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Abstract: Scouring around the bridge pier is a natural and complex phenomenon that results in bridge
failure. Failure of bridges have potential devastation and public safety and economic loss, which lead
to political consequences and environmental impacts. Therefore, it is essential to countermeasure the
scour around the bridge pier. This paper studies the effects of four different airfoil-shaped collars
(i.e., bc1 = 1.5b, bc2 = 2.0b, bc3 = 2.5b and bc4 = 3.0b, where bc and b are the diameter of the airfoil-shaped
collar and pier, respectively) as a scour countermeasure. All the experiments are conducted under
clear water conditions with uniform sediment and a constant water depth (y) of 10 cm. Airfoil-shaped
collar is placed at four elevations, i.e., bed level, y/4, y/2 and 3y/4 above the sediment bed level. It
is observed that the maximum percentages of scour reduction of 86, 100 and 100% occurred due to
protection provided by the collar bc2, bc3 and bc4, respectively, at sediment bed level. So, collars bc2,
bc3 and bc4 are efficient at the sediment bed level. The profiles of scour hole show that the length of
the transverse scour hole is greater than that of the longitudinal one. Numerical investigation of the
morphological changes in sediment bed and scour depth contours is developed using the FLOW-3D
for the pier with and without the airfoil-shaped collar.

Keywords: scour; airfoil-shaped collar; efficiency of the collar; FLOW-3D; scour countermeasure;
scour hole profile

1. Introduction

In the alluvial bed foundation of a bridge pier, scouring is one of the primary causes
of failure [1,2]. Scouring is the removal of bed materials due to the action of flowing water.
It is classified into three categories, i.e., general, contraction and local scour. The local scour
around the bridge is a significant problem worldwide [1,3–5]. Scour hole characteristics
mainly depend upon the erosion and deposition occurring due to the river flow influenced
by geological and climate changes [6]. Failures of bridges threaten public safety and
economic loss leading to political consequences and environmental impacts [7,8].

Between 1961 and 1974, it is observed that 46 out of 86 bridges were failed due to scour
in US [9]. In 1973, the US Federal Highway Administration (FHWA) surveyed 383 bridges,
out of which 20% and 70% of bridges failed due to scour around the pier and abutment,
respectively. In the US, between 1989 and 2000, more than 50% of bridges failed due to
flood and scour in 500 instances of bridge damage [10]. From 1980 to 1990, in northeastern
and midwestern USA, more than 2500 bridges were damaged (affected) by flood and
scour [11,12]. In 1993, damage of USD 20 million was caused in coastal regions resulting
in the failure of 20 bridges due to waves and scour around the pier [13]. In 1993, during
a single flood event in the upstream and downstream of the Missouri river basin, at least
22 out of 28 bridges on the waterway experienced some form of distress due to scour.
The associated repair costs were more than USD 8 million. About 60% of bridges failed
due to scour reported by the National Cooperative Highway Research Program (NCHRP).
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Between 2000 and 2014, around 30% of bridge failures in China were due to scour around
bridge piers [9]. In the US, till 2009, more than 20,904 bridges were critically scoured, and
80,000 bridges were scour-susceptible [11]. In 2010, The AASHTO LRFD Bridge Design
Specification stated that “A majority of bridge failure in the United States and elsewhere is the
result of scour”. It is very well known that a bridge construction cost is gigantic, and the
failure of a bridge causes more irretrievable losses. Scour around the pier is the main reason
for the washing away of the bridge near Belgaon in Odisha, India, and the collapse of
Chadoora bridge in Budgum district, India [8].

Local scour around the bridge pier is a result of a complex phenomenon from the
interaction of water and sediment in a three-dimensional flow field [2,14–16], which results
in the failure of bridges, and it is not always foreseeable at the design stage but emerges
later [17–20]. Therefore, it is essential to countermeasure the scour around the bridge
pier [21,22]. Countermeasure is defined as something used to monitor, inhibit, change,
delay or minimize stream instability and bridge scour problems. It is highly beneficial
because it solves the existing scour problem or mitigates future scour problems. There
are many countermeasures used today. One of the major and active research areas is pier
modifications using collars. The collar is simply a flat horizontal disk, which is mounted
around the bridge pier. The collar impedes the downflow and horseshoe vortex along
the face of the pier [17,23–27]. The shape of the collar is usually rectangular, circular and
lenticular. The performance of the collar is evaluated on the basis of collar diameter (width)
and position of it. The collar should be as small as possible so that it is less intrusive to the
surrounding environment, easier to fabricate, requires less material and is less expensive.
The impact of the collar on scour depth around the bridge pier is studied by several
investigators [9,20–22,24–33]. Chen et al. [26] conducted laboratory experiments with a
single hook and numerical simulation by FLOW-3D with double hook, using collar widths
of 1.25b and hook height of 0.25b where b = pier diameter. The pier with a single hooked
collar placed on the bed reduced scouring by 42%, and a pier with a double hooked collar
placed on the bed reduced scouring by 50%. The research organization of the paper is
as follows:

(a) Experiments are carried out to study the reduction of scour around the bridge pier
with and without an airfoil-shaped collar, which is placed at four locations under
clear water conditions.

(b) This paper estimated the percentage of scour reduction and efficiency of airfoil-shaped collars.
(c) Experimental results are also validated with numerically simulated results using FLOW-3D.
(d) Morphological changes, scour depth contours and streamlines are plotted with and

without the airfoil-shaped collar.

2. Dimensional Analysis

Factors affecting the time-dependent scour depth (dt) around the bridge pier are:

(a) Flow geometry: width of channel (B), diameter of pier (b), diameter of airfoil-shaped
collar (bc), thickness of collar (tc), length of airfoil-shaped collar (Lc), elevation of
collar from the sediment bed (z).

(b) Flow properties: water depth (y), approach flow velocity (V), acceleration due to
gravity (g).

(c) Fluid properties: density of fluid (ρ), kinematic viscosity (ν).
(d) Bed properties: median particle size of sediment bed (d50), density of sediment bed

(ρs), standard deviation (σ).
(e) Time: equilibrium time (T).

dt is represented by a functional relationship:

f1 (dt, B, b, bc, tc, Lc, z, g, y, V, ρ, ν, d50, ρs, σ, T) = 0 (1)
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Using the Buckingham π theorem, the dimensionless form is obtained as follows:
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Constants in experimental runs are B, b, tc, ρ, ν, d50, ρs, σ, z
b , gy

V2 (1/Fr2, Fr: Froude
number) and Vb

ν (Reynolds number). The effects of constant terms in experimental runs
could be neglected, and Equation (2) may be simplified as Equation (3).
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b
,
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,
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b
,
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b

)
(3)

where dt
b is dimensionless scour depth, bc

b is the proportion of collar diameter to pier
diameter, Lc

b is length proportion to pier diameter and VT
b dimensionless time.

3. Experimental Setup and Materials

The experiments are conducted in the Fluid Mechanics Laboratory of the Civil Engi-
neering Department at NIT Warangal, Telangana, India. The flume is 15.3 m in length, 0.8 m
in width and 0.4 m in depth. The flume has a working section of 2.3 × 0.8 × 0.4 m located
at 7 m from the upstream side of the channel. The working section has a side wall of glass
to visualize the flow and scour processes around the pier. The maximum flow rate through
this channel is 0.055 m3/s with a pump capacity of 11.19 kW. The flow rate is measured
using the ultrasonic flow meter with an accuracy of ± 1%. The tailwater gate is fixed down-
stream of the flume to maintain constant flow depth in the flume. The present study uses
fine sediment of medium size (d50) of 0.32 mm with a standard deviation (σ =

√
d84/d16)

of 1.31, where d84 and d16 are the particle size at 84% and 16% finer, respectively. The pier
diameter (b) of 6 cm is placed perpendicular to the flow direction and at the center of the
working section. A digital point gauge with an accuracy of ±0.1 mm is used to measure the
temporal and equilibrium scour depth around the pier. The layout of the working section
is shown in Figure 1.
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Figure 1. (a) Experimental setup in line diagram (plan view); (b) working section of the flume used
in experiments.



Hydrology 2023, 10, 77 4 of 14

3.1. Description of Airfoil-Shaped Collar

Authors have used an airfoil-shaped collar as a scour countermeasure. It is fabricated
by joining a triangle and a half circle of different diameters, as can be seen in Figure 2a,b.
It is simply a flat horizontal disk that is mounted around a bridge pier to impede the
downward flow along the front face of the pier. It is joined with a half circle to a triangle
in an airfoil shape so that it becomes easy to construct on the field. The study uses four
different airfoil-shaped collars made of acrylic material. The airfoil-shaped collar has four
different diameters, i.e., bc1 = 1.5b, bc2 = 2.0b, bc3 = 2.5b and bc4 = 3.0b, where b is the
diameter of the pier. The chord length of the collar (Lc) is two times of collar diameter (bc).
To avoid the contraction effect, the ratio of collar diameter to the channel width is kept
around 0.20 [34,35]. The thickness of collar possesses the most negligible possible thickness,
but in this case, it is kept at 4 mm. The airfoil-shaped collars are placed at four locations,
i.e., bed level, y/4, y/2, and 3y/4, where y is the depth of flow, which is kept constant
(10 cm) throughout the experimental runs. Figure 2b shows a sketch of the pier with collar
in the experimental setup.
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Figure 2. Description of airfoil-shaped collar bc2: (a) sketch of bc2; (b) collar bc2 used in the experiment.

3.2. Hydraulic Conditions for Experiments

All the experimental runs are conducted under clear water conditions, i.e., V/Vc < 1,
where V is approach flow velocity, and Vc is critical flow velocity of sediment entrainment.
The approach flow velocity (V) is calculated using an ultrasonic flowmeter with an accuracy
of ±1%, and Vc is calculated using Equation (4) [1,36].

Vc

V∗c
= 5.75 log

(
5.53 y

d50

)
(4)

where V∗c is critical shear velocity, which is calculated by the Shields curve. The experiments
are conducted for two cases. All experiments are conducted with constant flow intensity,
Reynolds number and Froude number having values 0.96, 0.252 and 14,976, respectively, as
shown in Table 1. Case I represents the experimental run without airfoil- shaped collar, and
Case II represents the experimental run with airfoil-shaped collar.

Table 1. Flow and sediment bed parameters.

Medium Size of
Particles, d50 (mm) Flow Depth, y (cm) Flow Intensity (V/Vc) Reynolds Number Froude Number

0.32 10 0.95 14,976 0.252

4. Results and Discussion

The following Tables 2 and 3 show experimental outcomes with and without airfoil-
shaped collar, respectively. If the change in scour depth is less than 0.05b in 24 h, then it is
defined as equilibrium scour depth, as mentioned in Tables 2 and 3 [1].
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Table 2. Experimental outcome without airfoil-shaped collar.

Experimental Runs Medium Size of
Particles, d50 (mm) Diameter of Pier, b (cm) Width of the Channel,

B (m)
Equilibrium Scour

around the Pier, de (cm)

ER 1 0.32 6 0.8 8.1

Table 3. Experimental outcomes with airfoil-shaped collar.

Experimental
Runs with
the Collar

Medium Size
of Particles,

d50 (mm)

Diameter of
Pier, b (cm)

Diameter of
Collar, bc (cm)

Length of
Collar, Lc

Collar
Locations,

z (cm)

Equilibrium
Scour around
the Pier with

Collar, dce (cm)

ERC1 0.32 6 9 18 0 2.5
ERC2 0.32 6 9 18 2.5 3.8
ERC3 0.32 6 9 18 5 5.1
ERC4 0.32 6 9 18 7.5 6.3
ERC5 0.32 6 12 24 0 0.8
ERC6 0.32 6 12 24 2.5 3.3
ERC7 0.32 6 12 24 5 4.2
ERC8 0.32 6 12 24 7.5 6.5
ERC9 0.32 6 15 30 0 0

ERC10 0.32 6 15 30 2.5 3.1
ERC11 0.32 6 15 30 5 4.4
ERC12 0.32 6 15 30 7.5 5.5
ERC13 0.32 6 18 36 0 0
ERC14 0.32 6 18 36 2.5 3.5
ERC15 0.32 6 18 36 5 4.8
ERC16 0.32 6 18 36 7.5 5.5

4.1. Temporal Variation of Scour Depth with and without Airfoil-Shaped Collars

The temporal variation of scour depth around the pier for four different collars at
various locations is shown in Figure 3. Equilibrium scour depth of 10, 15 and 20% is reached
at 70, 75 and 81% of equilibrium time, respectively. The value of 100 × scour depth at
any time t, dt/equilibrium scour depth, de, is equal to 10% of equilibrium scour depth,
then it is equilibrium scour depth of 10%, similarly for equilibrium scour depth of 15%
and 20%. Figure 3 shows that the initial rate of scouring is more rapid, later increases
gradually and finally remains constant. The equilibrium scour depth around the pier
without airfoil-shaped collar is 8.1 cm and with bc1 at various locations, i.e., on bed level,
y/4, y/2 and 3y/4 cm above the bed level, it is 2.5, 3.8, 5.1 and 6.3 cm, respectively, as
shown in Figure 3a. With bc2 at various locations, i.e., on bed level, y/4, y/2 and 3y/4 cm
above the bed level, equilibrium scour depth around the pier is 0.8, 3.3, 4.2 and 6.5 cm,
respectively, as shown in Figure 3b. With bc3 at various locations, i.e., on bed level, y/4,
y/2 and 3y/4 cm above the bed level is 0, 3.1, 4.4 and 5.5 cm, respectively, as shown in
Figure 3c. With bc4 at various locations, i.e., on bed level, y/4, y/2 and 3y/4 cm above the
bed level is 0, 3.5, 4.8 and 6.5 cm, respectively, as shown in Figure 3d. When the bc2 is kept
on the bed, there is almost zero scour for the first five hours (i.e., 45% of equilibrium time),
and the equilibrium scour depth is 0.8 cm. It is observed that for collars bc3 and bc4, when
they are kept on bed level, scouring around the pier is zero.

The percentages of scour reduction using the four collars (bc1, bc2, bc3 and bc4) at bed
level are 46, 86, 100 and 100%, respectively. It is observed that there is no scour around the
pier with bc3 and bc4. The percentage of scour reduction when collars are kept at y/4 above
the bed level is 53, 59, 61 and 56%. When the collars (i.e., bc1, bc2, bc3 and bc4) are kept at
elevation of y/2 above the bed level, percentages of scour reduction are 37, 48.14, 45.67
and 16%, respectively, and when kept at 3y/4 above the bed level, the percentages of scour
reduction are 22, 19.75, 32.01 and 16%, respectively. Therefore, it can be concluded that
airfoil-shaped collars at bed level are the most efficient in scour reduction. Collars with
diameter of bc2, bc3 and bc4 are most efficient, which reduces the scour from 86 to 100%. For
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bc1 at bed level, scouring rate is initially low, due to protection around the pier. For collar
bc2, scouring started after 45% of equilibrium time. As the collar diameter is increased,
scour depth around the pier is reduced. As collar diameter increases from bc1 to bc4, scour
depth around the pier is reduced. But collar diameter and length come into encroachment,
so it should be optimized and cost-effective for field application. Therefore, it can be
concluded that collar diameter with bc2 and bc3 is the most efficient countermeasure for
scour around the pier. Installing the airfoil-shaped collar at bed level greatly improved the
collar performance and no scour was observed around the pier.
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The equilibrium scour depth around the pier is shown in Figure 4 for the collar bc2
after the experimental run. It is observed that scour in the direction of 0◦, 180◦ of the pier is
negligible, and for 90◦, 270◦ it is 0.8 cm.
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4.2. Scour Hole Profile with Airfoil-Shaped Collar

The transverse length of scour hole for the bc2 at elevation on bed level, y/4, y/2 and
3y/4 above the bed level is 4.5, 13, 15 and 26 cm, respectively, as shown in Figure 5b. The
scour hole length without the airfoil is 26 cm, which is the same as the case where the airfoil
is kept 7.5 cm above bed level. The longitudinal and transverse scour length is varying
from 24.5 and 26 cm, respectively. It is observed that the transverse length of the scour hole
is greater than the longitudinal scour hole length.
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4.3. Efficiency of the Airfoil-Shaped Collar

The variation of the efficiency of collars with the percentage of time is shown in
Figure 6. The efficiency of the collar is defined as:

E (%) =
dt − dct

dt
∗ 100 (5)

where dt and dct are scour depth around the pier without and with airfoil-shaped collar,
respectively, at any time, t.
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Figure 6a–d show scour reduction using a collar at different elevations in terms of
efficiency at equilibrium scour, i.e., T = 100%. Figure 6a shows that the efficiency of collars
bc1 and bc2 at bed level is 69.13% and 90.12%, respectively, and almost 100% for bc3 and bc4.
Figure 6b shows that the efficiency of collars bc1, bc2, bc3 and bc4 at the elevation y/4 above
the bed level is 53.06, 59.26, 61.8 and 56.8%, respectively. Figure 6c shows that the efficiency
of collars bc1, bc2, bc3 and bc4 is 37.1, 48.15, 45.6 and 16.05%, respectively, when placed at
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the elevation y/2 above the bed level. When the collars are placed at the elevation of 3y/4
above the bed level, efficiency of collars bc1, bc2, bc3 and bc4 is 22.22, 19.75, 32.1 and 16.05%,
respectively, as shown in Figure 6d. For all the elevations, it is observed that the maximum
reduction of scour is found for Figure 6a, i.e., collar elevation at bed level, and the efficiency
of the collar increases with an increase in collar diameter. However, it is the same for bc3
and bc4 for the case of the collar’s elevation at bed level. For all the elevations of the collar,
the efficiency of the collar almost increases with an increase in collar diameters, as can be
seen in Figure 6a–d. Collar bc3 is efficient in scour reduction when placed at y/4 and 3y/4
above the bed level, and collar bc2 is efficient when placed at y/2 above the bed level. From
Figure 6a–d, it is observed that there is a decrement in the collar’s efficiency initially. Due
to the protection provided by the collar around the pier, the efficiency of the collar increases
with respect to time and becomes almost constant in the final stages. In addition, collars
delay the scour process and scour hole development at the perimeter of the pier.

5. Numerical Simulation

Computational fluid dynamics (CFD) is an important tool for implementing numerical
simulations for studying the natural currents in water bodies with fine materials. Exper-
imental studies incur more cost, time, human resources, restrictions and data collection
problems and only permits data to be extracted from limited locations. Additionally, data
extraction can be performed only from the locations where gauges and sensors are installed.
On the other hand, a wide range of hydrodynamic fluid flows and robust numerical simu-
lation modelling can be performed using CFD and it allows for examination of any location
in the region of interest [19,37–43]. It can theoretically simulate any physical condition
and allow the study of a specific isolated phenomenon. Enhancement in computational
capabilities made the application of numerical methods easier in sediment transport for
computations of scour around hydraulic structures. The simulation study is carried out
with the help of the CFD software FLOW-3D. It solves the non-linear Navier–Stokes equa-
tion for three-dimensional flow while tracking the water surface using the volume of fluid
(VOF) model. The filtered Navier–Stokes equations include the filtered continuity and
momentum equations. These equations compute both the mean flow and large eddies.
The study uses the large eddy simulation (LES) method as a turbulence model, which
decomposes the instantaneous variables (velocity and pressure) into filtered (resolved) and
sub-filtered (unresolved or residual) variables. Here, velocity is used as an example.

ui = ui + u′ i (6)

where ui, ui and u′ i are instantaneous, filtered and sub-filtered velocities, respectively. LES
method as a turbulence model is shown below:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (7)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+
∂

∂xj

(
ν

∂ui
∂xj

)
+

1
ρ

∂τij

∂xj
(8)

τij = uiuj − uiuj (9)

where ρ is fluid density, t is time, ui is the i-th component of filtered velocities, xj is cartesian
coordinates, p is filtered pressure, ν is kinematic viscosity, and τij is subgrid-scale (SGS)
stress [36,37]. The van Rijn equation, as a sediment transport equation, evaluates the
dimensionless rate of bed-load transport [38].

Φ = β D∗−0.3
(

θ

θcr
− 1.0

)2.1
Cb (10)
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where φ is dimensionless rate of bed-load transport, β is bed load coefficient, D∗ is dimen-
sionless particle size, θ and θcr are local and critical Shields parameters, respectively, and
Cb is sediment fraction volume.

Simulation setup and sediment particle properties are carried out similarly to the
experimental study. The simulation uses a nested mesh configuration with the Cartesian
coordinate system. The total number of mesh cells is 5.4 million, and coarse and fine mesh
are 1.8 and 3.6 million, respectively. This is accomplished in FLOW-3D by considering
the suspended and packed states of the sediment. In FLOW-3D, VOF represents fluid
behavior on a free surface, whereas fractional area–volume obstacle representation (FAVOR)
represents surfaces and complex geometric boundaries [44]. Figure 7 shows the favorized
geometry images of sediment bed and pier with collar in the simulation set. The input
boundary condition for upstream, downstream, floor, lateral side and free surface are
velocity, continuative, wall, wall and symmetry, respectively. Velocity is applied as flow
input and continuative as outflow boundary condition, which represents the smooth
continuation of flow. Wall boundary condition is virtually frictionless behavior of the
bed and sides of the channel, while symmetry boundary condition is inviscid property of
the wall.
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5.1. Simulation Results

The scour around the pier without airfoil-shaped collar is 9.2 cm from the FLOW-3D
simulation result. It is an error of equilibrium scour depth by 11% with the experimental re-
sult. The difference between experimental and simulation results is due to the simplification
of the complexity of the flow, vortices and real-world factors.

Figure 8 shows the dimensionless scour depth vs. dimensionless time diagram for pier
without airfoil-shaped collar in observed and numerical simulation, where dt and de are
scour depth at any time t and equilibrium time (T). It shows that the dimensionless scour
from the simulation results is underestimated. The value of the coefficient of correlation
between numerical and observed models is 0.92.

5.2. Morphological Changes, Scour Depth Contour and Streamlines Pattern

The scour depth around the pier is shown in Figure 9. It is observed that scour around
airfoil-shaped collar bc4 is 1.6 cm and around the pier, it is zero, when airfoil-shaped collar
is placed at bed level. Figure 10 shows contour scour depth changes around the pier with
and without a collar bc4, and it is observed that no scour occurred around the pier. Figure 11
shows that flow velocity in the wake regions behind the pier is very small, while maximum
flow velocity is observed at the side of the pier. For the pier with collar bc4, gradual flow
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separation is observed, avoiding sudden flow separation. Zero velocity streamlines are
more in number around the pier in the presence of a collar, which implies the reduction in
intensity of horseshoe and wake vortices.
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6. Conclusions

This paper investigates the airfoil-shaped collar as scour countermeasure around
the bridge pier by conducting laboratory experiments and numerical simulation using
FLOW-3D. The airfoil-shaped collar weakens the horseshoe and wake vortices. As a result,
the scour depth reduces in front of the pier. The temporal variation of scour depth for
four different airfoil-shaped collars when placed at four elevations, i.e., bed level, y/2, y/2
and 3y/4 above the bed level are presented. The following are the conclusions that can be
drawn from this study.

The percentages of scour reduction using the four collars (bc1, bc2, bc3 and bc4) at bed
level are 46, 86, 100 and 100%, respectively. It is observed that there is no scour around the
pier with bc3 and bc4. The percentage of scour reduction when collars are kept at y/4 above
the bed level is 53, 59, 61 and 56%. When the collars (i.e., bc1, bc2, bc3 and bc4) are kept at
elevation of y/2 above the bed level, percentages of scour reduction are 37, 48.14, 45.67
and 16%, respectively, and when kept at 3y/4 above the bed level, the percentages of scour
reduction are 22, 19.75, 32.01 and 16%, respectively.

For bc1 at bed level, the scouring rate is initially low, due to protection around the
pier. For collar bc2, scouring started after 45% of equilibrium time. As the collar diameter is
increased, scour depth around the pier is reduced. Collar diameters with bc3 and bc4 are the
most efficient countermeasures for scour around the pier due to the longitudinal length
and diameter of the collars protecting the perimeter of the pier. Installing the airfoil shaped
collar at bed level greatly improved the collar performance and no scour was observed
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around the pier. Initially, efficiency of the collar is reduced rapidly due to the rapid rate of
scouring around the pier.

The efficiency of the collar increases later, due to the weakening of the horseshoe
vortex and the protection provided by the airfoil-shaped collar. It is observed that the
transverse length of the scour hole is greater than the longitudinal scour hole length. Error
between the experimental and simulation results is 11% for pier without airfoil-shaped
collar. It is validated that there is no scour around the pier with bc4 placed on the bed
in both experiment and simulation. Morphological changes, scour depth contours and
streamlines are plotted for pier with and without collar bc4.
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