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Abstract: Determining optimal exploitation from aquifers is always a major challenge, especially for
aquifers facing a drop in their groundwater level. In aquifers with artificial recharge, more complex
algorithms are required to determine the optimal exploitation amount. Therefore, in this study,
the optimal amount of harvest from the exploitation wells has been determined using a combined
simulation–optimization model considering the artificial recharge in Yasouj aquifer in Iran. The
model is based on a combination of MODFLOW code and gene expression programming (GEP)
simulator tool to simulate the aquifer and particle swarm optimization (PSO) to maximize the total
exploitation from the aquifer. The simulation results showed that the artificial recharge was ineffective
in maximum exploitation from the aquifer. As a result, considering several constraints, including
the maximum pumping rate from the aquifer and the permissible drop in the groundwater level,
the maximum exploitation from the aquifer was defined as the objective function. The optimization
results showed that the optimal exploitation rate is equal to 8.84 million cubic meters (MCM) per year,
and only 74% of the water from artificial recharge can be used based on this amount. Additionally,
the most appropriate locations to exploit this amount of water are the northwest and east of the
aquifer. According to the findings, it is suggested to ban exploitation from the central and southern
parts of the aquifer due to the low groundwater level. The results of the sensitivity analysis show
that the reduction in the maximum exploitation rate along with a 50% drop in the groundwater level
play an effective role in decreasing the optimal exploitation amount.

Keywords: artificial recharge; water resources management; gene expression programming; particle
swarm optimization

1. Introduction

Owing to increases in cultivated area, rapid population growth, urban sprawl, and
industrial development, water demand has continuously increased in recent decades,
leading to increased stress on available water resources. This crisis has intensified in
arid and semiarid areas due to the lack of surface water resources [1]. A significant
part of the current crises in these areas is mainly caused by improper water resources
management. Groundwater resources are the main and reliable water supplies in arid
and semiarid regions, such as Iran, where groundwater recharge feeds aquifers supplying
fresh water to a population over 80 million, a global hotspot for groundwater depletion [2].
At the other extreme, a severe decline in precipitation in the past few decades created
an acute drought that negatively impacted around 90% of Iran [3]. Therefore, adoption of
comprehensive plans to control the critical conditions of water shortage are vital [4,5]. Various
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implementation of strategies for groundwater resources management are available such as
closing unauthorized wells, artificial recharge, and optimal management of exploitation to
prevent the continuous decline of the aquifer [6–8].

Among these strategies, reestablishing the balance between the amount of ground-
water withdrawal and recharge is essential to sustainably harvest groundwater resources,
especially at (semi)arid regional scales such as Iran, which is known as a global hotspot
with respect to groundwater depletion. Artificial recharge can be adopted to replace part
of the exploited groundwater through excess surface water resources caused by floods,
especially in areas with adequate rainfall. On the other hand, the results suggest nonsignifi-
cant changes in annual mean precipitation in Iran (2000–2018). This indicates that human
interventions have dominantly impacted the decline in Iran’s groundwater recharge [2].
Therefore, optimal exploitation management is essential for proper monitoring of aquifer
utilization. Hence, the two strategies of artificial recharge and optimizing management of
groundwater exploitation are of great importance as two practical techniques in arid and
semiarid regions. Studies show that a lack of optimal management of exploitation of wells
in the aquifer would lead to various issues such as the reduction in groundwater reserves,
land subsidence, water quality degradation, aquifer salinization, river flow reduction, and
destruction of ecosystems dependent on groundwater resources. Moreover, during the last
three decades, simulation–optimization models have proven to be quite helpful for water
resources management. In addition, evolutionary algorithms have been used on a large
scale in the field of water resources management. The combination of simulation models
with algorithms together has led to an increase in the performance of water resources
models [8–17].

Literature Review

Gaur et al. combined the analytic element method (AEM) simulator and PSO to de-
velop a simulation–optimization model to maximize the amount of exploitation from new
wells in the Dour River Basin of France and to minimize costs [6]. Kumar et al. used the
combination of the support vector machine (SVM) and PSO to determine the optimal ex-
ploitation rates, suitable locations for exploitation wells, and the optimal pumping rate [18].
Kamali and Niksokhan presented a multiobjective optimization–simulation model for the
Isfahan–Barkhar aquifer using PSO [19]. In another study, Shourian and Davoudi solved
the problem of optimizing the location of the pumping well and the amount of exploitation
from the aquifer in the Kerman region, Iran, using the simulation–optimization method us-
ing Processing MODFLOW for Windows (PMWIN) and the firefly optimization algorithm.
They reported that soil subsidence stopped after implementing the optimal model [20].
Alaviani et al. studied two options for groundwater exploitation and conjunctive exploita-
tion of water resources in the Hashtgard basin, Iran, using the Groundwater Modeling
System (GMS) and PSO to minimize the drop in the aquifer level. The results showed that
the best solution was the conjunctive use of all available water resources in each zone [21].
Ghaseminejad and Shourian modeled the Sarakhs aquifer in Iran by combining MODFLOW
and the PSO algorithm to determine the optimal location and pumping capacity to meet
the existing water demand [15]. Using the integrated approach of SWAT_MODFLOW_PSO
method, Sabzzadeh and Shourian estimated the optimal amount of exploitation from the
Asman Abad aquifer in Iran by considering the maximum net profit from agricultural
products as the objective function [22]. In a study on the Puri aquifer, Dey and Prakash
simulated saline water and optimized the number and location of pumping wells. They
showed that in addition to doubling the pumping speed, further infiltration of saline water
into the aquifer could be prevented by using the optimal model [23]. Fan et al. presented
a simulation–optimization method applied to Longkou city, China, with the aim of max-
imizing groundwater exploitation and minimizing seawater intrusion. They used SVR,
KELM, and kriging models for simulation and the nondominated sorting genetic algorithm
(NSGA-II) for optimization [24]. The results showed that the proposed method could solve
the problem of managing coastal aquifers. The literature shows that the combination of
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groundwater simulation models along with evolutionary algorithms such as optimization
tools is a common approach which has been used in various studies to achieve the desired
objective function. However, directly applying the simulation results for large aquifers
in the optimization model creates a model that has a search space with high dimensions,
where solving such problems is complex and time-consuming. To solve this issue, meta-
heuristic algorithms can be used as the external interface of simulator and optimizer models
to reduce the dimensions of the search space and accelerate the optimization procedure. In
this method, which is cost efficient and needs less processing time, the simulator model is
approximated to create an interface between the simulation and optimization models, and
the approximated model is then used for optimization [25]. This approximation can be per-
formed using various methods [14]: artificial neural networks (ANN) [25,26], fuzzy linear
regression [27], regression models [14,28], kernel extreme learning machines (KELM) [29],
SVM [30], kriging–KELM–SVM [24], response matrix method [1], and genetic programming
(GP) and multigene genetic programming (MGGP) [31]. Owing to the efficient performance
of the genetic algorithm (GA) in optimization problems, in this current study, an approach
is developed which comprises a simulation model and gene expression programming (GEP)
for the simulation—optimization process of aquifer exploitation under artificial recharge.

Recent studies show the diversity and development of new methods in solving water
resources management problems. However, there is always a need for new management
approaches and definition of more comprehensive objective functions due to the severe
crisis of water shortage, especially in arid and semiarid regions with complex groundwater
systems. This research was conducted in the Yasouj aquifer basin, which is located in an arid
area of Iran and suffers from a severe groundwater drop. The main goal is to investigate
the effectiveness of artificial recharge on the aquifer and to estimate the optimal amount of
exploitation in such a way that there will be no groundwater level drop. In the present study,
in addition to assessing the effectiveness of the artificial recharge in the Yasouj aquifer, a
simulation–optimization approach is developed which is capable of managing the amount
of exploitation from the recharged water. In this approach, MODFLOW and the GEP
algorithm were used to simulate the groundwater flow and the effectiveness of the artificial
recharge, and optimal aquifer exploitation was defined using PSO. It is anticipated that the
integrated approach developed in this study provides a reliable solution to optimize the
exploitation of aquifers under artificial recharge, thus contributing to overall groundwater
management efforts.

2. Study Area

The Yasouj Plain (30◦10′–30◦27′ N, 50◦15′–50◦21′ E) is located in Kohgiloyeh and Boyer
Ahmad Province, southwest Iran. The Yasouj aquifer has an area of 54.1 km2 (Figure 1).
The average rainfall in the area is 600 mm, mainly due to the high altitude regions in
the area. However, despite high rainfall and the small area of the aquifer, most of the
required water is supplied from groundwater resources. In recent years, the groundwater
level has dropped remarkably due to decreased rainfall, decline in recharge and excessive
groundwater exploitation [2,32]. Therefore, in order to prevent the excessive drop of the
groundwater level and to control the flooding of river water and atmospheric precipitation,
areas have been considered to control precipitation and surface flows as the artificial
recharge plan. Out of these areas, five are located on the Yasouj aquifer. Their locations
are on alluvial layers, being suitable for aquifer recharge. Two are inactive due to the lack
of dredging of the canal bed, a challenge observed in some plains in Iran, and only three
areas are active and usable, the largest of which is Naserabad, located in the northeast of
the aquifer (Table 1) [2].
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Table 1. The properties of the artificial recharge areas.

Name UTM X (m) UTM Y (m) Situation Area (ha)

Naserabad 497,130 3,354,885 Active 8500
Sheykh Khaje 487,831 3,359,991 Active 3200

Gargada 489,784 3,357,991 Active 1000
Goorab 488,557 3,357,590 Inactive 200

Abdalan 487,133 3,358,275 Inactive 300

The artificial recharge plan for the Yasouj aquifer will be implemented with the main
goal of increasing the amount of exploited groundwater in the three regions: Gargada,
Sheikh Khaje, and Naserabad (Figure 1). According to the previously conducted studies,
the artificial recharge showed a decreased trend during the last decades. Here, the annual
average amount of artificial recharge in the Yasouj aquifer is considered equal to 1 MCM per
year. Owing to the high volume of exploitation in the three designated periods (September
2018–November 2018, March 2019–May 2019, and June 2019–August 2019), exploiting
recharge water is allowed during these seasons [2,32]. Based on initial data, groundwater
exploitation in the three determined periods is equal to 8.08 MCM and after artificial
recharge, it will be 9.08 MCM.

3. Methodology

For the optimal exploitation of the aquifer under artificial recharge, a simulation–
optimization model is presented, which includes three main steps (Figure 2). Step 1 includes
a numerical simulation that considers the flow of groundwater and the effectiveness of
the artificial recharge. Step 2 utilizes GEP to estimate the drop in groundwater level
due to various aquifer exploitations. Step 3 involves an optimization model based on
PSO to propose optimal management of aquifer exploitation and estimate the permissible
withdrawal volume from the recharged water. All three steps are performed to check the
state and decision variables. Groundwater level drop is the state variable, the value of
which is obtained in Step 1 based on the groundwater flow simulation model. The decision
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variable is the pumping rate, and its optimal values are calculated in Step 3 using the
optimization model.
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Figure 2. Proposed simulation–optimization model for optimal groundwater exploitation under
artificial recharge.

3.1. Simulation Model of Groundwater

The MODFLOW code is one of the most common groundwater flow simulation codes
that simulate the aquifer based on the finite difference method [33]. There are 21 observation
wells in the Yasouj aquifer, where the information from 14 wells was used for modeling
using GMS, which is designed based on MODFLOW (Figure 1). The model consists of a
grid with dimensions 51 × 39, and the dimension of each cell is 250 × 250 m in one layer.
The thickness of the aquifer in the model varies from 80 to 260 m. The water flows from the
northwest and eastern parts of the aquifer (with higher groundwater levels) to the central
and southern parts of the aquifer (with lower groundwater levels), and then to the outlet of
the aquifer. Figure 3 shows the boundary of the aquifer, as well as the inlet and outlet fronts
of the aquifer. The Yasouj aquifer is recharged by the infiltration of rainwater, return flow,
and the water from the Zohreh River. About 18% of monthly precipitation is considered as
infiltration from rainfall. It should be mentioned that a significant part of the exploitation
of this aquifer is for agricultural purposes, with a 30% of return flow. Finally, 10% of the
river water is considered for aquifer recharge.
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After constructing the steady-state model and entering the initial data into it, the
value of hydraulic conductivity was calibrated using a trial-and-error method due to
the differences between the model results and the actual values. Then, the transient
model was constructed, and specific yield was calibrated to bring the results closer to
the actual values. In this modeling, data related to September 2017 were used for steady-
state conditions, while data related to September 2017–August 2019 were used for model
calibration. Additionally, the data related to September 2019–August 2020 was used for
model validation. After calibrating the transient model and reaching an optimal RMSE for
the model, artificial recharge areas were defined in the model as artificial recharge coverage.
This model was then used to estimate the groundwater level under various exploitations
from the aquifer.
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3.2. Estimating the Simulation Model Using Gene Expression Programming

In optimal management of groundwater resources, if the study area is wide or the
simulation model is simulated in both steady-state and transient conditions, the direct
application of the simulation results (groundwater level drop) in the optimization model
is time-consuming due to the increasing dimensions of the search space. As a result, a
tool is used as an interface between the simulator and the optimizer models to reduce the
processing time and facilitate the solution of the optimization model. The tool estimates the
relationship between the amount of aquifer exploitation and the subsequent groundwater
level drop to be applied as constraints in the optimization model. In this study, GEP was
used as the interface. After simulating the groundwater flow using the MODFLOW code,
various exploitation amounts entered the model, and their corresponding groundwater
level drops were obtained. Then, the data were defined and fitted in the GEP algorithm
to provide a relationship between these two variables. In order for GEP to have enough
data to extract relationships, about 1000 random values of exploitation were applied to the
MODFLOW code to achieve the corresponding drop. The GeneXpro Tools 4 software was
used for implementing GEP, where the amount of exploitation was considered as fixed, and
the amount of drop as a variable. About three-fourths of the data were used for training,
while the rest were used for the test.

GEP is one of the new artificial intelligence methods, which is developed from two
well-known GA and GP techniques. In this method, GEP uses two main chromosomes
and an expression tree and provides solutions to eliminate the limitations of the two old
algorithms. It can create mathematical relationships between independent variables [34].
The vital advantage of GEP compared to other models, such as ANN, is its flexibility.
In the structure of this algorithm, the input variables, target, and position function are
determined at first and during the training process, resulting in the optimal structure of the
model and coefficients. In contrast, the structure should be first defined in ANN, and only
the coefficients of the model are obtained during the training process [35]. Selecting the
appropriate input variables in GEP is important in order to achieve the optimal structure of
the model and its coefficients, which is often performed through trial and error [36]. GEP is
usually implemented through six steps, as follows [37].

The first step is the generation of the initial population of chromosomes, as well
as finding a symbolic regression to express the proportion of the initial population and
a specified error rate. RRSE was used in this research as the error evaluation criterion.
The second step is to evaluate the chromosomes: selecting a set of functions and input
variables for chromosome generation with the help of mathematical operators such as
basic arithmetic, trigonometric, and logarithmic operators. The third step is to choose the
structure of the chromosomes, which includes the length of the head and the number of
genes. The fourth step includes the selection of the linker function. In the selection of the
linker function between sub-branches of the expression trees (SUB_ETs), there is no rule for
which one function is preferable to another. The addition function is used in this model.
The fifth step is to determine the growth process for the next generation. Determining the
rate of genetic operators, including mutation and transfer, is performed in this step. This
process continues until the termination condition is achieved. Finally, the sixth step is to
determine the termination condition of the program: the model stops when it is reached. In
this study, 3 × 106 iterations of data fitting are considered as the termination condition for
the program. The resulting model is in the framework of an optimal formula to provide the
relationship between groundwater exploitation and the resulting groundwater level drop.

3.3. Particle Swarm Optimization

As an optimization method, PSO performs more effectively than other evolutionary
techniques in many cases [38]. It is based on the simulation of simple social models, such
as birds, fish, and particle theory, and is suitable for solving optimal global problems [39].
It includes two factors to achieve the optimal point: the best experience of the particle
so far (pbest) and the best experience of all particles so far (gbest). This behavior is similar
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to a situation when people consider their best personal experience and the best personal
experience of the other people around them to make a decision [40,41]. This algorithm is
based on searching the solution space in a suitable way, hoping that in this process, the
particles will reach a better position so that, finally, all the particles converge at the optimal
point. After finding pbest and gbest, the position (xi) and velocity (vi) for each particle are
updated in each iteration by using Equations (1) and (2) [42].

vid(t + 1) = wvid(t) + c1r1(xpbest(t)
id − xid(t)) + c2r2(xgbest(t)

id − xid(t)) (1)

xid(t + 1) = xid(t)− vid(t + 1) (2)

where i represents the particle and d is the dimension of particle i; t represents the iteration,
and c1 and c2 are learning parameters that are often called acceleration constants and
control the effect of the best position of the particle and its best total position in the previous
iteration on the speed in the new iteration. Two random numbers, r1 and r2, have values
between 0 and 1. The weighted inertia w is an outstanding variant that is considered to
control the effect of the previous speed on the new speed to converge the algorithm [42].
When the position of the particles is updated, it should be checked that the particles have
not exceeded the boundaries of the search space [6]. Then, pbest and gbest are updated based
on the objective function values. This process is repeated until an improvement in the
objective function (gbest) is achieved.

PSO solves the optimization problem by defining an initial population and using the
objective function and the constraints to find the best amount of groundwater exploitation
from the aquifer. This process is repeated until reaching a converged optimal solution. The
general steps in solving the optimization problem in this study are as follows:

Problem definition. The first step is to define the objective function and decision
variables. In this problem, the optimal pumping rate is calculated after the artificial
recharge of the Yasouj aquifer.

Objective function. The objective function is to maximize the amount of water ex-
ploitation from the Yasouj aquifer under the artificial recharge without any decrease in the
groundwater level (Equation (3)):

Min Z = −(
n

∑
i=1

Qt
i − k ∗Mi ∗

(
ht

i − ht
max

)2
) (3)

where
ht

i = f
(
Qt

i
)

(4)

and Z is the total amount of optimal exploited water in each period, i is the number of
the well, t is the period number, and n is the number of exploited wells. Qi

t and hi
t are

the pumping rate and water level drop in the t-th period; k is a numerical coefficient with
a large value; Mi is a binary variable that is equal to zero if the water level drop (hi) is
greater than (hmax) and takes the value of one if it is smaller than that. In Equation (4), f is a
function that reflects the responses of the groundwater level drop according to the pumping
values (Qi

t) through the groundwater flow equation in the t-th period. According to this
equation, the drop in the groundwater level is a function of the amount of groundwater
exploitation.

Constraints. The constraints of the problem were defined according to Equations (5)
and (6):

Qtotal(t)
min ≤

n

∑
i=1

Qt
i ≤ Qtotal(t)

max (5)

{
ht

i ≤ ht
max

ht
max = ht

2 − ht
1

(6)
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where Qmin
total(t) and Qmax

total(t) are the lower and upper limits of total water pumping
from wells in the t-th period. The optimal exploitation rate from the aquifer ranges between
these two values; hmax

t is the maximum permissible drop in groundwater in the period
t; h2

t and h1
t are the groundwater level in the t-th period under artificial recharge and

without an artificial recharge, respectively. The code that was written to solve the problem
is mentioned in the Supplementary Materials, in detail.

4. Results and Discussion
4.1. Simulation of the Yasouj Aquifer

The hydraulic conductivity values were obtained by a trial and error during the
simulation. Figure 4 shows that the highest hydraulic conductivity values occur in the
northeast and northwest regions of the aquifer. The transient model was constructed for
24 time steps (September 2017–August 2019), and the specific yield was calibrated using
the Pest method (Figure 4). Additionally, data from September 2019 to August 2020 in
12 time steps was used for model validation. The RMSE (root mean square error) and MAE
(mean absolute error) values for the steady-state were 0.70 and 0.64 (m), respectively, while
the values for the transient models were 0.87 and 0.74 (m), respectively, indicating the low
error of the model (Table 2). Additionally, Figure 5 shows the observed and calculated
groundwater levels in four piezometric wells in various parts of the aquifer. The small
difference between these values shows that the model constructed by the MODFLOW code
can predict the groundwater level within the Yasouj aquifer.
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Table 2. Results of error evaluation criteria for groundwater simulation.

Condition Time (Step) RMSE (m) MAE (m)

Steady-state 1 0.7 0.64
Transient 24 0.87 0.74

Hydrology 2023, 10, x FOR PEER REVIEW 11 of 24 
 

 

 
(b) 

Figure 4. Calibrated (a) specific yield (%) and (b) hydraulic conductivity (m/day). 

 

Figure 5. Cont.



Hydrology 2023, 10, 100 11 of 22Hydrology 2023, 10, x FOR PEER REVIEW 12 of 24 
 

 

 

 

 

Figure 5. The observed (dash line) and computed (continuous line) groundwater level of well (a) no. 

21, (b) no. 2, (c) no. 16, and (d) no. 18. 

After simulating the aquifer and applying an artificial recharge of 1 MCM in the 

study area, an increase in the groundwater level was observed (Figure 6). These results 

show that artificial recharge can be used as an alternative solution in managing ground-

water resources and can lead to an increase in the groundwater level. 

Figure 5. The observed (dash line) and computed (continuous line) groundwater level of well (a) no.
21, (b) no. 2, (c) no. 16, and (d) no. 18.

After simulating the aquifer and applying an artificial recharge of 1 MCM in the study
area, an increase in the groundwater level was observed (Figure 6). These results show
that artificial recharge can be used as an alternative solution in managing groundwater
resources and can lead to an increase in the groundwater level.

Additionally, by applying the “maximum amount of exploitation” constraint to the
simulation model before and after artificial recharge in one period and estimating the
average groundwater level in the same period, it was determined that the drop in the
groundwater level was not different remarkably between using and not using the artificial
recharge (Tables 3 and 4). On the other hand, from 2000 to 2017, there is a significant
decline of around -3.8 mm/yr in the nationwide groundwater recharge, caused primarily
by unsustainable development [2]. This indicates the necessity for estimating the optimal
amount of exploitation from the aquifer and applying the optimization method. However,
in this study, it was assured that the drop in the groundwater level did not exceed a standard
level due to applying the optimization model and providing the optimal exploitation.
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Table 3. Fluctuation of groundwater levels due to maximum exploitation in different seasons.

Date Groundwater Level without
Artificial Recharge (m)

Groundwater Level without Artificial
Recharge and with Maximum Exploitation (m)

Groundwater Level
Drop (m)

September 2018–November 2018 655 648.57 6.42
March 2019–May 2019 655.37 648.74 6.63
June 2019–August 2019 655.13 645.66 6.47

Table 4. On the fluctuation of groundwater levels due to maximum exploitation and artificial recharge
in different seasons.

Date Groundwater level with
Artificial Recharge (m)

Groundwater Level with Artificial
Recharge and Maximum Exploitation (M)

Groundwater Level
Drop (m)

September 2018–November 2018 655.23 648.81 6.41
March 2019–May 2019 655.62 648.99 6.62
June 2019–August 2019 655.37 648.9 6.46

Hydrology 2023, 10, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 6. Cont.



Hydrology 2023, 10, 100 13 of 22
Hydrology 2023, 10, x FOR PEER REVIEW 14 of 24 
 

 

 

Figure 6. (a) Groundwater level before artificial recharge. (b) Groundwater level after artificial 

recharge. 

Additionally, by applying the “maximum amount of exploitation” constraint to the 

simulation model before and after artificial recharge in one period and estimating the av-

erage groundwater level in the same period, it was determined that the drop in the 

groundwater level was not different remarkably between using and not using the artificial 

recharge (Tables 3 and 4). On the other hand, from 2000 to 2017, there is a significant de-

cline of around -3.8 mm/yr in the nationwide groundwater recharge, caused primarily by 

unsustainable development [2]. This indicates the necessity for estimating the optimal 

amount of exploitation from the aquifer and applying the optimization method. However, 

in this study, it was assured that the drop in the groundwater level did not exceed a stand-

ard level due to applying the optimization model and providing the optimal exploitation. 

  

Figure 6. (a) Groundwater level before artificial recharge. (b) Groundwater level after artificial recharge.

4.2. Result of Gene Expression Programming

An external interface between simulation and optimization models is usually used to
reduce the processing time. GEP was considered as the interface in this study. In order to
simulate the MODFLOW results in GEP, 1000 random values of aquifer exploitation were
defined as “initial fixed observations” and their corresponding groundwater drop as the
“problem variable”.

The parameters of the GEP algorithm and their values are defined in Table 5 and
were used in the GeneXproTool 4.0 software. All steps were performed separately for all
three periods. After running the GEP simulator model, the error evaluation criteria were
obtained for the training and test stages (Table 6). The R2 values of higher than 0.99 and
RMSE values of lower than 0.01 and the values obtained for RAE, RSE, and RRSE indicate
the suitable conformity between the observations (Qi) and the estimated values (hi), and
the high ability of GEP in predicting the groundwater level (hi) by having the amount of
exploitation in the i-th month (Qi).
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Table 5. The parameters and their values used in GeneXproTools software.

Parameters Value Parameters Value

Head size 7 Gene recombination rate 0.1

Number of genes 3 Insertion sequence transposition rate 0.1

Chromosomes 50 Root insertion sequence transposition rate 0.1

Mutation rate 0.044 Gene transposition rate 0.1

Inversion rate 0.1 Linking function Addition

One-point recombination rate 0.3 Fitness function error type RRSE

Two-point recombination rate 0.3 Function set cos, atan, sqrt, exp, ln, x2, x3, 3
√

x

Table 6. The values of error evaluation criteria for the GEP model for training and test processes.

Date Modes R2 RMSE Best Fitness RAE RSE RRSE

September
2018–November 2018

Training 0.999 0.00043 993.6145 0.0021 0.00004 0.0064
Testing 0.999 0.00011 994.8844 0.0053 0.00002 0.0051

March 2019–May 2019 Training 0.999 0.00045 988.7120 0.0093 0.00013 0.0114
Testing 0.999 0.00205 864.1015 0.0160 0.02473 0.1527

June 2019–August 2019 Training 0.999 0.00040 993.5044 0.0021 0.00004 0.0065
Testing 0.996 0.00120 943.7152 0.0409 0.00355 0.0596

4.3. Result of the Optimization Model

According to the preliminary information in solving the optimization problem for
the Yasouj aquifer, groundwater exploitation from the aquifer in the three determined
periods is equal to 8.08 MCM, while the amount of artificial recharge is equal to 1 MCM.
As a result, the constraint on the amount of exploitation in each period was applied in the
optimization model according to Table 7. In order to apply a constraint on the “rate of
groundwater level drop” (Equation (6)), the values of hmax were obtained in the determined
periods (Table 7), which were defined in the model. Additionally, the relationships obtained
from GEP were applied to the optimization model to calculate the groundwater level drop
in three determined periods. The objective function was defined in the PSO model, the
parameters of which are presented in Table 8. This model was implemented in the MATLAB
programming environment, and the convergence of the model during 60 iterations is
depicted in Figure 7.

Table 7. The values of pumping rate and hmax(m) as constraints.

Date Qtotal
min * Qtotal

max * hmax(m)

September 2018–November 2018 2.31 2.6 0.18
March 2019–May 2019 2.14 2.41 0.2
June 2019–August 2019 3.62 4.07 0.2

* MCM.

Table 8. PSO parameters and their values.

Parameter Value

Population 20
Maximum iteration number 60
d 1
Weight updating factor (inertia weight) 1
Cognitive acceleration ( r1) 1
Social acceleration ( r2) 1
c1 2
c2 2
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The numerical results obtained from solving the problem can be seen in Table 9.
According to the preliminary information, the maximum amount of exploitation from the
aquifer under artificial recharge in these three periods is 9.08 MCM. However, according to
the table, the optimal amount of exploitation in these three periods is equal to 8.84 MCM. As
a result, from water recharge of 1 MCM, the optimal exploitation rate is equal to 0.74 MCM.
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The optimal values for each period can be seen in Table 9 and Figure 8. According to
Figure 8, 26% of the recharged water can be saved after optimization.

Table 9. Result of the optimization model.

Date Minimum
Exploitation Rate *

Optimal
Exploitation Rate *

Maximum
Exploitation Rate *

Exploitation from
Artificial Recharge Rate *

September 2018–November 2018 2.31 2.51 2.6 0.2
March 2019–May 2019 2.14 2.37 2.41 0.22
June 2019–August 2019 3.62 3.94 4.07 0.32

Total 8.08 8.82 9.08 0.74

* MCM.
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By examining the results of the maximum exploitation from the Yasouj aquifer and
monitoring the groundwater level in four piezometric wells, 2, 16, 18, and 21, it was ob-
served that by exploiting the total amount of artificially recharged water, the groundwater
level was lower than when the optimal exploitation was performed (Figure 9). This reveals
that artificial recharge can be used as a solution to solve the problem of groundwater man-
agement and cause an increase in groundwater level (Figure 6), but the lack of managing
groundwater exploitation leads to lower effectiveness of artificial recharge on the aquifer.
Therefore, artificial recharge alone without utilizing optimization methods may not be
considered an effective solution to solve the water shortage crisis in the region.
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on the groundwater level in well (a) no. 21, (b) no. 2, (c) no. 16, and (d) no. 18.

According to the calculations conducted during the optimization and the generated
maps of groundwater level after artificial recharge, it is concluded that the best areas for
groundwater exploitation are the northeastern and western parts of the aquifer and in the
area of piezometric wells 2, 21, 14, 15, and 16. It is suggested to ban exploitation from the
central and southern areas of the aquifer due to the high density of exploitation wells and
the low groundwater level (Figure 10). Therefore, monitoring the exploitation of the aquifer
under artificial recharge will be of great importance in the water resources management of
the region.
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4.4. Sensitivity Analysis

Various variables are related to both the simulation and optimization models in the
proposed simulation–optimization method. Model results might be sensitive to the values
of these variables. Therefore, it is essential to investigate the sensitivity of these models
toward variables, especially when their values have uncertainty. This sensitivity analysis
helps to find the appropriate range of variables that affect the cost function and provides
comprehensive ideas for future model implementation [6]. In this study, sensitivity analysis
was conducted for one variable of the simulation model (hydraulic conductivity) and
two variables of the optimization model (maximum exploitation rate and the permissible
groundwater drop). In order to analyze the sensitivity of the model toward hydraulic
conductivity, its value was increased by 50% and then decreased by 50% compared to its
original value. The sensitivity of the optimization model toward the changes in hydraulic
conductivity and its effect on optimal exploitation can be seen in Table 10. According to the
results, the amount of hydraulic conductivity of the aquifer does not significantly affect the
final optimization solution.
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Table 10. Sensitivity of the model toward hydraulic conductivity.

Change in Hydraulic
Conductivity

Optimal Exploitation under
Artificial Recharge * Change in Total

Basic 0.75 0
50% 0.6 −18.9
−50% 0.72 −2.7

* MCM.

In addition, to check the sensitivity of the model toward the maximum exploitation
rate, the amount of artificial recharge was doubled and then reduced by half. Table 11
indicates the sensitivity of the model toward the reduction in the maximum pumping rate.
Afterward, by increasing the permissible drop to 50% and again by reducing it by 50%, the
sensitivity of the optimization model toward this variable was obtained. Table 12 shows the
high sensitivity of the model toward the permissible groundwater level drop. According to
the results, reducing the maximum pumping rate and reducing the permissible drop of the
aquifer causes a decrease of about 50% in the optimal exploitation amount. The results of
the sensitivity analysis can also be seen in Figure 11.

Table 11. Sensitivity of the model toward maximum pumping rate.

Change in Maximum
Pumping Rate

Optimal Exploitation under
Artificial Recharge * Change in Total

Basic 0.74 0
Increasing the pumping rate 0.77 4.1
Decreasing the pumping rate 0.5 −32.4

* MCM.

Table 12. Sensitivity of the model toward permissible drop rate.

Change in Permissible Rate Optimal Exploitation under
Artificial Recharge * Change in Total

Basic 0.74 0
50% 0.97 31.1
−50% 0.4 −45.9

* MCM.
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Figure 11. Results of the sensitivity analysis. The optimal exploitation under artificial recharge (Series
1) after a reduction in the values of the variables, (Series 2) without changes in the values of the
variables, and (Series 3) after an increase in the values of the variables.
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5. Conclusions

In this study, the effectiveness of artificial recharge in solving the crisis of decreasing
groundwater levels is investigated by combining simulation and optimization methods.
This problem was studied for the Yasouj aquifer, which supplies the most water needs
in the region and is under severe groundwater level drop. The results showed that the
optimal exploitation volume was equal to 8.84 MCM, and the optimal exploitation from
the artificial recharge of 1 MCM was equal to 0.74 MCM. According to the results, 26% of
artificial recharge is expected to be saved by conducting the optimization. As a result, it
is possible to keep the groundwater level at the standard level only by exploiting 74% of
the volume of artificial recharge. It was suggested that exploitation should be performed
primarily in the northeastern and western areas of the aquifer due to the high density
of exploitation wells and low groundwater level in the southern and central areas of the
aquifer. Implementation of the proposed plan is anticipated to provide suitable conditions
for the exploitation of the aquifer in the year during which the groundwater level does not
fall below a standard level.

It should be noted that the application of artificial recharge and the estimation of opti-
mal exploitation is the most convenient and suitable approach for managing the recharged
water for the existing conditions. The results of the sensitivity analysis of the model showed
that changes in hydraulic conductivity did not significantly impact the optimal exploitation
volume from the aquifer. The optimization model showed great sensitivity toward the
reduction in the maximum pumping rate and the decrease and increase in the permissible
level drop.

The problem-solving method in this study was able to properly simulate the effects of
artificial recharge on groundwater level due to the ability to include quantitative details in
the distribution model constructed in MODFLOW for both the steady-state and transient
models. By using the GEP method, the significant capability of these models enabled the
accurate prediction (R2 of higher than 0.99) for the amount of groundwater level drop
caused by various amounts of exploitation. During this process, due to the possibility of
including various types of decision variables, such as pumping wells and the groundwater
level drop in the PSO algorithm, this algorithm was capable of optimizing groundwater
exploitation. The proposed method in this study, in addition to showing the effectiveness of
artificial recharge in the region, introduced an efficient method for its implementation. This
optimization method can be successfully implemented for wider aquifers under artificial
recharge and with multiobjective functions. Additionally, other algorithms such as the lion
algorithm can be utilized and their results can be compared.
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