distribution of multivariate time-series models.

Figure 12. RMSE, SMAPE, MAPE, R-squared, NSE, and KGE results of the ML models in multivariate
time-series forecasting.
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Figure 13. Prediction against ground truth streamflow of univariate and multivariate time-series
models for two trials from May 2013 to April 2015 and from May 2015 to April 2017 over the test set.

It is important to note that these differences have been extracted for each month
irrespective of the 24-month average. A qualitative comparison between the plots reveals
that adding monthly temperature and precipitation of the Upper Colorado catchment
improves the streamflow predictions in the Lees Ferry river over 24 months.

5.2. Univariate and Multivariate Time-Series Comparison

Both univariate and multivariate time-series models demonstrated decent results
in predicting streamflow of 24 months lead-time. This subsection aims to compare the
performances in univariate and multivariate cases of all ML models. In other words,
the purpose of this experiment is to discern potential improvements in predictions while
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considering meteorological components of the Upper Colorado River Basin along with the
past streamflow. We hypothesize that the monthly temperature and precipitation of the
Upper Colorado River Basin may affect the streamflow in the Colorado river, in particular
the Lees Ferry site. In this subsection, we experimentally validate that hypothesis. Figure 14
shows the RMSE distributions of all 50 trials for both univariate and multivariate time-series
models. Multivariate time-series RFR shows improvement in the RMSE plot by reducing
the error. Consequently, we conclude that considering the temperature and precipitation
of the Upper Colorado River Basin minimizes the error in the prediction of streamflow
using RFR. Likewise, LSTM has less RMSE in its multivariate time-series model than its
univariate counterpart.

SARIMAX shows improvement in the multivariate case. However, it shows a high
variance in the multivariate model, which implies that there are unacceptable predictions
in some of the trials. On the other hand, multivariate PROPHET does not reduce the
RMSEs. We also observe that the multivariate time-series PROPHET reduced the variance
in predictions compared to the univariate model.

Figure 14. RMSE distribution of univariate and multivariate time-series for all models.

R-squared values of multivariate RFR show significant progress compared with the
univariate case, as shown in Figure 15. Analyzing both RMSE and R-squared figures reveals
that multivariate RFR precisely predicts and accurately approximates the ground truth in
most trials. However, the multivariate predictions have high variance, i.e., the predictions
in some trials are not as satisfactory as the univariate case.

Multivariate LSTM achieved a higher R-squared since the median of its box plot is
higher than the univariate case. Therefore, including temperature and precipitation as
extra features increased R-squared in LSTM, i.e., the predictions in most trials follow the
observed streamflow more precisely.

Multivariate SARIMA (SARIMAX) outperformed univariate SARIMA in terms of the
R-squared metric, as shown in Figure 15. However, SARIMAX shows a higher variance of
R-squared. Eventually, multivariate PROPHET shows a slight improvement in R-squared,
meaning adding temperature and precipitation did not help achieve significantly higher
R-squared. However, the RMSE was greatly reduced in its multivariate case.
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Figure 15. Median R-squared of univariate against multivariate time-series models.

The difference between forecasts and actual values can be informative to evaluate
the models, and to observe the closeness of the predictions and observations. Figure 16
demonstrates the differences between forecasts and actual values in all test datasets for
univariate and multivariate models. RFR shows lower differences (close to the center) for
most of the months. As Figure 16 illustrates, RFR and SARIMA achieved the best results
since the differences between predictions and observations are prone to zero. The x-axis
represents the months that we aimed to predict. We repeated 24-month predictions 50 times
over the test dataset. Therefore, the plots illustrate the deviation of 1200 months of pre-
dictions from the observations. We set a reasonable threshold of 2.1 mm for observing
the differences between forecasts and observations. This threshold is considered based
on average streamflow and it provides us with a fair comparison between the points.
The shaded area covers the difference of 2.1 mm per month. The points that lie in this area
are considered acceptable predictions since the deviation between observation and forecast
is less than 2.1 mm per month. Table 1 shows the number of points that lie in-between the
range of −2.1 and 2.1 mm per month for each model. Since the difference is computed by
subtracting the forecasts from the observations, the points above the blue line represent
that the values of forecasts are less than the actual values, and vice versa. As Table 1
shows, multivariate time-series RFR and SARIMA have the highest number of points in
the shaded area, which means that most of the predictions are closer to the observations;
1001 and 1054 out of 1200 instances, respectively. Moreover, most models achieved a higher
number of points in-between the range in their multivariate phase, which indicates that
the multivariate time-series models improve the predictions by reducing the difference
between predictions and observations. It is important to mention that these different values
are computed for each instance, therefore, the comparison with the RMSE distributions
that we have done in the previous sections is not fair since the RMSEs previously were
computed by calculating the average RMSE of every 24-month window. As a result, we
consider this study as a different assessment of the models, illustrating every single forecast
value during the testing period.

Table 1. Number of points in Figure 16 that lie in-between the shaded area.

Univariate Time-Series Multivariate Time-Series

ID Model Count Percent (%) Count Percent (%)

1 RFR 976 81 1001 83
2 LSTM 894 74 950 79
3 SARIMA 991 82 1054 87
4 PROPHET 990 82 998 82
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Figure 16. Difference between predictions and observations for univariate and multivariate time-
series models.

5.3. Sensitivity Analysis

In the previous sections, we ran several models to predict the streamflow for 24 months.
Finally, we concluded that the multivariate Random Forest Regression (RFR) outperforms
the other models, as shown by the evaluation metrics. In this section, by considering RFR as
our best model to predict future streamflow at Lees Ferry, we aim to analyze the sensitivity
of our best model in predicting future streamflow. Sensitivity Analysis explores the impact
exerted on the predictions by manipulating the input data. Sensitivity analysis consists of
adding noise to the input data in the testing phase. To do so, we added several Gaussian
noises to all input features such as discharge, temperature, and precipitation. Noises A,
B, C, and D with Gaussian (Normal) distribution with zero mean and standard deviation
of 1, 2, 3, and 4 were added to the input data, respectively (Figure 17). Adding noise was
applied meticulously only to the input sequences, leaving the output sequences as they are
supposed to be observed. The purpose of this task is to observe how well we can predict
future streamflow in the presence of uncertainty and unexpected values, i.e., noise, in the
input data.

As the standard deviation of noise increases, the performance of the multivariate
time-series RFR model drops. RMSE distribution of the RFR model is the worst when we
add noise D, in which the standard deviation is 4. Figure 17 demonstrates the effect of
adding Gaussian noises to the multivariate time-series RFR model. Noise D with a standard
deviation of 4 has the highest influence on our model. This is the breaking point for our
RFR model, since adding noise D makes RFR fail in forecasting the streamflow. The best
performance was achieved when there was no noise. We also added the mean of univariate
time-series RFR to the plot as shown in Figure 17. The mean of 1.1 mm/month in univariate
time-series RFR shows that the univariate model outperforms the multivariate model with
the presence of noise D.

5.4. Sequence Analysis

In addition to the previous experiments, we compare different input and output se-
quence lengths for the best model, RFR, to observe the variations in the results. In other
words, we explore the effects of considering different lead-time lengths along with dif-
ferent input sequences for assessing the quality of predictions. Therefore, a number of
look back and look ahead span windows as 6, 12, 18, 24, 30, 36, 42, and 48 months are
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considered in this experiment. We increased the size of the test dataset to report a fair
evaluation between different models since we consider four years of monthly data in the
look back and look ahead sequences. To do so, the size of the test dataset is doubled,
and consequently, the size of the training dataset is reduced. It is important to understand
that this may bring about variance in the performance compared to the previous sections.
However, our goal in this section is not to achieve the best result by increasing the training
dataset, but rather to highlight the importance of selecting appropriate sequence lengths by
comparing them together.

Figure 17. The effect of adding Gaussian noise to the input data in multivariate time-series RFR.

Figure 18 shows heat maps of the average RMSE, SMAPE, MAPE, R-squared, NSE,
and KGE of all trials for each univariate time-series RFR model that covers four years of
streamflow prediction. By considering Figure 18b, it can be clearly observed from the heat
map that increasing the length of look back sequence reduces the average SMAPE while
increasing the length of look ahead sequence increases the average SMAPE. However,
increasing the size of look back and look ahead windows do not reduce the error since RFR
may not be able to handle sequences that are too large. Likewise, we conclude the same
results for RMSE, MAPE, R-squared, NSE, and KGE. However, a comparison between the
R-squared of 6 months ahead and the rest may not be fair because R-squared is sensitive to
the number of samples it receives. The same conclusion can be made for NSE and KGE.
As a result, predicting the streamflow using RFR can be applicable as far as the look back
and look ahead sequences are chosen cautiously. That being the case, a look back window
of size equal to 24 was chosen for univariate time-series RFR. It is worth mentioning that the
heat maps of R-squared and NSE are very similar since the Nash–Sutcliffe model efficiency
coefficient is nearly identical to the coefficient of determination (R-squared) in its nature.

Figure 19 illustrates the same result as shown in Figure 18c. In addition, we added
1-month ahead prediction results since it is important to explore how the model predicts the
streamflow for the next month. We considered look back windows of sizes 6, 12, 18, 24, 30,
36, 42, and 48, and evaluated them with MAPE, as shown in Figure 19. It can be observed
that 1 month ahead prediction model outperforms the other ones. The model can easily
learn from the data when the look-ahead window is set to one. In addition, the MAPE
improved to 27 when we increased the length of the lookback window. The same trend
can be observed from the other models, showing that increasing the look back improves
the predictions as long as we reach the length of 24. The plots demonstrate that increasing
the size of the look back window will not elevate the performance of models. On the other
hand, the error grows by increasing the size of the look-ahead window.
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a. b.

c. d.

e. f.

Figure 18. Analysis of different look-back and look-ahead span windows for univariate time-series
RFR in terms of their average RMSE, SMAPE, MAPE, R-squared, NSE, and KGE in sub-figures
(a–f) respectively.

Lastly, we investigated the predictions of univariate time-series RFR qualitatively in
Figure 20, from May 2014 to April 2016, to observe the effects of various sequence lengths
under which the RFR model performs very well or poorly. The comparison is reported on
6 months for each of the 4 time periods, since the lowest lead-time was 6 months; therefore,
the predictions after the 6th month are not shown for the rest of the models. Figure 20
illustrates the predictions of all 8 RFR models, which are different in terms of their look
ahead window sizes ranging from 6 to 48 months against the observations. All models have
the same look back window that is equal to 24. It can be seen that they have very similar
results in these periods and the predictions are very close to the observations. Additionally,
considering smaller look ahead window sizes such as 6 and 12 enhances the predictions
on average. However, these plots illustrate a qualitative result of how choosing different
lead-time sequences affect the predictions.

Next, we explore the same analysis of Figure 18 for multivariate time-series RFR. Heat
maps of RMSE, SMAPE, MAPE, and R-squared in Figure 21 demonstrate similar results as
the univariate time-series RFR achieved earlier. The RMSE increases by increasing the look
ahead window size and decreasing the look back window size. However, the variation rate
in multivariate time-series RFR is slower than the univariate one, as shown in Figure 21.
The major reason for this slow improvement may be due to the increased size of input data
in the multivariate case, since we have added the temperature and precipitation. In other
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words, the dimensionality of the input sequences is tripled in multivariate time-series RFR
by adding temperature and precipitation as additional features. The high-dimensionality of
input may prevent the model to perform the best. Nevertheless, the multivariate forecasting
performance is superior to the univariate one. Finally, the heat maps of multivariate RFR
for R-squared and NSE are similar for the reason that has been mentioned earlier. The
multivariate case shows higher similarity since the variation rate is slower.

Figure 19. Comparison between models with different look ahead windows and their corresponding
look back windows in univariate time-series RFR.

Figure 20. Predictions of univariate time-series RFR models trained with different look-ahead span
windows against the ground truth from May 2014 to April 2016.
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a. b.

c. d.
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Figure 21. Analysis of different look-back and look-ahead span windows for multivariate time-series
RFR in terms of their average RMSE, SMAPE, MAPE, R-squared, NSE, and KGE in sub-figures
(a–f) respectively.

A comparison between models with different look ahead windows and their cor-
responding look back windows in multivariate time-series RFR is shown in Figure 22.
As mentioned earlier, the variation rate is slow. Considering 6 months ahead prediction the
model shows that increasing the look back size reduces the error until we reach the size of
24. The error in most of the models becomes steady after increasing the look back window
from 24 to 48 except for the 1-month look-ahead prediction model in which increasing
the look-back window size does not help us elevate the performance. Furthermore, it can
be observed that increasing the look-ahead window size increases the error. The MAPE
for 1 month ahead prediction model is 25 while the MAPE for 6 months ahead prediction
model is almost 28, and continues in the same way.

Finally, we demonstrate the predictions of multivariate time-series RFR models trained
with different look ahead span windows against ground truth from May 2014 to April 2016,
to explore their performance qualitatively. The comparison is reported on 6 months for each
of the 4 time periods, similar to the univariate case. Figure 23 illustrates the predictions
of all 8 multivariate time-series RFR models that are different in terms of their look ahead
window sizes ranging from 6 to 48 months against the observations. All models have
the same look-back window size of 24. It can be seen that choosing smaller look-ahead
window sizes provides us with more accurate predictions. The major difference between
Figures 20 and 23 is that the predictions of the multivariate time-series RFR models are
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closer to the observations. For example, considering May to October 2014 reveals that the
multivariate time-series RFR outperforms the univariate one.

Figure 22. Comparison between models with different look ahead windows and their corresponding
look back windows in multivariate time-series RFR.
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Figure 23. Predictions of multivariate time-series RFR models trained with different look-ahead span
windows against ground truth from May 2014 to April 2016.

6. Discussions

RFR demonstrated satisfactory results among the four ML-based models used in
this study. In particular, multivariate RFR performed the best by achieving the highest
performance according to the six evaluation metrics presented in the previous sections.
The most controversial result might be the superior performance of RFR over LSTM, which
is a deep learning and successful model. The reason might be due to the fact that random
forest avoids overfitting by increasing the number of trees in the training phase. Moreover,
RFR has been found to be more accurate than Artificial Neural Networks (ANNs) in several
streamflow prediction tasks [80]. The fluctuations and seasonality in streamflow data
might be an essential factor that random forest is able to effectively capture, such as the
underlying information and non-linear relationships that are present in data, which it can
learn it in a better way. A recent study of suspended sediment prediction in a river shows
that random forest outperforms support vector machines and neural networks [81,82].

Furthermore, the predictions of random forest and neural networks are always within
the range of the observations since they avoid extrapolation [83]. However, the other
features made random forest perform better than LSTM, and neural networks are extremely
dependent on the amount of training data.

In general, the performance of PROPHET was worse than other models. However,
PROPHET deals with missing values and handles outliers and changes in time series
as mentioned in Ref. [84]. On the other hand, SARIMA exceeded PROPHET and uni-
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variate LSTM by achieving decent results close to RFR. Ref. [85] indicates that SARIMA
outperforms ML-based models in drought conditions.

To our knowledge, this is the first study that explores not only the impact of using
multivariate time series models, but also investigates different look back and look ahead
window lengths for RFR in the streamflow prediction task. These findings are highly
valuable because multivariate RFR achieved excellent results based on the evaluation
methods. In our opinion, the performance of RFR could be further improved by adding
more predictor variables, such as snowmelt images or other meteorological components.
However, failing to provide an interpretable result is the main limitation of the presented
ML-based models in this paper. It is difficult to understand and explain why a particular
prediction was made by most of the ML models. Ultimately, it is worth mentioning that the
streamflow prediction in drought-stricken UCRB is more challenging than in wet areas. In
addition, Ref. [86] indicates that the data-driven models on a monthly scale perform better
in wet conditions than in dry conditions.

While the purpose of this work was to concentrate on Lees Ferry to explore this vital
station in detail, we also applied the RFR model on multiple rivers in different states to test
the generalizability of the work that has been done on Lees Ferry in the previous sections.
To do so, we picked two more stations that lie in the UCRB. San Juan River Near Bluff is
a station that is located in Utah. The other station that we were interested in analyzing
its future streamflow was Yampa River Near Maybell, which is located in the upper part
of the Colorado state. The average level of water in these two stations is extremely lower
than in Lees Ferry. As shown in Figure 24, three candidate stations that are located in three
different states belonging to the UCRB have been explored to assess our best performing
model. It can be observed that our univariate and multivariate RFR models have low error
when performed on Lees Ferry and Yampa stations. On the other hand, univariate RFR has
higher SMAPE on data derived from San Juan station. However, multivariate time series
RFR remarkably reduced the SMAPE for San Juan, as shown in Figure 24. Therefore, we
conclude that the time series RFR model can be generalized to more stations in UCRB to
perform real-life streamflow prediction.

At the end, the uncertainty of the model should be further investigated in rare condi-
tions since some models are relatively variable when faced with extreme climate conditions
such as unexpected and occasional floods or drought. Furthermore, it is still an open ques-
tion to distinctly understand the impact of temperature and precipitation on streamflow
prediction in this area. We anticipate that the temperature plays a major factor and has
more influence than precipitation on the streamflow at Lees Ferry because it is located in
drought-stricken UCRB. On the other hand, we expect that the precipitation plays a critical
role in wet conditions and can be considered an important driving force in those areas.

Figure 24. Generalizability test by applying RFR in multiple rivers. Univariate and multivariate time
series RFR are compared for 24 months streamflow prediction at Lees Ferry, San Juan, and Yampa stations.
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7. Conclusions

In this paper, we used machine learning models to predict the future streamflow of the
Lees Ferry site of the Upper Colorado River Basin, where the river is a source of water for
several states in the United States. Over 113 years of monthly data were used for training
and testing the ML models. Four ML models such as RFR, LSTM, SARIMA, and PROPHET
were compared with each other. In this regard, we first only used past streamflow to
predict its future values for 24 months. Various input sequences and hyperparameters were
analyzed for each model in order to choose the best possible model and to compare their
performances. All models achieved satisfactory performance with low RMSE and obtained
high R-squared, and also the MAPEs for all models were less than 25%, which means that
the presented models are able to predict future streamflow accurately for at least 24 months.
RFR and SARIMA were the two models that outperformed the others with low error.

Subsequently, we improved the earlier models by adding meteorological components
such as temperature and precipitation to our dataset, i.e., training multivariate time-series
models by considering past streamflow, temperature, and precipitation to predict future
streamflow. We used monthly spatiotemporal temperature and precipitation values to
compute the mean meteorological feature values of each month. We performed multiple
trials, and showed performance gain in multivariate predictions. Multivariate predictions
were more precise in approximating the observed streamflow. We conclude that the
temperature and precipitation of the Upper Colorado River Basin had positive impact on
the streamflow prediction in this area. Adding monthly temperature improved R-squared
and reduced the error of our models, especially for RFR and LSTM. The predictions in both
univariate and multivaraite tasks were shown to be robust for predicting the streamflow
at Lees Ferry for 24 months. However, the variance of some models was higher than
the rest. This could be improved by training with more data and also by validating the
performance of models in a larger test dataset. Therefore, based on our study at Lees
Ferry, the multivariate time-series RFR model achieved more promising performance by
producing better predictions.

In the final section, we explored sequence and sensitivity analysis for our best model,
multivariate time-series RFR. Our sensitivity analysis suggested that the multivariate time-
series RFR is robust to noise. Furthermore, the results of average RMSE, SMAPE, MAPE,
and R-squared in sequence analysis indicate that choosing very short look-back window
sizes leads to inaccurate predictions. Increasing the look-back window size helps us make
better predictions, while there is a threshold that prevents us from choosing a very large
window size. Furthermore, increasing the look-ahead window size leads to inaccurate
predictions. Choosing the best sequence length lies under the task of hyperparameter
tuning, which can help the model work at its best performance.

In the end, we conclude that considering past temperature and precipitation of the
Upper Colorado catchment improves the predictions of future streamflow of Lees Ferry,
where the site lies in the middle of the Colorado Basin. Nevertheless, several cases need
further investigation and extra work. To this end, one may extend this work to observe the
influence of meteorological components in various parts of the Colorado basin. In addition,
we only considered the boundary of the Upper Colorado Basin. One may consider a variety
of boundaries instead of the Upper Colorado River Basin to observe the influences of those
boundaries on the streamflow prediction in the Lees Ferry station. Finally, obtaining larger
data helps us fairly evaluate the models’ predictions since choosing a small-size test dataset
may bring about biased results. Therefore, collecting more data matters highly in our case,
mainly when dealing with monthly or yearly data.

Lastly, given the importance of temperature and precipitation in streamflow prediction,
further work could be performed on the state-of-the-art models such as CNN-LSTM [87,88]
and transformer [89,90] considering the past discharge, temperature, and precipitation of
the Upper Colorado River Basin as spatiotemporal data in order to predict the streamflow
at Lees Ferry for at least 2 years based on monthly data.
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