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Abstract: On-site sanitation systems (OSS), such as pit latrines, are an important source of methane
(CH4), with emissions increasing when they are wet, and this occurs when anaerobic conditions
dominate. This paper presents the development of a model, which uses seasonal changes in ground-
water to account for the fluctuating inundation of pit latrines, and, therefore, the associated CH4

emissions from varying degrees of anerobic conditions are examined. Given that observed timeseries
of groundwater table depth at high enough spatial and temporal resolutions are often difficult to
obtain in low- and middle-income countries (LMICs), inverse distance weighted (IDW) interpolation
is used to generate values for a whole region, which is then used, alongside average pit latrine
depth, to determine areas of pit latrine inundation. Outcomes are further informed with open-source
contextual data, covering population, urban/rural split, and sanitation facility data, before using
methodologies from the Intergovernmental Panel on Climate Change (IPCC) to generate CH4 emis-
sions data. As a case study, we use data from Senegal to illustrate how this model works. Results
show total CH4 emissions for the month of January to be ~1.69 kt CH4. We have also discussed the
potential use of satellite remote sensing data in regions where access to historical groundwater data
is limited. Understanding when the pit conditions are most likely to change could lead to incentives
for better management strategies, as well as a reduction in CH4 production.

Keywords: groundwater; onsite sanitation; greenhouse gas emissions; pit latrine

1. Introduction

On-site sanitation systems (OSS) are an important source of greenhouse gases (GHG),
particularly CH4, which are driving global heating [1–3]. Referring to pit latrines, septic
tanks, and other non-sewered sanitation, OSS is an integral part of faecal management,
serving approximately 3.3 billion people [4] worldwide, the majority of whom live in low-
and middle-income countries (LMICs). The interaction between pit latrines and groundwa-
ter has been widely explored in the realm of public health, mainly by assessing the effects
that the percolation of leachate from pit latrines has on the quality of groundwater [5]. The
risk of groundwater contamination is greater when pits are flooded [5], and this flooding
also leads to CH4 production [3].

To determine the impact that OSS has on global emissions, it is essential to assess the
quantity of GHG emissions they produce. The small number of studies that have been
undertaken to capture this phenomenon tend to focus on GHG from septic tanks, and they
do not consider the use of pit latrines [6]. This is despite the fact that pit latrines are used by
roughly the same number of people globally as septic tanks, around 1.6 billion people [1,4].
The focus of septic tanks is largely a consequence of previous studies being undertaken in
countries, such as the USA and China, where septic tanks are the more common choice of
OSS [6].

There have been some studies where estimates for total CH4 from pit latrines have
been presented. Reid et al. (2014) reported that 1% of total global CH4 emissions could be

Hydrology 2023, 10, 114. https://doi.org/10.3390/hydrology10050114 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology10050114
https://doi.org/10.3390/hydrology10050114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0003-3277-5874
https://orcid.org/0000-0003-0317-7306
https://orcid.org/0000-0002-1848-9807
https://doi.org/10.3390/hydrology10050114
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology10050114?type=check_update&version=1


Hydrology 2023, 10, 114 2 of 14

attributed to pit latrines alone [3]. van Eekert et al. (2019) found similar results, and when
CH4 is converted to global warming potential, pit latrines were estimated to contribute to
0.3% of total global GHG emissions for 2014 [7]. Although measuring from EcoSan systems,
direct measurements made by Ryals et al. (2019) show that CH4 emissions from moister
pile conditions produced significantly higher emissions than those with dry conditions [8].
Providing that the system provides anaerobic conditions, methanogenesis can take a few
hours to days to occur [9].

These studies used different methods, with van Eekert and colleagues undertaking soil
sample collection and comparing in vitro and in situ results, whereas Reid and colleagues
used spatial modelling [3,7]. In contrast, Johnson et al. (2022) took a whole system analysis
approach in a study of Kampala, Uganda, where rich data on sanitation type, usage, and
systems were available [10]. They concluded that sanitation, in total, contributed around
half of the total GHG emissions for the city, and, although they did not identify specific
contributions from pit latrines, they noted that latrines that were inundated with surface or
ground water had higher emissions.

In anaerobic conditions, more CH4 is produced, causing a greater warming potential
than that produced in aerobic conditions. Increasing the water content of a system leads to
a change in nutrient diffusion rates, and it can affect the metabolism of bacteria, increasing
production of CH4 in anaerobic systems [7]. To address this issue, the Intergovernmental
Panel on Climate Change (IPCC) offered different emission factors for wet pit latrines and
dry pit latrines [2]. For pit latrines, the methane correction factors (MCF) can range from
0.05 to 1.0, as defined by the IPCC [2], depending on the depth of the latrine relative to the
groundwater table, and, therefore, this is also related to the associated moisture content
of a system. The MCF is used to determine how much of a system is subject to anerobic
digestion, with those systems, which are deemed wetter, producing more CH4 overall.

Generating data from empirical studies is essential and should be continued. How-
ever, because it is time consuming, expensive, and impractical to rely on extensive direct
measurements from pit latrines and recorded inundation in most cases, other methods
of deriving location specific, seasonal emissions measurements are required. Since pit
latrines can be infiltrated by groundwater, it can be assumed that the seasonal depth of
the groundwater in an area can be used to determine when the pit will be wet or dry. The
groundwater data that underpin the study by Reid et al. (2014), although using a total of
1,603,781 groundwater collection sites, had a scarcity of data points across LMIC, especially
across Africa, with only 431 sites [3,11]. This low amount of data is often due to a lack of
funding and resources to undertake this monitoring [12,13].

Given the need to better understand inundation, in this paper, we develop a model
to estimate likely inundation of pit latrines by groundwater, based in the assumption that
groundwater level can be used to determine the likelihood of inundation, and, therefore,
it can influence what type of emission factors, as defined by the IPCC, are used. We
believe such an approach offers a more nuanced view of seasonal fluctuations of pit latrine
status—whether wet or dry—across a region.

There are two possible ways in which this data can be used to assess sanitation. The
main aim of this model is to illustrate how they can be used to generate predicted CH4
emissions data from pit latrines with greater certainty than has been previously achieved.
Secondly, they can be used as tools to inform management strategies, such as the best time
to empty pit latrines to avoid groundwater inundation, by understanding when this is
most likely to happen and in which areas. Throughout the paper, data from across Senegal
are used to illustrate how the model works.

2. Materials and Methods

The data required to determine the seasonal extent of groundwater infiltration of
pit latrines can be divided into two main categories: (1) seasonal groundwater data and
(2) contextual data (demographic, latrine location, and emissions factors). For (1), as the
time of year for different seasons, and the type of season varies across the world, seasonality
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is broken down into monthly segments. The use of IPCC emission factors (EF) to determine
overall CH4 associated with groundwater inundation are also described [2]. A visualization
of the model and its components can be seen in Figure 1.

Hydrology 2023, 10, x FOR PEER REVIEW 3 of 14 
 

 

2. Materials and Methods 
The data required to determine the seasonal extent of groundwater infiltration of pit 

latrines can be divided into two main categories: (1) seasonal groundwater data and (2) 
contextual data (demographic, latrine location, and emissions factors). For (1), as the time 
of year for different seasons, and the type of season varies across the world, seasonality is 
broken down into monthly segments. The use of IPCC emission factors (EF) to determine 
overall CH4 associated with groundwater inundation are also described [2]. A visualiza-
tion of the model and its components can be seen in Figure 1. 

The model is based on Geographical Information Systems (GIS). The Quantum Geo-
graphic Information System (QGISTM) [14] was selected because it is open access, allowing 
all users to download it freely. 

 
Figure 1. Visualization of the model’s architecture, including input data, sources, and outputs. 

2.1. Seasonal Groundwater Data 
To gain an understanding of the seasonal variation of groundwater level, historical 

groundwater data are gathered from government departments, universities, or other re-
search groups, which hold them on record. These data are then gathered in a single data-
base, converted to water table depth (m), and separated by month. Because these data 
show individual data points of either well dipping or piezometric readings, the data are 
subjected to Inverse Distance-Weighted (IDW) interpolation to generate values across the 
whole country for each month. IDW interpolation and Kriging methods were considered 
for analysis because they are similar techniques, both using mathematical functions, with 
the latter using geostatistical methods [15]. Studies show similar results using both tech-
niques when verified with additional empirical data collection [16,17]. In this study, IDW 
interpolation was used because this function is embedded within the chosen QGIS soft-
ware. 

Figure 1. Visualization of the model’s architecture, including input data, sources, and outputs.

The model is based on Geographical Information Systems (GIS). The Quantum Geo-
graphic Information System (QGISTM) [14] was selected because it is open access, allowing
all users to download it freely.

2.1. Seasonal Groundwater Data

To gain an understanding of the seasonal variation of groundwater level, histori-
cal groundwater data are gathered from government departments, universities, or other
research groups, which hold them on record. These data are then gathered in a single
database, converted to water table depth (m), and separated by month. Because these
data show individual data points of either well dipping or piezometric readings, the
data are subjected to Inverse Distance-Weighted (IDW) interpolation to generate values
across the whole country for each month. IDW interpolation and Kriging methods were
considered for analysis because they are similar techniques, both using mathematical func-
tions, with the latter using geostatistical methods [15]. Studies show similar results using
both techniques when verified with additional empirical data collection [16,17]. In this
study, IDW interpolation was used because this function is embedded within the chosen
QGIS software.
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In this case, the historical groundwater data come from a large data set, consisting
of 1697 readings of the static level of wells across Senegal between the years 1939 to 2006,
accessed by Direction de la Gestion et de la Planification des Ressources en Eau (DGPRE;
Directorate of Water Resources Management and Planning), on 1 January 2022.

2.2. Pit Latrine Inundation

The depth of a pit latrine can vary from location to location. However, recommenda-
tions from the literature state that a pit latrine should be at least 3 m deep, and it should
preferably be deeper [18]. Therefore, this study uses 3 m as the average pit latrine depth.
This choice is in line with the literature and the emissions study by Reid et al. (2014), where
a depth of 2.5 ± 0.5 m was used [3]. Pit latrine inundation was determined by generating a
new layer on QGIS to show which pixels of the IDW interpolation were shown as less than
3 m in depth. The pixels, which are shown to be less than 3 m in depth, are then coloured
to “red” to show the areas of pit latrine inundation for that month.

2.3. Contextual Data

To determine how many people are affected by pit latrine inundation, widely avail-
able population data were used. This contextual data gathered include total population,
percentage of pit latrine users, and urban/rural split. We assume, in our model, that these
data do not change seasonally, although we recognise them as dynamic. It is noted that,
for this paper, additional information used to define a pit latrine, such a lined/unlined, is
not used. Here, the data used are from the World Bank and Joint Monitoring Programme,
where they are simply designated as “pit latrines”.

Total urban and rural population are calculated from population and urban/rural
spilt data from the World Bank, with the most recent updates for both made in 2021 [19].
An example of this data can be seen in Table 1.

Table 1. Contextual data for Senegal.

Senegal
1 Population 16,876,720

1 Urban/Rural Split 51/49
Urban Population 8,269,592.8
Rural Population 8,607,127.2

2 [Rural] Latrine % 30.41
2 [Urban] Latrine % 28.13

1 World Bank, 2021 [15], 2 Sanitation Facility Type, % Cover [16].

Percentage cover of pit latrine use. Information for sanitation type, and, therefore,
pit latrine use, is extracted from the Joint Monitoring Programme [20]. The data are split
into rural and urban categories, and they are divided by facility type into latrine, septic
tank, and sewer categories. An example of the values for latrines can be seen in Table 1.

Urban/rural distribution is essential, as the number of pit latrine users in each popula-
tion type is different. To determine the urban/rural spilt in an area, the “Global Rural-Urban
Mapping Project (GRUMP), version 1” map from The Center for International Earth Sci-
ence Information Network (CIESIN) [21,22] was used. This shows the urban extent of
settlements based on buffered settlement points and the presence of night lights.

Population density is integral for determining the number of latrine users in a given
area. Based on population registers and national censuses, the “Gridded Population of the
World (GPW), version 4”, freely available from CIESIN [23], was used. As a heatmap, these
data generate values across the world for the number of persons per square kilometer.
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The four data sets described above were used together to generate results, using the
IDW interpolation as a gridded mapped area, where each pixel is considered separately.
Firstly, the population within a pixel is determined by:

PXn = Pd × B (1)

where PX is the total population of the pixel, n is the pixel number, Pd is the population
density in the pixel, and B is the total count of 1 km2 boxes, represented by that population
density. Where more than one population density value is present in a single IDW pixel,
the total km2 represented by each density value is taken into consideration, and the sum of
each Pd value is multiplied by its corresponding count of 1 km2 boxes, represented by that
population density. This gives the total population of the pixel.

To then generate the total number of pit larine users, Equation (2) is applied:

(PU × PLU) + (PR × PLR) = PLT (2)

PU and PR are the urban and rural populations of the pixel, respectively, where PLU
and PLR are the percentage cover of pit latrine users in urban and rural areas as defined by
the Joint Monitoring Programme (JMP), and PLT is the total number of pit latrine users in
the pixel. If multiple population densities are represented, then this equation is expanded
to include all densities present and the corresponding population of pit latrine users.

2.4. Emission Factors and Total CH4

In terms of total emissions, calculations are made by using the emission factors (EF)
from the IPCC [2], generated by Equation (3):

EFj = B0 × MCFj (3)

EFj is the EF (CH4/kg BOD), j is the treatment/discharge pathway or system, B0 is the
maximum CH4 producing capacity (CH4/kg BOD), and MCFj is the methane correction
factor (MCF) fraction.

Default B0 for domestic water is given as 0.6 kg CH4/kg BOD and 0.25 kg CH4/kg
COD, respectively, as “based on expert judgement by lead authors” in Chapter 6 of the
IPCC [2].

When referring to j, this paper considers the values given to latrine systems. As shown
in Table 2, the IPCC breaks down types of latrines into three distinct categories, with
groundwater features described as either higher or lower than the latrine [2].

Table 2. Default MCF values and resultant EF for domestic wastewater by type of treatment system
and discharge pathway, adapted from Chapter 6 of the IPCC [2].

Latrine Description MCF
(Range)

EF
(kg CH4/kg BOD)

EF
(kg CH4/kg COD)

(a) Dry climate, ground water table lower than
latrine, small family (three to five persons)

0.1
(0.05–0.15) 0.06 0.025

(b) Dry climate, ground water table lower than
latrine, communal (many users)

0.5 0.3 0.125
(0.4–0.6)

(c) Wet climate/flush water use, ground water
table higher than latrine

0.7 0.42 0.175
(0.7–1.0)

The emission factors were then entered into Equation (4), based on the IPCC method-
ology [1,2], adjusted for monthly values, rather than annual, to determine the estimated
CH4 emissions from pit latrines of a given area for a defined month:

CH4 = P × BOD × 0.001 × d × EF (4)
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CH4 is the total methane emissions from that given area (kg CH4/year), P is the
population using the system in the given area, BOD is the country-specific biological
oxygen demand (BOD) from excreta of each person in inventory year (g/cap/day), as
defined by the IPCC [2], 0.001 is the conversion factor from grams BOD to kg BOD, d is the
number of days in the given month, and EF is the emissions factor derived from the model
described in results (kg CH4/kg BOD).

Total monthly CH4. To generate the total CH4 from a given month, the total popula-
tion of pit latrine users from red and blue pixels of the IDW interpolation are determined.
The pixels are either considered “inundated pit latrines” or “dry pit latrines”. The associated
EFs are then derived from the IPCC latrine descriptions in Table 2, where “inundated
latrines” use type c factors, and “dry latrines” use type a or b factors, depending on the
average household size of the country. Total annual CH4 is then determined by adding the
monthly CH4 values together.

3. Results

The results from this study show how a novel model design (illustrated in Section 2),
which uses spatial distribution, freely available contextual data, and available seasonal
groundwater data, can generate information on regional pit latrine inundation.

To illustrate the model application, results are derived from current information
available to this research team from Senegal. This paper focuses on illustrating how the
model works, whereas presenting country results is out of its scope; therefore, only data for
the month of January are presented as an example. These data consist of 121 groundwater
depth readings across Senegal, from 1939 to 2006 (from DGPRE). As the groundwater input
data covers a large date range, the output for “January”, in this case, can be considered as an
~80-year average. Figure 2 shows the IDW interpolation map generated from this data, with
the red square representing the location that is predicted to incur pit latrine inundation.
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This map is considered the first output of this model, as it clearly illustrates geograph-
ically, across the region of Senegal, where pit latrine inundation by groundwater is likely to
occur in January.

The second output showing predicted monthly CH4 emissions requires further cal-
culations. In this case, the IDW inundation pixel size is approximately 11 km2. When
calculated using Equations (1) and (2), this gives a total of 10,121.1 “inundated pit latrines”
(red) users and 4,909,442.8 “dry pit latrines” (blue) users for the month of January (including
both rural and urban users).

As the average household size in Senegal is ~8.7 persons [24], type (b) EFs are used
for the dry proportion of the population. EFs for type (c) are used for the inundated
latrine proportion of the population. The values that were entered into Equation (4) to
determine the January CH4 emissions from pit latrines can be seen in Table 3. For BOD,
37 g/person/day is used, based on the literature presented by the IPCC for Africa. For d,
as January has 31 days, 31 is used.

Table 3. Data used and results of total January CH4 emissions from pit latrines for Senegal.

Population EF
(kg CH4/kg BOD)

CH4 Emissions
(kg CH4/Month)

Inundated Pit Latrines 10,121.1 0.42 4876
Dry Pit Latrines 4,909,442.8 0.3 1,689,339

The total CH4 emissions from pit latrines in January are calculated to be ~1.69 kt
CH4. Using this estimate from our model as an indication of monthly emissions and a
global warming potential of 28 [25], total annual CH4 from pit latrines is estimated to
be ~568 Kt CO2 e/year. A national audit for total sanitation emissions from Senegal [26]
shows the country as producing 1723 Kt CO2 e/year, and on-site sanitation accounts for
1174 Kt CO2 e/year. Using the data on sanitation for Senegal for 2020 [20], “improved
latrine and other” makes up 45% of total on-site sanitation. Applying this proportion
to the total estimated on-site sanitation emissions indicates that pit latrines account for
528 Kt CO2 e/year. This is only 8% lower than the estimate calculated from our model,
suggesting that, although these are crude calculations and there are more factors to consider,
our model produces reasonable estimates.

It is important to note that this is a first estimate of the total CH4 emissions of Senegal,
in January, using this model design. More work is required to verify the performance of
this model and to quantify the uncertainties associated with these results.

4. Discussion

Our model provides a new tool to estimate likely changes in CH4 emissions in relation
to changes in water content in pits, based on a groundwater model. By using local data
and interpolating values between adjacent points to create a groundwater map estimate
on potential, inundation can be created, providing new tools to support decision-making
concerning issues, such as emptying pit latrines.

4.1. Benefits of This Model

The output maps can be used for two main purposes. Firstly, to determine the CH4
emissions for a region by using multiple EFs at varying degrees across the year, as well
as to take into account seasonal variation. Secondly, they can be used to roughly forecast
when pit latrines in certain areas are more likely to become inundated with groundwater,
and, therefore, they can be used to develop management and emptying practices, which
reflect this. Not only could this model be used as a means to manage GHG emissions, but
it can also improve public health by ensuring pit latrines do not reach a stage where they
overflow. Emptying latrines is a complex issue. Therefore, other associated issues would
have to be considered to determine the capacity of a certain location to change its emptying
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practices. This includes, but is not limited to costs, safety of emptying and suitability of
disposal/onwards treatment. Emptying must be considered in a holistic way, and this
model aims to aid in a small part of this. Overall, this model provides a good generalisation
of a region with the data that are available.

IDW interpolation is chosen because it allows a small accurate dataset to be interpo-
lated across the desired area. By using this type of spatial interpolation, regions which have
few data points are still able to achieve usable results. Ideally, the measurements should be
taken at regular intervals across the desired region. However, as with any spatially driven
work, the level of uncertainty within the results is dependent on the quality (and quantity)
of the input data.

Although rainfall can cause ponding in latrines at times, this phenomenon occurs
when there is no superstructure present. In this study, seasonal inundation of pit latrines
due to groundwater is explored because it lends a more measurable and direct way to
measure water inundation of improved pit latrines. This inundation comes from the rising
of groundwater, often after the rainy season, assuming that the aquifer is isotropic.

Currently, whole-country GHG emissions estimates are more often than not based
on emissions factors by the IPCC [2], where estimates are made for the percentage of
the country that would be experiencing groundwater inundation across the year. This
is shown in the way that the IPCC categorizes latrine types—it is performed by shallow
or deep groundwater tables [2]. Providing figures that most accurately represent annual
emissions should take into consideration seasonal change, which is not currently explored
at present. Our model allows an annual emissions figure to be presented with greater
certainty, backed-up with country-specific data.

Although there are discussions and disagreements within the literature around whether
the EFs from the IPCC overestimate [27–29] or underestimate [10] the associated GHG emis-
sions, these are used for this study because, overall, more research needs to be undertaken
to determine otherwise. If these factors do change in the future, they can easily be changed
within the model too, with the other factors remaining the same. This model is flexible
and is designed to use the most recent data available. Likewise, there are differences in
opinion on the dominance of anerobic digestion pathways within pit latrines [7,30]. How-
ever, as previously mentioned, more empirical data are required before any sure decisions
are made.

While pit latrines are the focus of this paper, it is possible to assume that many septic
tanks will not be perfectly built and managed, and, therefore, many of these will also be at
risk of infiltration by groundwater [1,4]. For the case of Senegal, pit latrines only account
for 29.3% of the population’s sanitation usage [19,20]. In a country where septic tanks are
more widely used (36.7% in the case of Senegal [19,20]), it would be valuable to understand
the percentage of these which are both working and managed as designed, as well as the
percentage of those that are not and, therefore, what impact this may have on total CH4
emissions associated with onsite sanitation. It is possible that most septic tanks may be
contained well enough so that the contents are always submerged due to flush water, and,
therefore, this mapping of groundwater would not be required with regards to emissions.

Other studies have put forward the hypothesis that, if a reduction in GHG emissions
can be shown, then sanitation projects may be able to access climate financing [31]. OSS
management strategies could be informed by this model as a way of reducing emissions
and be part of a programme of action able to access climate financing by demonstrating
effective CH4 reduction strategies. Additionally, pathways to accessing climate financing
could open areas that incorporate this if it can be shown to be reducing GHG emissions in
the area.

4.2. Model Limitations

Other factors that are likely to have an impact on total production of CH4 include the
anal cleansing method (whether water or paper is used), differences in practices/usage in
urban and rural settings, the total sludge content in each pit latrine, and the level of sludge
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stabilisation. Although this may be the case, it is impossible to monitor each of these factors
when working on this larger scale. This model uses an approach where data that are readily
available are used to create “best estimates”, rather than undertaking new data collection
onsite. However, we acknowledge the importance of these other factors and, therefore,
encourage extra data collection where possible.

Although this model is grounded in real data, and it uses logical steps to generate
results, there are still many uncertainties within it. Much of these uncertainties stem from
the type of data which are available.

The latest update for urban extent data by CIESIN was received in 2000 [21,22]. In
Senegal, this means that the map used is not only 23 years out of date, but it is based off a
population size of 9,704,287 [19], rather than the current population of 16,876,720 [19]. The
fraction of people living in urban areas has also increased, from approximately 45.5% to
49% today [19,21,22]. However, when a more recent population density map [32] from the
2021 census is overlayed, clusters form in the same areas. As this map shows population
clusters, not urban extent, it was not used for the model, but to verify what was used. It is,
therefore, possible to assume that much of the spatial distribution of the population has
remained similar, even if it has increased in number. For future work, correction factors
will be developed for each country, based off the most recent census data.

Although this data may not be as recent as desired, the fact that population distribution,
urban extent, and seasonality are considered alongside groundwater, grounds the EFs,
which are used much more so than current methodologies.

With regard to the hydrology of a given region, this model assumes that all aquifers
are isotropic, and, therefore, groundwater level has a direct seasonal rise and fall, which
will affect pit latrine inundation. However, this assumption cannot be extended globally,
and, therefore, local knowledge of an area’s hydrology is important to determine how
much of a driving force groundwater infiltration plays within that region. For example,
in Uganda, Taylor and Howard (1999) [33] note that preferential pathways of subsurface
flow commonly occur due to the influence of tectonic setting in the region. In this case, this
model may not be appropriate because isotropic groundwater would not be the driving
factor of inundation. Again, this model offers a good generalization of a region, without
delving into specifics of an area. It is, therefore, suggested that, if this model is to be used
to help inform management, local knowledge and understanding of hydrology should also
be considered.

Perhaps the most limiting factor of this model is the use of regional historical ground-
water data. For the considered case of Senegal, obtaining a data set of over 1500 data points
for a single region is a remarkable achievement. In the study by Reid et al. (2014), the
whole continent of Africa is represented by only ~431 data points [3,14]. Unfortunately,
this dearth of data is the case for many LMICs, as access is often limited, or often behind a
paywall, when the data have been collected. For this data to prove robust, there must be
sufficient data across the area for each season, with several data points in each instance.
This constraint is by far the most limiting factor of using this method of groundwater
projection. Many uncertainties lie within the total number of data points and the size of the
area they are interpolated over.

The success of this model is based on access to groundwater data from the study
country. To overcome this, we have begun to investigate other ways to access non-
traditional groundwater data, which do not require years of field work or monetary
resources to generate.

4.3. Future Use of Satellite Technologies

The Gravity Recovery and Climate Experiment (GRACE) satellite is used to show
groundwater trends over a larger area. GRACE [34] and its successor, GRACE-Follow On
(or GRACE-FO) [35], provide near continuous monthly data on terrestrial water storage
anomaly (∆TWS) across Earth. The twin satellites monitor the change in gravity mass,
and, therefore, there is a change in water storage within a given pixel (with a maximum
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resolution of ~400 km [36]). Although less granular than using empirical groundwater data,
GRACE has often been used to verify groundwater research in terms of determining if the
predicted groundwater results follow the same trend as monitored by GRACE satellite
data [15]. In the context of Senegal, these mirroring trends can be seen in Figure 3.
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Figure 3. Mean groundwater depth was generated by using the data points within the area that the
GRACE pixel covers. (a) Data from GRACE: note that GRACE data are represented as ∆TWS, not in
groundwater depth. The average ∆TWS for each month from 200–2022 is presented as the red dotted
line. (b) Measured average groundwater depth using the average from 1939–2006. For both (a,b), the
seasonal trends where water in the region is highest are highlighted by the red boxes.

Although the March peak seen in (b) is not as prevalent in (a), the trend is still visible.
As averages over large time periods are used, as well as data, which do not directly show
groundwater level, this uncertainty is to be expected. At this stage, no correlation was
undertaken due to the GRACE data not representing groundwater depth. However, the
trend is clear enough to suggest that further work should be undertaken in this direction.

Data from GRACE have also been used to study trends in groundwater where there
is no empirical data [37]. Many of these studies have used GRACE to provide useful
descriptive information where any other data are lacking [15]. In terms of TWS, this is
clearly demonstrated by the data from Senegal.

To generate useful data in terms of groundwater, TWS data from GRACE can be
used in combination with the Global Land Data Assimilation System (GLDAS) [16,38,39].
GLDAS models a multitude of land surface variables, including surface water storage and
soil moisture [40], and, therefore, Equation (5) applies:

∆TWS = ∆Wsws + ∆Wsm + ∆GWS (5)

∆TWS is the total water storage anomaly derived from GRACE, and ∆Wsws, ∆Wsm,
and ∆GWS represent the total anomalies of surface water storage, soil moisture storage,
and groundwater storage, respectively.

Therefore, to solely derive the change in groundwater storage ∆GWS from month-on-
month, the following equation can be used:

∆GWS = ∆TWS − ∆Wsws − ∆Wsm (6)

∆GWS describes the month-on-month trends of change in groundwater, not the abso-
lute value of groundwater storage.

GRACE, in combination with GLDAS, provides continuous month-on-month data,
over the same region, for ∆GWS since 2002. The nature of this evenly continuous data
means that GRACE can be especially useful for determining trends across the region, albeit
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at a larger scale. For example, the months where groundwater table depth is the highest
may have changed across a 15-year period, or these seasons may be regular. Whereas, data
from GRACE can always accomplish this, and in-site measurements are rarely undertaken
over such a long period.

It is, therefore, possible to recommend that in situ and satellite measurements are used
to support each other [41]. Over the large regions defined by GRACE, data can be used to
determine what areas of a country are more likely to receive large fluxes in groundwater
level, as well as in what seasons. Whereas, in situ data will be able to provide more
local information on exactly what communities may be at risk of inundation compared to
others. Where little to no historical groundwater data exist, this method of using GRACE
allows data scarce areas to still gain from this groundwater infiltration knowledge, albeit at
a lesser resolution.

Some studies have compared in situ groundwater measurements [38,42] or have
used interpolation of groundwater data to verify the results that they have obtained from
GRACE [16]. Similarly, a comparison assessing the discrepancies across the two methods
for assessing groundwater data is required. Finding a region which is both rich in historical
groundwater measurements that overlap the years that GRACE has been running and has
a significant percentage of the population that utilize pit latrines may prove to be difficult.

4.4. Validation and Future Work

This model requires validation using empirical CH4 emission data collected from pit
latrines to determine how similar direct measurements are to model predictions. Under an
ongoing project funded by the Bill & Melinda Gates Foundation (grant No: INV-015713),
steps are being undertaken to do just this, including assessing emptying practices and the
amount of sludge in OSS in both urban and rural regions. The initial steps of this empirical
data collection and research from Senegal were presented by Ngom et al. (2022) [43].

However, as the model stands, without validation, we believe that this offers a more
accurate way than current methods to estimate CH4 emissions from sanitation, as sea-
sonality is considered completely supported by regional data. As trends in wetness are
determined by seasons, it is essential to take them into account. By using groundwater
levels to determine this, we have chosen a data set that has a stable time trend, as well as a
relatively simple hypothesis that assumes that, when groundwater level reaches within the
depth of a standard pit latrine, it will cause the contents to generate anaerobic conditions.
Other hydrological data, such as rainfall, were considered. However, it is difficult deter-
mine how, where, and at what frequency rainfall has a direct impact on the contents of a
pit latrine.

5. Conclusions

A new model has been created and is at the late development stage, which allows
regional and seasonal estimates of CH4 emissions from pit latrines to be made. The novel
part of this study is that seasonal groundwater inundation of pit latrines is taken into
consideration for the first time.

This study focuses on using emissions data based on the current IPCC methodologies
and the given EF. This study shows that, due to the limited availability of empirical
groundwater data, other methods/sources should be used to enhance results if possible.
Satellite data, such as GRACE, may not be granular, but they can provide up-to-date,
current data, to complement any empirical data to generate a “best guess”.

Studies have shown [13] that these results can be improved by using and collecting
location based empirical data. By using the methods outlined in this paper in conjunction
with specific empirical data, more accurate quantities of seasonal emissions can be modelled,
which more closely consider local environmental conditions, and thus they improve the
model granularity.

The model presented in this paper shows potential in being able to model likely
pit inundation over large regions, but it requires further development and validation.
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This paper also discusses a novel way to explore the use of satellite data within the field
of sanitation. This knowledge may then be used to influence future on-site sanitation
management strategies in the future.
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