
Citation: Tzimopoulos, C.;

Samarinas, N.; Papadopoulos, B.;

Evangelides, C. Fuzzy Analytical

Solution of Horizontal Diffusion

Equation into the Vadose Zone.

Hydrology 2023, 10, 107.

https://doi.org/10.3390/

hydrology10050107

Academic Editors: Yunhui Zhang,

Qili Hu and Liting Hao

Received: 13 April 2023

Revised: 2 May 2023

Accepted: 4 May 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Article

Fuzzy Analytical Solution of Horizontal Diffusion Equation
into the Vadose Zone
Christos Tzimopoulos 1, Nikiforos Samarinas 1,* , Basil Papadopoulos 2 and Christos Evangelides 1

1 Department of Rural and Surveying Engineering, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece; tzimo@topo.auth.gr (C.T.)

2 School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
* Correspondence: smnikiforos@topo.auth.gr

Abstract: The process of how soil moisture profiles evolve into the soil and reach the root zone
could be estimated by solving the appropriate strong nonlinear Richards’ equation. The nonlinearity
of the equation occurs because diffusivity D is generally an exponential function of water content.
In this work, the boundary conditions of the physical problem are considered fuzzy for various
reasons (e.g., machine impression, human errors, etc.), and the overall problem is encountered with a
new approximate fuzzy analytical solution, leading to a system of crisp boundary value problems.
According to the results, the proposed fuzzy analytical solution is in close agreement with Philip’s
semi-analytical method, which is used as a reference solution, after testing 12 different types of soils.
Additionally, possibility theory is applied, enabling the decision-makers to take meaningful actions
and gain knowledge of various soil and hydraulic properties (e.g., sorptivity, infiltration, etc.) for
rational and productive engineering studies (e.g., irrigation systems).
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1. Introduction

Infiltration is a common physical phenomenon of water movement in porous media
that is of great interest in many earth and plant sciences. Soil water flow plays an important
role in understanding the phenomena of runoff, groundwater recharge, and the transport
of contaminants. Especially in the vadose zone, soil moisture strongly influences plants’
growing processes, and for irrigation problems, it is important to know how the soil
moisture profiles evolve into the soil and reach the root zone. Historically, Buckingham
(1907) [1], Gardner and Widsoe (1921) [2], and Richards (1931) [3] are the pioneers in the
development of soil water movement, introducing the ideas of capillary potential, capillary
conductivity, and diffusion phenomena in the concept of soil water movement, which were
completed later by Childs (1936a, 1936b) [4,5]. Klute (1952) [6] presented the equation of
flow arising from Darcy’s (1856) law [7], while the law of conservation of mass is as follows:

∂θ

∂t
= ∇ · (K∇Φ)

where θ = the moisture content (cm3/cm3), K = the unsaturated hydraulic conductivity
(cm/s), Φ = the total potential (cm) Φ = Ψ − z, Ψ = the pressure potential or capillary
potential (cm), and z = the gravitational component (cm). In the case of one-dimensional
horizontal flow or in cases where gravity may be neglected (fine-textured soils), in which
the moisture gradient’s influence is much more important than gravity, the phenomenon is
described by the following equation:

∂θ

∂t
=

∂

∂x
(D

∂θ

∂x
)
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where D = diffusivity (L2/T). According to Philip (1957, 1969) [8,9], this equation represents
the water movement in a horizontal column and is called the absorption equation because
it describes the wetting up of the column under tension.

Many methods exist with their corresponding advantages and disadvantages, such
as semi-analytic methods [9], finite difference [10–15], finite element methods [16,17],
finite control volume methods [18,19], flux concentration methods [20], and approxi-
mate analytical methods [21–25]. Henceforth, our research is focused on approximate
analytical methods.

Tolikas et al. (1984) [26] presented a simple analytical solution to the problem of
horizontal absorption under the assumption that diffusivity is an exponential function of
soil water content. Brutsaert (1982) [27] presented a group of 14 solutions with different
diffusivities for the problem of desorption, considering, as pointed out by Crank (1975) [28],
that sorption and desorption are related by the correspondence principle. Specifically, if the
solution for sorption with a given D(θ) is θ = f(x,t) in normalized form, then the function
f1 = 1 − f(x,t) is the solution for the desorption problem with the diffusivity D(1 − θ). Lisle
and Parlange (1993) [29] used a large class of transformations in conjunction with symmetry
properties to obtain an analytical reduction of the transformed equation for certain diffusiv-
ities, emphasizing that the symmetry leaves the equation invariant. Hang and Zhiqiang
(1997) [30] presented an approximated analytical solution with the Boltzmann transfor-
mation method for the case of an exponential diffusivity form and a profile of soil water
content of a finite extent under the assumption that the wetting front is known. Prevedello
et al. (2008) [31] derived a new analytical solution of the Boltzmann transformation ϕ as a
function of matrix potential for horizontal water infiltration into a sand soil sample without
invoking the concept or use of D(θ). The derivation assumes that a similarity exists between
the soil water retention function and the Boltzmann transformation ϕ. Tzimopoulos et al.
(2015) [32] presented a new approximate analytical solution of the nonlinear diffusion
equation, and the solution is given for the transformed equation through the Boltzmann
transformation. It is considering the case of an exponential function of the diffusivity under
the following assumptions: (a) the profiles of soil water content have a finite extent; (b) the
concentration at the boundaries is constant; and (c) the reduced flux of Philip (1973) [20]
is of a special form [33]. More recent works have implemented the diffusion equation in
applications for volatile organic compound transport [34], mass transfer [35], and Turing
pattern formation [36].

The calculation of water flow in the unsaturated zone requires exact knowledge of
the initial and boundary conditions and the various soil parameters, and this assumption
is based principally on in situ measurements. In general, this assumption is subject to
different kinds of uncertainty due to human and machine imprecision. In many cases, the
uncertainties were considered in statistical terms as random variables with given mean
values, variances, and correlations. However, these methods require exact knowledge of
mean values, variances, and correlations and often suffer from an insufficient amount of
accurate in situ measurement data. Zadeh (1965) [37] introduced the theory of fuzzy sets
and fuzzy logic and covered all these kinds of uncertainty. A significant number of research
studies presenting uncertainties were carried out in that field, especially regarding the
fuzzy differentiation of functions. Puri and Ralescu (1983) [38] generalized and extended
Hukuhara’s fundamental study [39] (H-derivative) of a set of values appearing in fuzzy sets.
Vorobiev and Seikkala (2002) [40], O’Regan et al. (2003) [41], and Nieto et al. (2006) [42] have
worked in the theoretical and applied research fields on fuzzy differential equations with an
H-derivative, but their method has presented certain drawbacks since it has led to solutions
with increasing support along with increasing time. To overcome this drawback, the
generalized derivative gH (gH-derivative) was introduced by [43–46]. The gH-derivative
will be used henceforth for a more extensive degree of fuzzy functions than the Hukuhara
derivative. In addition, a recent review work by Mazandarani and Xiu (2021) [47] presents
a chronological survey on fuzzy differential equations of integer and fractional orders, with
the corresponding future perspectives and challenges to be discussed.
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In the present article, the problem of fuzzy, unsteady water movement in the vadose
zone in the horizontal direction is examined and described by a nonlinear partial diffusion
equation with fuzzy conditions. In this context, we developed and propose a new fuzzy
analytical solution that has never been presented before in the literature, coupled with
the innovative possibility theory (see Section 2.2.1). Specifically, the nonlinear equation
was first fuzzified and subsequently translated to a system of second-order crisp boundary
value problems called the corresponding system for the fuzzy problem. Subsequently,
using the Boltzmann transformation, the crisp problem was transformed to a system of two
classical ordinary differential equations [32]. With the help of α-cuts, profiles of moisture
content θ versus Boltzmann transformation ϕwere estimated, as were the storativity (S)
and cumulative moisture content (I). In addition, for evaluation purposes, the present
analytical solution and the approximated solution of Hang and Zhiqiang (1997) [30] were
tested using the semi-analytical solution of Philip as a reference solution.

2. Mathematical Model
2.1. Classical (Crisp) Case

The one-dimensional horizontal nonlinear flow of water in unsaturated soil with initial
and boundary conditions for absorption is described by the following equation [6]:

∂θ

∂t
=

∂

∂x
(D

∂θ

∂x
) (1)

under constant head condition, with initial and boundary conditions as follows:

• Initial condition

x ≥ 0, t = 0, θ = θr, (2)

• Boundary condition

x = 0, t > 0, θ = θS, x → ∞, t > 0, θ = θr. (3)

where θs = the saturated soil moisture content at x = 0 and θr = the residual soil
moisture content. The diffusivity D (θ) can be closely expressed by an exponential
function [48–50] as follows:

D(θ) = D(θr)eβ(θ−θr) (4)

The non-dimensional variables are now introduced in Equation (1),

Θ =
θ − θr

θS − θr
, X =

x
L

, τ =
Drt
L2 , D∗ = D

Dr
= eλ1Θ, (5)

where L = a characteristic length usually equal to the wetting front, Dr = D(θr) = the
diffusivity at the residual soil moisture content, τ = the non-dimensional time, D* = the
non-dimensional diffusivity, and λ1 = β (θs − θr). The advantage of introducing non-
dimensional variables is that they allow the generalization of the theory, speeding up the
computational processes.

Then, Equation (1) with initial and boundary conditions (2) and (3) becomes the following:

∂Θ

∂τ
=

∂

∂X
(D∗(Θ)

∂Θ

∂X
) (6)

Subjacent to the following:

• Initial condition

X ≥ 0, τ = 0, Θ = 0, (7)
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• Boundary condition

X = 0, τ > 0, Θ = 1, X → ∞, τ > 0, Θ = 0. (8)

The Boltzmann transformation ϕ* = Xτ−1/2 is now introduced in Equation (6), and due to
conditions (7) and (8), Equation (6) is reduced to the following ordinary differential equation:

d
dϕ∗

(D∗(Θ)
dΘ

dϕ∗
) +

ϕ∗

2
dΘ

dϕ∗
= 0, (9)

The conditions (2) and (3) are transformed into the following:

ϕ∗ = 0, Θ = 1 ϕ∗ → ϕ∗f , Θ→ 0, (10)

where ϕ∗f is the wetting front.
Philip (1957) [8] introduced the term sorptivity in order to define the capacity of the

medium to absorb or desorb water by capillarity. He expresses the term as follows:

S∗ =
∫ 1

0
ϕ∗dΘ. (11)

The non-dimensional Boltzmann transformation ϕ* and the non-dimensional sorp-
tivity S* are related to the dimensional Boltzmann transformation ϕ and the dimensional
sorptivity S by the following expressions:

ϕ∗ =
ϕ√
Dr

, S∗ =
S

(θS − θr)
√

Dr
(12)

Tzimopoulos et al. (2015) [32] proposed the following: (a) an explicit analytical
solution, which has the Boltzmann transformation as the dependent variable and the soil
water moisture as the independent variable; (b) a simple form for the sorptivity. Both
solutions are presented in normalized form. The solutions were tested with 12 soils
and showed a close agreement with Philip’s semi-analytical method [9], which has been
considered a reference method. The solution concerning sorptivity is given as follows:

S∗ =

√
eλ1(

2
λ1
− 1

λ2
1
) (13)

or in dimensional form:

S = (θS − θr)

√
Dreλ1(

2
λ1
− 1

λ2
1
) (14)

The solution concerning Boltzmann transformation is given as follows:

ϕ∗ =
1

S∗
{ 1

λ1

(
eλ1 − eλ1Θ

)
+ Ei(λ1)− Ei(λ1Θ)} (15)

or in dimensional form:

ϕ =
(θS − θr)Dr

S
{ 1

λ1

(
eλ1 − eλ1Θ

)
+ Ei(λ1)− Ei(λ1Θ)} (16)

where Ei(λ1), Ei(λ1Θ) are the exponential integrals [51,52]. Equation (16) satisfies the
boundary conditions (10). Indeed, for the following:

Θ = 1→ ϕ =
(θS − θr)Dr

S
{ 1

λ1

(
eλ1 − eλ1

)
+ Ei(λ1)− Ei(λ1)} = 0. (17)
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Θ = 1
→ lim

Θ→0
(Φ) = lim[ (θS−θr)Dr

S { 1
λ1
(eλ1 − eλ1Θ) + Ei(λ1)− Ei(λ1Θ)}] =

= (θS−θr)Dr
S { 1

λ1

(
eλ1 − 1

)
+ Ei(λ1)− lim

Θ→0
Ei(λ1Θ)}

(18)

According to Ramanujan et al. (2000) [53], the function Ei(x)−γ− lnx, γ ≈ 0.5772156649 . . .
for small values of x is included in the following interval:

[1− 3x
4

, 1− 3x
4

+
11x2

36
], x = λ1Θ (19)

If we choose x = 5 × 10−5 as the minimum value, the above relation gives a value of
Ei(λ1Θ)

∣∣λ1Θ = 5× 10−5 = −8.32631. With this value of integral, the value of ϕ is equal
to the moisture content front (ϕfront), which is as follows:

ϕ f ront =
(θS − θr)Dr

S
{ 1

λ1

(
eλ1 − 1

)
+ Ei(λ1) + 8.32631} (20)

Now the boundary condition ϕ∗ → ∞, Θ→ 0, becomes the following:

For ϕ ≥ ϕ f ront, Θ ≈ 0. (21)

From the above expressions (14) and (16), it is clear that by knowing the soil moisture
contents θS, θr, and the diffusivity as an exponential function of Θ, it is possible to find
the following:

• The sorptivity S;
• The moisture content front ϕ f ront;
• The water profiles in the form of ϕ = ϕ(Θ) = ϕ(θ).

Table 1 shows the parameter values for the 12 different soils under consideration
and a comparison of the wetting fronts and sorptivities between the values obtained by
the analytical values in this paper and Philip’s semi-analytical solution, which is in close
agreement with the experimental values and was taken as a reference profile [32].

Table 1. Estimated values of moisture content front and sorptivity for 12 soil types.

a/a Soil Type θr
(cm3/cm3)

θs
(cm3/cm3) Dr cm2/min λ1

ϕexp
front

(cm/min0.5)
ϕanal

front
(cm/min0.5)

Sexp

(cm/min0.5)
Sanal

(cm/min0.5)
Ref.

1 Hagenet sand 0.0540 0.370 9.443 × 10−2 6.756 5.857 5.870 1.490 1.490 [54]

2 Hayden
sandy loam 0.0146 0.510 6.824 × 10−3 7.256 1.906 1.908 0.780 0.780 [55]

3
Manawatu
fine sand.
loam

0.0800 0.360 1.168 × 10−3 11.337 4.490 4.490 1.138 1.138 [56]

4 Adelanto
loam 0.0380 0.387 6.678 × 10−8 18.690 1.010 1.010 0.333 0.333 [57]

5 Edina silt
loam 0.0560 0.500 4.214 × 10−3 7.995 2.013 2.014 0.760 0.760 [54]

6 Nicollet sandy
loam 0.0380 0.364 2.151 × 10−5 13.094 1.346 1.348 0.404 0.404 [58]

7 Fayette silty
clay loam 0.0480 0.448 3.418 × 10−4 9.223 0.960 0.960 0.337 0.337 [58]

8 Panoche clay
loam 0.0480 0.443 2.554 × 10−3 8.731 2.129 2.129 0.730 0.730 [49]

9 Pine silty clay 0.0500 0.463 8.349 × 10−9 20.262 0.750 0.750 0.294 0.294 [57]
10 Yolo clay 0.0400 0.490 3.265 × 10−4 6.869 0.360 0.360 0.131 0.131 [59]
11 sample 1 0.0175 0.295 1.13 × 10−3 9.170 1.710 1.709 0.416 0.416 [60]
12 sample 2 0.0080 0.500 2.992 × 10−1 6.618 9.930 9.910 3.890 3.890 [60]
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The relation

S∗ =
∫ 1

0
ϕ∗dΘ, (22)

easily follows the dimensional form of I

S = {
∫
(θ − θr)dx}t−1/2 = It−1/2 → I = St1/2 (23)

where I = cumulative absorption, L (L3/L3). From this one, it follows the flow velocity at x = 0:

v|x=0 = 0 =
dI
dt

= St−1/2 (24)

2.2. Fuzzy Case

In order to facilitate an understanding for readers unfamiliar with the fuzzy and
possibility theories, we describe definitions concerning some preliminaries in the fuzzy
and possibility theories and definitions about the differentiability of fuzzy numbers.

2.2.1. Fuzzy Theory

Definition 1. A fuzzy set Ũ on a universe set X is a mapping Ũ : X → [0, 1] or µŨ : X → [0, 1] ,
which is called membership function. The value µŨ(x), x ∈ X is the membership value of x ∈ X
and expresses the membership degree of x ∈ X , i.e., the truth of fuzzy logical proposition:
T(xisŨ

∣∣X = x) = µŨ(x) .

The membership function µŨ(x), defined also as Ũ(x), has the following properties:
(i) µŨ is upper semicontinuous; (ii) µŨ(x) = 0 outside of some interval [c, d]; (iii) there
are real numbers c ≤ a ≤ b ≤ d, such that µŨ is increasing on [c, a], decreasing on [b, d],
and µŨ(x) = 1 for each x ∈ [a, b].; (iv) Ũ is a convex fuzzy set (i.e., µŨ(λx + (1− λ)x) ≥
min{µŨ(λx), µŨ((1− λ)x)}.

Definition 2. Let X be a Banach space and Ũ be a fuzzy set on X. We define the α-cuts of Ũ as
[Ũ(x)]α = {x ∈ R

∣∣∣Ũ(x) ≥ α}, α ∈ (0, 1], and for α = 0, we define the following closure:

[Ũ(x)]0 =

−−−−−−−−−−−−−−{
x ∈ R

∣∣∣Ũ(x) > 0
}

.

Definition 3. Let Ҡ(X) be the family of all nonempty compact convex subsets of a Banach space.
A fuzzy set Ũ on X is called compact if [Ũ]α ∈Ҡ(X), ∀α ∈ [0, 1]. The space of all compact and
convex fuzzy sets on X is denoted as
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},0{+
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(R). The α-cuts of Ũ are as follows: [Ũ]α =[U−α , U+
α ]. According to the

representation theorem of [61,62], the membership function and the α-cut form of a fuzzy number
Ũ are equivalent, and in particular, the α-cuts [Ũ]α =[U−α , U+

α ] uniquely represent Ũ , provided
that the two functions are monotonic ( U−α increasing, U+

α decreasing) and U−1 ≤ U+
1 f or α = 1.

For every Ũ, Ṽ ∈
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(R), the metric structure is given by the Hausdorff distance as follows:
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(R)→ R+ ∪ {0}, by D(U, V) = sup
a∈[0,1]

max{|U−a −V−a |, |U+
a −V+

a |}

Definition 5. gH-Differentiability [63]. Let Ũ : [a, b]→ R
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(i) 𝜇௎෩ is upper semicontinuous; (ii)  𝜇௎෩(𝑥) = 0 outside of some interval [c, d]; (iii) there are 
real numbers 𝑐 ≤ 𝑎 ≤ 𝑏 ≤ 𝑑, such that 𝜇௎෩ is increasing on [c, a], decreasing on [b, d], and 𝜇௎෩(𝑥) = 1 for each 𝑥 ∈ [𝑎, 𝑏]. ; (iv)  𝑈෩  is a convex fuzzy set (i.e., 𝜇௎෩(𝜆𝑥 + (1 − 𝜆)𝑥) ≥𝑚𝑖𝑛{ 𝜇௎෩(𝜆𝑥), 𝜇௎෩((1 − 𝜆)𝑥)}. 

Definition 2. Let X be a Banach space and 𝑈෩ be a fuzzy set on X. We define the α-cuts of 𝑈෩ as [𝑈෩(𝑥)]ఈ = {𝑥 ∈ 𝑅ห𝑈෩(𝑥) ≥ 𝛼}, 𝛼 ∈ (0,1], and for α = 0, we define the following closure: [U෩(x)]଴ = {x ∈ RหU෩(x) > 0}ିିିିିିିିିିିିିି
. 

Definition 3. Let Ҡ(X) be the family of all nonempty compact convex subsets of a Banach space. 
A fuzzy set 𝑈෩ on X is called compact if [𝑈෩]ఈ ∈Ҡ(X), ∀𝛼 ∈ [0,1]. The space of all compact and 
convex fuzzy sets on X is denoted as Ƒ (X). 

Definition 4. Let [𝑈෩] ∈ Ƒ (R). The α-cuts of 𝑈෩ are as follows: [𝑈෩]ఈ = [𝑈ఈି , 𝑈ఈା]. According to 
the representation theorem of [61,62], the membership function and the α-cut form of a fuzzy num-
ber 𝑈෩ are equivalent, and in particular, the α-cuts [𝑈෩]ఈ = [𝑈ఈି , 𝑈ఈା] uniquely represent 𝑈෩, pro-
vided that the two functions are monotonic (𝑈ఈି increasing, 𝑈ఈାdecreasing) and 𝑈ଵି ≤ 𝑈ଵା𝑓𝑜𝑟 𝛼 =1. For every 𝑈෩, 𝑉෨ ∈ Ƒ (R), the metric structure is given by the Hausdorff distance as follows: 𝐷: Ƒ (R)× Ƒ (R)→ R by 𝐷(𝑈, 𝑉) = sup௔∈[଴,ଵ] 𝑚𝑎𝑥{|𝑈௔ି − 𝑉௔ି |, |𝑈௔ା − 𝑉௔ା|} 

Definition 5. gH-Differentiability [63]. Let 𝑈෩: [𝑎, 𝑏] → RƑ be such that [𝑈෩]ఈ = [𝑈ఈି , 𝑈ఈା]. Sup-
pose that the functions 𝑈ఈି  and 𝑈ఈା are real-valued functions, differentiable w.r.t. (with respect to) 
x, uniformly w.r.t. 𝛼 ∈ [0,1]. Then the function 𝑈෩(𝑥) is gH-differentiable at a fixed 𝑥 ∈ [𝑎, 𝑏] 
only if one of the following two cases holds: 
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(b) (𝑈ఈା)′(𝑥)  is decreasing, (𝑈ఈି )′(𝑥)  is increasing as functions of α, and (𝑈ଵା)′(𝑥) ≤(𝑈ଵି )′(𝑥)]. 

Notation: (𝑈ఈି )′(𝑥) = డ௎షഀ(௫)డ௫ , (𝑈ఈା)′(𝑥) = డ௎శഀ(௫)డ௫ . In both of the above cases, the 𝑈෩ఈᇱ (𝑥) 
derivative is a fuzzy number. 

Definition 6. gH-Differentiable at x0. Let 𝑈෩: [𝑎, 𝑏] →  Ƒ (R) and 𝑥଴ ∈ [𝑎, 𝑏]  with 𝑈ఈି (𝑥)  and 𝑈ఈା(𝑥) both being differentiable at x0. We say that [63]: 

},0{+

be such that [Ũ]α =[U−α , U+
α ].

Suppose that the functions U−α and U+
α are real-valued functions, differentiable w.r.t. (with respect

to) x, uniformly w.r.t. α ∈ [0, 1]. Then the function Ũ(x) is gH-differentiable at a fixed x ∈ [a, b]
only if one of the following two cases holds:

(a) (U−α )
′
(x) is increasing, (U+

α )
′
(x) is decreasing as functions of α, and

(
U−1
)
′(x) ≤

(
U+

1
)′
(x)], or
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(b) (U+
α )
′
(x) is decreasing, (U−α )

′
(x) is increasing as functions of α, and

(
U+

1
)′
(x) ≤

(
U−1
)′
(x)].

Notation: (U−α )
′
(x) = ∂U−α (x)

∂x , (U+
α )
′
(x) = ∂U+

α (x)
∂x . In both of the above cases, the

Ũ′α(x) derivative is a fuzzy number.

Definition 6. gH-Differentiable at x0. Let Ũ : [a, b]→
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},0{+

(R) and x0 ∈ [a, b] with U−α (x) and
U+

α (x) both being differentiable at x0. We say that [63]:

• Ũ is (i)-gH-differentiable at x0 if

(i) [U′gH(x0)]α =[(U−α )
′
(x0), (U+

α )′(x0)], ∀α ∈[0, 1]

• Ũ is (ii)-gH-differentiable at x0 if

(ii) [U′gH(x0)]α =[(U+
α )
′
(x0), (U−α )′(x0)], ∀α ∈[0, 1]

Definition 7. g-Differentiability Let Ũ : [a, b]→
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},0{+

(R) be such that [Ũ]α =[U−α , U+
α ]. If U−α (x)

and U+
α (x) are differentiable real-valued functions with respect to x, uniformly for α ∈ [0, 1], then

f (x) is g-differentiable and we have the following [63]:

[U′g(x)]
α
=

[
in f
β≥α

min{(U−α )
′
(x), (U+

α )
′
(x)}, sup

β≥α

max{(U−α )
′
(x), (U+

α )
′
(x)}

]
,

Definition 8. The gH-Differentiability implies g-differentiability, but the inverse is not true.

Definition 9. [gH-p]-Differentiability. A fuzzy-valued function Ũ of two variables is a rule that
assigns to each ordered pair of real numbers (x, t) in a set D a unique fuzzy number denoted
by Ũ(x, t). Let Ũ(x0, t0): D→
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Notation: (𝑈ఈି )′(𝑥) = డ௎షഀ(௫)డ௫ , (𝑈ఈା)′(𝑥) = డ௎శഀ(௫)డ௫ . In both of the above cases, the 𝑈෩ఈᇱ (𝑥) 
derivative is a fuzzy number. 

Definition 6. gH-Differentiable at x0. Let 𝑈෩: [𝑎, 𝑏] →  Ƒ (R) and 𝑥଴ ∈ [𝑎, 𝑏]  with 𝑈ఈି (𝑥)  and 𝑈ఈା(𝑥) both being differentiable at x0. We say that [63]: 

},0{+

(R), (x0, t0)∈ D and U−α (x0, t0), U+
α (x0, t0) are real-valued

functions and partially differentiable w.r.t. x. We say that [46,64]:

• Ũ(x, t) is [(i)-p]-differentiable w.r.t. x at (x0, t0) if:

∂Ũα(x0, t0)

∂xi.gH
= [

∂U−α (x0, t0)

∂x
,

∂U+
α (x0, t0)

∂x
]

• Ũ(x, t) is [(ii)-p]-differentiable w.r.t. x at (x0, t0) if:

∂Ũα(x0, t0)

∂xii.gH
= [

∂U+
α (x0, t0)

∂x
,

∂U−α (x0, t0)

∂x
]

Notation: The same is valid for ∂Ũα(x0,t0)
∂tp.gH

.

Definition 10. Let Ũ(x, t):D→
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},0{+

(R), and ∂Ũα(x0,t0)
∂xp.gH

be [gH-p]-differentiable at (x0, t0) ∈ D with

respect to x. We say that [46,64] ∂Ũα(x0,t0)
∂xp.gH

is

• [(i)-p]-differentiable w.r.t. x, if the type of [gH-p]-differentiability of both Ũα(x0, t0) and
∂Ũα(x0,t0)

∂xp.gH
is the same, then ∂2Ũα(x0,t0)

∂x2
i.gH

= [ ∂2U−α (x0,t0)
∂x2 , ∂2U+

α (x0,t0)
∂x2 ]

• [(ii)-p]-differentiable w.r.t. x, if the type of [gH-p]-differentiability of both Ũα(x0, t0) and ∂Ũα(x0,t0)
∂xp.gH

is

different, then ∂2Ũα(x0,t0)
∂x2

i.gH
= [ ∂2U+

α (x0,t0)
∂x2 , ∂2U−α (x0,t0)

∂x2 ]
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2.2.2. Possibility Theory

Definition 11. A possibility measure Π on a set X (e.g., a set of reels) is characterized by a
possibility distribution π : X → [0, 1] and is defined by the following:

∀A ⊆ X, Π(A) = sup{π(x), x ∈ A}.

For finite sets, this definition reduces to the following:

∀A ⊆ X, Π(A) = max{π(x), x ∈ A}.

Definition 12. A degree of necessity NessX on a set X (e.g., a set of reals) is characterized by the
non-possibility (one minus possibility) of A complement (AC).

∀A ⊆ X, NessX(A) = 1−Π
(

AC
)

.

Definition 13. A probability distribution p and a possibility distribution π are said to be consistent
only if π(u) ≥ p(u), ∀u [65–68].

Definition 14. Two possibility distributions πX , π′X are consistent with the probability distribution
pX. The πX distribution is more specific than π′X if it is πX < π′X .

A possibility distribution π∗x consistent with the probability distribution pX is called maximal
specificity if it is more specific that each other possibility distribution πX:π∗x(x) < πX(x), ∀x.

Definition 15. For a number Y with a known and continuous probability distribution function p,
the fuzzy number Ỹ, which has a possibility measure Π(Ỹ) = µỸ is the fuzzy estimator of Y and
has an α-cut of ΠỸ(α) = Ỹ[α]. This fuzzy number satisfies the consistency principle and verifies
P(Ỹ[α]) = NessỸ[α] = 1− α, so that the probability of the possibility α-cut is equal to 1 − α. The
α-cuts Ỹ[α] are the confidence intervals of P, and the confidence level is α.

Definition 16. Conjecture [68]. For a function Y = Y (X1, X2, .... Xn) with unknown probability
distribution function, a fuzzy number may be constructed Ỹ∗ = Ỹ(X̃∗1 , X̃∗2 , . . . X̃∗n), and the α-cut
is equal to the following:

Ỹ∗[a] = Ỹ(X̃∗1 [a], X̃∗2 [a], . . . X̃∗n[a]).

In this case, the fuzzy numberỸ∗ is the fuzzy estimator of Y and verifies the following:

P(Ỹ∗[a]) ≥ NessỸ∗ [α] = 1− α,

so that the probability of the possibility α-cut is greater than 1 − α.

2.2.3. Fuzzy Model

We write Equation (1) in its fuzzy form according to [69]:

∂Θ̃

∂τ
=

∂

∂X
(D̃

∂Θ̃

∂X
) (25)

with the following:

• Initial condition

X ≥ 0, τ = 0, Θ̃ = (0̃) (26)

• Boundary conditions
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X = 0, τ > 0, Θ̃ = 1̃, X → ∞, τ > 0, Θ̃ = 0̃. (27)

The fuzzy parameters were considered to be the following:

(a) The soil moisture contents θs (saturated soil moisture content);
(b) θr (the residual soil moisture content);
(c) The parameter λ1 (in the exponent of the diffusivity D).

These parameters are considered symmetrical triangular fuzzy numbers and are
illustrated in Figure 1.

Figure 1. Membership function of (a) moisture content θs, (b) moisture content θr, and (c) parameter λ1.

We can find solutions to the fuzzy problem of Equation (25) and the initial and
boundary conditions (26) and (27) by utilizing the theory of [22,46,63,64,70] and translating
the above fuzzy problem to a system of second-order crisp boundary value problems,
hereafter called the corresponding system for the fuzzy problem. Therefore, many crisp BVP
systems are possible for the fuzzy problem, but in the current work, the solution is restricted
to the following systems (Cases A and B), which describe exactly the physical problem.

The following fuzzy expression is valid and is referring to α-cuts:

L(Θ̃α) = [L(Θ−α ), L(Θ+
α )]

In this case, for more convenience, the above expression could be written as follows,
related to fuzzy partial differential equations:

Case A Case B
∂Θ̃
∂τ = ∂

∂X

(
D̃ ∂Θ̃

∂X

)
⇔ ∂Θ−α

∂τ = ∂
∂X

(
D−α

∂Θ−α
∂X

)
, ∂Θ+

α
∂τ = ∂

∂X

(
D+

α
∂Θ+

α
∂X

)
The main difference between the above two cases is that the operator (−) describes

the left side of the α-cut while the (+) describes the right side of the α-cut, constructing in
this way a possible range in which the desired value will be.
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Case A
For Case A, the following expression arises:

∂Θ−α
∂τ

=
∂

∂X

(
D−α

∂Θ−α
∂X

)
(28)

Following the same procedure described above for the classical case, the non-dimensional
and dimensional forms are presented below:

• Non-dimensional form:

d
dϕ∗

(D∗(Θ−)
dΘ−

dϕ∗
) +

ϕ∗

2
dΘ−

dϕ∗
= 0, (29)

(S∗)−a =

{
eλ−1 (

2
λ−1
− 1

(λ−1 )
2 )

}1/2

α

(30)

(ϕ∗)−a =
1

(S∗)−a

{
1

λ−1
(eλ−1 − eλ−1 Θ) + Ei(λ

−
1 )− Ei(λ

−
1 Θ−)

}
α

(31)

• Dimensional form:

S−α = [(θs)
−
α − (θr)

−
α ]

√
D−r e(λ1)

−
α (

2
(λ1)

−
α

− 1

((λ1)
−
α )

2 ) (32)

ϕ−α =
[(θs)

−
α − (θr)

−
α ](Dr)

−
α

S−
{ 1
(λ1)

−
α

(e(λ1)
−
α − e(λ1)

−
α Θ−α ) + Ei(λ1)

−
α − Ei((λ1)

−
α Θ−α )} (33)

Case B
For Case B, the following expression arises:

∂Θ+
α

∂τ
=

∂

∂X

(
D+

α
∂Θ+

α

∂X

)
(34)

Following the same procedure described above for the classical case, the non-dimensional
and dimensional forms are presented below:

• Non-dimensional form:

d
dϕ∗

(D∗(Θ+)
dΘ+

dϕ∗
) +

ϕ∗

2
dΘ+

dϕ∗
= 0, (35)

(S∗)+a =

{
eλ−1 (

2
λ+

1
− 1

(λ+
1 )

2 )

}1/2

α

(36)

(ϕ∗)+a =
1

(S∗)+a

{
1

λ+
1
(eλ+

1 − eλ+
1 Θ) + Ei

(
λ+

1
)
− Ei

(
λ+

1 −Θ+
)}

α

(37)

• Dimensional form:

S+
α = [(θs)

+
α − (θr)

+
α ]

√√√√D+
r e(λ1)

+
α (

2
(λ1)

+
α

− 1(
(λ1)

+
α

)2 ) (38)
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ϕ+
α =

[(θs)
+
α − (θr)

+
α ](Dr)

+
α

S−
{ 1
(λ1)

+
α

(e(λ1)
+
α − e(λ1)

+
α Θ+

α ) + Ei(λ1)
+
α − Ei((λ1)

+
α Θ+

α )} (39)

3. Results and Discussion
3.1. Construction of the Hang and Zhiqiang Solution

For comparison purposes, the Hang and Zhiqiang (1997) [30] solution was selected
mainly due to its simplicity in applications. However, this solution is valid under the
following two certain conditions:

1. Diffusivity is an exponential function of Θ;
2. The value of the moisture wetting front is a priori known.

The Hang and Zhiqiang analytical solution initially had the following form:

θ(x, t) = θ(ϕ) =
1
β

ln[eβθ0 − (
A(eβθ0 − eβθr )− 0.5ϕ2

f ront

Aϕ f ront
)ϕ− 1

2A
ϕ2]

In order to make a comparison with Equation (6) and with Philip’s reference solution,
the above equation is transformed into the following expression:

ϕ = ϕ(θ) = −α +
√

α2 + 2A(eβθ0 − eβθ),

with

α =
A(eβθ0 − eβθr )− 0.5ϕ2

f ront

ϕ f ront
, A = Dre−θr

The numerical values for ϕ f ront were taken from Equation (20).

3.2. Results

Figures 2 and 3 illustrate the profiles of this study versus (vs.) the profiles of the Hang
and Zhiqiang solution and Philip’s semi-analytical method (the reference method). It is
found that the mean relative errors εmean between the present analytical method and the
Hang and Zhiqiang solution are as follows:

(a) Soil sample 1 εmean = 2.669 × 10−2;
(b) Soil sample 2 εmean = 8.04 × 10−2.

In both cases, these values are the mean of the values ϕ θα=1, θ−α=0, and θ+α=0.

Figure 2. Profiles of moisture content θ versus Boltzmann transformation ϕ in the case of soil sample
1. The red color corresponds to θα=1, the blue color to θ−α=0, and the green color to θ+α=0.
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Figure 3. Profiles of moisture content θ versus Boltzmann transformation ϕ in the case of soil sample
2. The red color corresponds to θα=1, the blue color to θ−α=0, and the green color to θ+α=0.

Figure 4 is considered very informative for drawing conclusions since it illustrates the
membership functions of the profiles (Figure 4a,b) and the sorptivity S (Figure 4c,d) for
both samples (1, 2), also giving space for the application of the possibility theory and the
meaningful interpretation of the fuzzy results. In that regard and by carefully observing
the different cases in Figure 4, we can conclude that, as an example, at α-cut = 0.05, we
have valuable information regarding the θ and S intervals of confidence for all cases, which,
according to the possibility theory, could provide us with confidence for a probability
greater than 95%. For example, in Figure 4b, the interval [0.394, 0.438] denotes that the
desired value will be in this range with a probability of >95%.

Figure 4. Membership function of (a) moisture content θ at ϕ = 1.2 cm/h1/2 in the case of soil sample
1; (b) moisture content θ at ϕ = 6 cm/h1/2 in the case of soil sample 2; (c) sorptivity in the case of soil
sample 1; and (d) sorptivity in the case of soil sample 2.
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Furthermore, the cumulative infiltration I (cm) vs. time t (h) for the proposed solution,
Hang and Zhiqiang solution, and Philip’s semi-analytical method is illustrated in Figure 5.
Even from the visualization of the results, it is easily observable that the proposed solution
is in close agreement with Philip’s semi-analytical reference solution. This agreement could
allow us to state that the proposed solution is accurate and reliable and can be used for
decision-making and planning needs. In contrast, the solution by Hang and Zhiqiang
presents some deviations (Table 2).

Figure 5. Cumulative absorption I for soil sample 1.

Table 2. Relative error of S between the different solutions related to soil samples 1 and 2.

Method Difference

S α-Cut Hang and Zhiqiang
(1)

Analytical
(2)

Philip
(3) (2) vs. (3) (1) vs. (3)

Soil sample 1
S 1 0.425 0.416 0.416 0 0.0254

S− 0.5 0.374 0.366 0.364 0.005 0.0268
S+ 0.5 0.481 0.473 0.471 0.0044 0.0225
S− 0 0.33 0.322 0.32 0.0046 0.0293
S+ 0 0.546 0.537 0.535 0.0043 0.0206

mean = 0.0037 0.0249
Soil sample 2

S 1 4.26 3.89 3.878 0.003 0.09
S− 0.5 4.057 3.764 3.753 0.003 0.075
S+ 0.5 4.325 4.017 4.005 0.003 0.074
S− 0 3.926 3.64 3.629 0.003 0.076
S+ 0 4.461 4.146 4.134 0.003 0.073

mean = 0.003 0.078

In addition, Figure 6 illustrates the membership functions for the aforementioned
methods, while for the case of the proposed solution, the possibility theory was imple-
mented, leading to the conclusion that for α-cut = 0.05, we have a probability of >95% for
our value to be in the interval [1.460, 2.370].
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Figure 6. Membership function of cumulative absorption I.

To compare the results produced by the three different methods and for both samples
1 and 2, the mean relative error was chosen as a metric.

Table 2 presents the differences in an analytical way to validate the strong agreement
of our proposed solution with Philip’s reference solution. Specifically, regarding sample 1,
the difference is εmean = 3.7 × 10−3, while for sample 2, the difference is εmean = 3.7 × 10−3.
As it emerged from the visualized results, the deviation between the Hang and Zhiqiang
with Philip’s reference solution is confirmed here as well, where for samples 1 and 2, we
have εmean = 2.5 × 10−2 and εmean = 7.8 × 10−2, respectively.

4. Conclusions

The proposed fuzzy solution of Richard’s equation is based on the Hukuhara the-
ory [39] with the generalized Hukuhara (gH-derivative), as well as its extension to partial
differential equations. Today, practical problems useful for engineers can be solved, consid-
ering the fuzziness of various sizes.

In the current work, real measurements of 12 different types of soils were used in
order to draw reliable conclusions. The application of our proposed solution to real cases
of soils has proved that the present analytical solution is in close agreement with Philip’s
semi-analytical method, which is used as a reference solution that proves the accuracy and
reliability of the new fuzzy analytical method. In addition, it was observed to be extremely
easy and simple to calculate in comparison to other methods, without affecting the accuracy
of the results.

Furthermore, it should be highlighted that according to the possibility theory, for
practical cases, such as irrigation, drainage, and water resources projects, the engineers and
designers could now have a better understanding of the real physical conditions (including
the uncertainties), knowing the confidence intervals of the crisp value of sorptivity and
cumulative infiltration with a certain strong probability.
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