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Abstract: This study examined the spatiotemporal climate variability over the Ceyhan River basin
in Southern Anatolia, Türkiye using historical rainfall and temperature observations recorded at
15 meteorology stations. Various statistical and geostatistical techniques were employed to determine
the significance of trends for each climatic variable in the whole basin and its three sub-regions
(northern, central, and southern regions). The results revealed that the recent years in the basin were
generally warmer compared with previous years, with a temperature increase of approximately 4 ◦C.
The standardized temperature index analysis indicated a shift towards hotter periods after 2005,
while the coldest periods were observed in the early 1990s. The spatial distribution of temperature
showed non-uniform patterns throughout the basin. The first decade of the study period (1975–1984)
was characterized by relatively cold temperatures, followed by a transition period from cold to hot
between 1985 and 2004, and a hotter period in the last decade (2005–2014). The rainfall analysis
indicated a decreasing trend in annual rainfall, particularly in the northern and central regions of
the basin. However, the southern region showed an increasing trend in annual rainfall during the
study period. The spatial distribution of rainfall exhibited considerable variability across the basin,
with different regions experiencing distinct patterns. The standardized precipitation index analysis
revealed the occurrence of multiple drought events throughout the study period. The most severe
and prolonged droughts were observed in the years 1992–1996 and 2007–2010. These drought events
had significant impacts on water availability and agricultural productivity in the basin.

Keywords: temperature; precipitation; Mann–Kendall; trend; climate change; Ceyhan River

1. Introduction

Global climate change/variability has an important role in integrated water resources
management all over the world [1,2]. Recent climate change and variability studies have
highlighted its global significance and the varying impacts experienced across differ-
ent regions. Consequently, numerous global, regional, and national studies have been
conducted to establish evidence of climate change/variability and its implications [3–6].
Similarly, many efforts have been made to monitor and predict extreme climate events
such as droughts [7,8]. As Dunn et al. [9] mentioned, climate change/variability is ex-
pected to lead to the intensification of the global hydrological cycle, exerting direct in-
fluences on overall water resource availability for human and agricultural consumption.
Pirnia et al. [10] reported that when precipitation and temperature are varied, streamflow
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regimes can change significantly and lead to the appearance of hydrological anomalies
such as floods and droughts. They also mentioned climate variability affecting stream-
flow at a global scale as the most important factor, while at a local scale, human activities
such as land use change and dam constructions can affect streamflow. Understanding
how climate change/variability might impact both natural ecosystems (such as available
water resources) and human society is one of the most sophisticated issues in integrated
water resources management [11,12]. Hence, for decades, global and regional climate
changes/variability have been widely investigated using different methods and long-term
observational data [13–16]. For example, Li et al. [11] used modified Mann–Kendall tests,
flow duration curves, and correlation statistics to identify the long-term trend of the hydro-
climatological variables. Chong et al. [15] integrated k-means clustering and continuous
wavelet transform with Mann–Kendall and sequential Mann–Kendall tests to analyze
spatiotemporal variability of meteorological drought events across two Malaysian states.
Adu-Prah and Tetteh [16] have assessed relevant information on the role of temperature,
rainfall, and humidity on malaria prevalence at different geographic scales for a better
understanding of climate variability, and they examined the varying spatial and seasonal
distributions in malaria prevalence over time in Ghana. There are similar studies that have
investigated spatiotemporal climate variability and its impact on the hydrological cycle
and quantity and quality of water resources [17–20].

Given the importance of climate change impacts across the Mediterranean basins,
several studies have assessed both short- and long-term changes in hydrometeorological
indicators and drought risk in this region (e.g., [21–32]). Focusing on Türkiye, a compre-
hensive review of drought assessment across the country has been conducted recently [7].
Overall, the study reported an increasing trend in the number of meteorological drought
events across the country. Research on agricultural and hydrological drought assessment
across the country was also recommended in this study. At the regional scale across
Türkiye, the long-term trend of meteorological drought over the Southeastern Anatolia
Project (GAP) region was investigated by Gumus et al. [25], indicating a decreasing trend
in most of the region. To detect potential trends in meteorological drought events across
the capital province of Ankara, 46 years of precipitation and temperature data were used
by [26]. Using Spearman rank order and innovative trend analyzing methods, the study
showed that the province experienced five extreme drought events during the period
1971–2016. The authors also highlighted a slight descending trend in the observed drought
events across Ankara province [26]. The results showed that prolonged severe drought
events can correctly be detected by different indices in this region. Eris et al. [27] con-
ducted a comprehensive study on the spatiotemporal variation of drought severity over
the Kucuk-Menderes River catchment, western Türkiye. The study compared different
site-specific drought indices using historical observations from five meteorological stations
to generate drought risk maps for the catchment. More recently, Mersin et al. [28] used
long-term precipitation and temperature data from 14 meteorological stations across the
Aegean region of Türkiye to investigate drought patterns in the region. The results showed
inconsistent drought patterns when different drought indices were derived using the same
input variables.

In this study, climate variability across the Ceyhan River basin (Türkiye) was examined
for the first time using historical rainfall and temperature observations recorded at 15 mete-
orology stations during the period 1975–2014. The Ceyhan River basin is already suffering
from climate variability [24]. To this end, various statistical and geo-statistical techniques
were used to determine the significance of the trends for each climatic variable. In addition,
the associated analysis was conducted for the whole basin and three sub-regions (northern,
central, and southern regions).
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2. Materials and Methods
2.1. Study Area and Data

The Ceyhan River basin is in the central part of Türkiye in the eastern Mediterranean
region. The basin with an area of 20,670 km2 extends between latitudes of 36◦30′–38◦42′ and
longitudes of 35◦30′–38◦48′ (Figure 1). The Ceyhan River rises from the Nurhak Mountains
of the Eastern Taurus Mountains range at an altitude of 2000–2500 m to the north of the
Kahramanmaraş and flows southwest to the Mediterranean Sea near Adana [32]. The
Ceyhan River basin is surrounded by the Seyhan basin, the Euphrates in the east and north,
the Asi River in the south, and the Seyhan River basin in the west. The basin drains into
the Mediterranean Sea in the south. The annual flow of the Ceyhan River is about 7.18 km3,
which is equal to 4% of the total streamflow of Türkiye. The 40 years’ (1975–2014) rainfall
and temperature data from 15 climatology stations inside and around the basin were used
to assess the spatiotemporal climate variability over the Ceyhan basin. Table 1 presents
the list of climate stations used in this study. To better understand spatial and temporal
variation, the basin area and 40 years period were divided into three sub-regions (including
northern, central, and southern regions) and four decades (including 1975–1984, 1985–1994,
1995–2004, and 2005–2014). Sub-regions were selected based on their latitude variation
(i.e., latitudes of 35.56–36.3, 36.3–38.00, and 38.00–38.71 for southern, central, and northern
regions respectively) to cover almost the same change in latitude.
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Figure 1. Study area: (a) location of Ceyhan in Türkiye, (b) layout of basin and configuration of
climate stations, and (c) three studied sub-regions.

Table 1. List of the climate stations in the study area.

Station Longitude Latitude
Mean Annual
Temperature

(◦C)

Mean Annual
Precipitation

(mm)

Sariz 36.503 39.478 7.46 509.38
Develi 35.479 38.374 11.06 368.43
Pinarbaşi 36.390 38.725 7.77 407.69
Tomarza 35.791 38.452 8.16 395.68
Osmaniye 36.253 37.102 18.52 828.28
Yumurtalik 35.790 36.768 19.12 810.26
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Table 1. Cont.

Station Longitude Latitude
Mean Annual
Temperature

(◦C)

Mean Annual
Precipitation

(mm)

Karataş 35.389 36.568 19.16 782.52
Kozan 35.818 37.433 19.46 837.57
Karaisali 35.062 37.250 18.61 882.72
Ceyhan 35.795 37.015 17.99 718.38
Adana 35.298 36.983 19.28 667.64
Afsin 36.919 38.240 10.56 431.71
Elbistan 37.198 38.203 10.90 398.81
Goksun 36.482 38.024 8.93 601.05
Kahramanmaraş 36.915 37.576 16.84 742.74

2.2. Mann-Kendall Test

The Mann–Kendall test as a distribution-free non-parametric method was used to
detect significant trends of hydro-climatological time series variables [33–38]. The Mann–
Kendall trend test statistic Z is based on Equations (1) to (4).

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(1)

where xi and xj are values in time intervals of i and j, respectively; n is the length of the
data set, and:

sgn(θ) =


+1 θ > 0

0 θ = 0
−1 θ < 0

(2)

If the sample size exceeds ten, the statistic S is nearly normally distributed. The
variance of the statistic S (Var(S)) is then calculated as:

Var(S) =
n(n− 1)(2n+5)−∑t t(t− 1)(2t+5)

18
(3)

where t is the extent of any given time, and Σ denotes the summation over the study period.
The values of S and Var(S) are used to calculate the test statistic, Z, as follows:

Z =


S−1√
Var (S)

, if S > 0

0 if S = 0
S+1√
Var(S)

, if S < 0
(4)

where the Z value evaluates the presence of a statistically significant trend. A positive or
negative value of Z shows an increase or decrease with time, respectively.

In this study, a MATLAB script was developed for spatiotemporal analysis of the
climate variables (rainfall, mean maximum and minimum temperatures at monthly, sea-
sonal, and annual timescales). The basin polygon (Figure 2a) is encompassed by a meshed
rectangular grid (Figure 2b). To generate a time series of interpolating functions, the “scat-
tered Interpolant” function (i.e., Ft = scattered Interpolant(X, Y, P(t))) was utilized. This
approach was applied to the monthly data from 15 climate stations for each individual
time sequence (Figure 2c). For every time instance, the associated value for temperature (or
rainfall) was determined by considering the mean value from the mesh cells located within
each polygon (Figure 2d).
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In this function, X and Y are the longitude and latitude of each of the 15 stations
and P(t) is a temporal value of climatic parameters (rainfall or temperature at time t). By
applying the function to the data set for each month from 1975–2014, we developed 480
(40 years multiplied by 12 months) functions for monthly rainfall and 480 functions for
monthly temperature. Then, by executing Ft to the coordinates of each mesh inside the
basin’s polygon, the time series of value of P were calculated for each mesh (Equation (5)):

P(at Xmesh,Ymesh and t) = Ft(Xmesh,Ymesh)
(5)

Now, a time series of climate parameters (here, rainfall and temperature) is available
for each mesh point inside the rectangle, by finding the number of points inside the polygon
of the basin. Here, we applied all calculations for four polygons representing the whole
Ceyhan basin, the southern, the central, and the northern regions.

In this study, we calculated the spatiotemporal value of rainfall, temperature, stan-
dardized precipitation index (SPI), and standardized temperature index (STI). In addition,
the trend of each indicator was explored using the Mann–Kendall test for each mesh cell
inside the polygons for different time sequences. The selected timing sequences were
annual, monthly, two, three, four, five, and six continuous months. Based on these timing
configurations, 73 scenarios were developed (1 annual, 12-monthlies, 12 2-month, . . . and
12 6-month). To better address the data, monthly time frames were named based on three
initial letters of each month (e.g., Jan., Feb., etc.) while other time sequences were named
by combining the initial letters of the months. For example, the two-months sequence
including January and February is named “JF”, or the name “JFMAMJ” stands for the
six-months’ time frame from January to June.

To evaluate extreme events regarding historical temperature records, we classified
each time sequence time series based on the STI in seven groups (Table 2):
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STIxy =

(
Txy − T

)
σ

(6)

where STIxy is the standardized temperature index for year x and time sequence of y (e.g.,
JF, JFMAMJ), Txy is the temperature in xx time in year x and time sequence of y, T, and σ are
the mean and standard deviation for temperature in the selected period. Similar strategies
were conducted using rainfall data to develop SPI and evaluate the extreme rainfall events.

Table 2. Thresholds used for STI and SPI classification in this study.

Standardized Precipitation Index (SPI) Standardized Temperature Index (STI)
Conditions Threshold Color Conditions Threshold Color

Extreme Wet SPI ≥ 2.5 Extreme Hot STI ≥ 2.5
Severe Wet 1.5 ≤ SPI < 2.5 Severe Hot 1.5 ≤ STI < 2.5
Mild Wet 0.5 ≤ SPI < 1.5 Mild Hot 0.5 ≤ STI < 1.5

Normal Wet 0.0 ≤ SPI < 0.5 Normal Hot 0.0 ≤ STI < 0.5
Normal Drought −0.5 ≤ SPI < 0.0 Normal Cold −0.5 ≤ STI < 0.0

Mild Drought −1.5 ≤ SPI < −0.5 Mild Cold −1.5 ≤ STI < −0.5
Severe Drought −2.5 ≤ SPI < −1.5 Severe Cold −2.5 ≤ STI < −1.5

Extreme Drought SPI < −2.5 Extreme Cold STI < −2.5

3. Results

The results of spatiotemporal variations of temperature, rainfall, and their associated
trends are discussed in this section.

3.1. Spatiotemporal Variation of Temperature and Hot and Cold Periods

Overall, the thermal view of the basin indicated that the recent years were warmer than
earlier years and northern subbasins were colder than southern ones by almost 4 ◦C. The
coldest and warmest years were 1992 and 2010, respectively. The results of the STI analysis
show the coldest 1-, 2-, 3-, 4-, 5- and 10-years periods started from 1992, 1992, 1991, 1990,
1989, and 1983, while all the hottest periods started after 2005 (Figure 3). In Figure 3, EC, SC,
MC, NC, NH, MH, SH, and EH are abbreviations for the following conditions: extremely
cold, severely cold, moderately cold, normal cold, normal hot, moderately hot, severely
hot, and extremely hot, respectively [39–41]. Among the first decade of study (1975–1984),
only 1979 (15.6 ◦C) was classified as SH and the STIs for other years were less than 0 and
indicated different classes of cold conditions. The percentage of hot years or years with a
tendency to hot conditions (class NH) during the second, third, and fourth decades clearly
increased to 30%, 70%, and 90%. Surprisingly, in the last decade (2005–2014), only the
year 2011 was categorized as MD with a mean annual 14.6 ◦C (Figure 3a,b); furthermore,
the hottest year (2010, 16.7 ◦C, EH) was also experienced in this period. The temperature
distribution was not uniform along the basin for the whole period, and only for 7 years
(1976, 1990, 1995, 1999, 2004, 2006, and 2010) were all three regions classified in the same
category. The number of years in the middle categories (NC and NH) was 13, about 33%
of the period; most of these years (8 out of 13) occurred between 1985–2004. Finally, we
can state that among these 40 years, the first decade was quite cold, then during the next
20 years (1985–2004) we observed a transition period from cold to hot in the last decade
(2005–2014) (Figure 4).
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3.2. Spatiotemporal Variation of Rainfall

Rainfall distribution in both temporal and spatial scales does not have a uniform
pattern across the whole basin. Annual rainfall reduced from the southern to the northern
part of the basin. During the period 1975–2014, the mean annual rainfall in the basin was
650 mm; however, in the northern, central, and southern parts, it was 438, 724, and 790 mm
respectively (Figure 5). The maximum annual rainfall in the whole basin occurred in 1995,
which was similar in the northern and central parts, while in the southern part it occurred
in 2009. This issue was also seen for the minimum annual rainfall, which occurred in 2013
in the whole basin, central, and southern parts, but in the northern part, it occurred in
1984. In 27.5% of the studied period (12 years, e.g., 1978, 1981, 1983 and . . .), three different
parts of the basin experienced the same rainfall conditions (Figure 5). In Figure 5, EW, SW,
MW, NW, ND, MD, SD, and ED are abbreviations for the following conditions: extremely
wet, severely wet, moderately wet, normal wet, normal drought, moderate drought, severe
drought, and extreme drought, respectively.
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Figure 5. Spatiotemporal (a) rainfall and (b) SPI variability over Ceyhan basin.

Overall, the frequency of dry (SPI < 0.0) and wet conditions (SPI > 0.0) were almost
the same. Normal conditions (−0.5 < SPI < 0.5) were most frequent over the Ceyhan and
the three regions (Figure 6). In central, south, and the whole basin, the frequency of normal
conditions with wet tendency (slight positive SPI, NW, 0 < SPI < 0.5) was more than normal
conditions with drought tendency (small negative SPI, ND, 0 < SPI < 0.5), while in the
northern part the frequency of ND and SD was equal (Figure 6). In the northern part of the
basin, the frequency of drought and wet conditions was almost the same. Moderate drought
(MD, −1.5 < SPI < −0.5) showed most frequency among drought conditions, while normal
conditions with wet tendency were most frequent among different wet conditions (Figure 6).
The frequency of extreme wet (EW, SPI > 2.5) and extreme drought (ED, SPI < −2.5) was
zero. The northern part frequently had normal conditions with wet and normal drought.
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3.3. Trend of Rainfall and Temperature over the Ceyhan Basin and the Sub-Basins

The annual temperature exhibited a significant positive trend across the basin and its
three regions, as depicted in Figure 7(a(1)–a(4)). Conversely, the annual rainfall showed only
a negative tendency over the basin and three regions, as illustrated in Figure 7(b(1)–b(4)).
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Of 73 different scenarios analyzed to assess the intra-annual temperature trend in
the entire basin, approximately 44% of the scenarios exhibited a significant positive trend.
The remaining scenarios indicated a positive tendency without reaching the threshold for
significance (Figure 8(a(1))). Among the monthly time series analyzed, it was observed that
the months of June, July, and August exhibited a significant positive trend in temperature.
Furthermore, the majority of other scenarios, including those spanning 2, 3, 4, 5, and
6-month periods, also showed a positive trend in temperature (Figure 8(a(1)) and its
accompanying footnote). When considering the three regions individually, approximately
58% of scenarios in the southern region, 51% in the northern region, and 18% in the
central region demonstrated a significant positive trend in mean temperature for different
time periods (Figure 8(a(2)–a(4)), with detailed information provided in their respective
footnotes). However, only 3% of rainfall scenarios in the southern region exhibited a
significant positive trend, specifically in the months of September and August to September
(Figure 8(b(2))), while the remaining scenarios (in all regions and the whole basin) showed
either a positive or negative tendency (Figure 8b).
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3.4. Intra-Annual Climate Distribution and Variability

Figure 9 provides insights into the changes in temperature (a and c) and rainfall (b and
d) across different months of the year in the Ceyhan River basin (1) and its southern (2),
central (3), and northern (4) zones. The analysis reveals an overall increase in temperature
throughout most months of the year, with a more pronounced rise observed during the
warm months of June, July, and August. Furthermore, Figure 9 illustrates the temperature
and rainfall patterns for four decades and each month’s contribution to the annual values.
Comparing the triple zones of the Ceyhan River basin, it is evident that the southern
region experiences higher temperatures compared to the central and northern regions
(Figure 9(a2–a4)). Notably, the northern part of the basin exhibits greater temperature
variations throughout the months of the year, particularly in comparison to the central and
southern regions (Figure 9(a4)). Consequently, the warm months of June, July, and August
contribute significantly more to the average annual temperature in the northern region
compared with the central and southern regions. In contrast, the temperature differences
between months of the year are less pronounced in the central and southern parts of the
Ceyhan River basin. For example, in January, the contribution of temperature to the overall
annual value is approximately 7% in the southern part, while it is less than 1% in the
northern part (Figure 9(b1–b4)).

Regarding rainfall, Figure 9(b1–b4) shows that rainfall occurs throughout the year,
with the rainy season typically spanning from October to June. The highest and lowest
precipitation rates are observed in January and August, respectively. The contribution
of precipitation during July, August, and September is comparatively lower than the
other months of the year (Figure 9(a1,d2–d4)). It is important to note that precipitation
changes across different months of the year and over the four-decade period do not exhibit
regular trends.
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Figure 9. Monthly temperature (a) and rainfall (b) and their distribution (percentage: (c,d)) for
different decades over the (1) Ceyhan basin, (2) southern, (3) central, and (4) northern part of
the basin.

Figure 10 illustrates the monthly variations in temperature and rainfall, comparing the
first decade (1975–1984) with the last decade (2005–2014). The overall temperature increase
over this period was 0.93 ◦C, with variations ranging from 0.32 ◦C in February to 1.99 ◦C
in August. Notably, the highest temperature increases were observed in August (1.99 ◦C),
followed by June (1.3 ◦C), July (1.21 ◦C), March (1.14 ◦C), and April (1.03 ◦C). August
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and July consistently experienced temperature increases across all successive decades
(Figure 10a). Regarding rainfall, the second and third decades were characterized by the
driest (650 mm) and wettest (667 mm) conditions, respectively. When comparing the
first and last decades, the largest increase in monthly rainfall was observed in February
(16.6 mm), while the largest decrease occurred in April (−29.1 mm).
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4. Discussion

The spatiotemporal climate variability over the Ceyhan River basin is described in the
results section using historical rainfall and temperature observations recorded at 15 meteo-
rology stations. The results show that the recent years in the basin were generally warmer
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compared with earlier years. The coldest and warmest years were identified as 1992 and
2010, respectively. It has been observed that the decrease in temperatures during 1992 can
be directly associated with the atmospheric impact of the mount Pinatubo volcanic eruption.
This event had a significant effect on the Earth’s climate system and caused a decrease
in temperature that was evident for several years following the eruption [42]. Over the
40-year period, only seven years exhibited consistent temperature classifications across all
three regions. Approximately 33% of the period consisted of years categorized as normally
cold and normally hot, with the majority occurring between 1985 and 2004. The results
also demonstrated notable fluctuations in rainfall amounts, with both wet and dry periods
identified. The wettest year was recorded in 1983, while the driest year occurred in 2008.
According to [43], an increasing trend in drought events during the period of 2002–2017
in the Ceyhan River basin has been reported. In addition, the authors demonstrated that
Afsin and Elbistan were the driest stations in the Ceyhan basin. This argument supports
our finding that the northern part of the basin exhibits greater temperature variations
throughout the months of the year, particularly in comparison to the central and southern
regions. Furthermore, ref. [24] reported that a strong negative trend in hydrological drought
was observed from the early 2000s to 2011 in both the Seyhan and Ceyhan River basins.
Regarding rainfall amounts, our study showed that the second period (i.e., 1985–1994)
was the driest decade. This implies considerable lag time between meteorological and
hydrological dry conditions in the Ceyhan River basin.

5. Conclusions

The impacts of spatiotemporal climate variability on various human activities, such
as access to safe drinking water, food production, energy supply, industrial operations,
air quality, transportation, sports, and tourism, underscore the importance of integrated
water management that considers regional hydrological conditions influenced by climate
factors. Previous studies have identified precipitation and temperature as the primary
drivers of climate variability affecting the hydrological cycle. In this study, we examined
trends and changes in precipitation and temperature over the 1975–2014 period and across
four decades using long-term observational data from 15 weather stations in the Ceyhan
River basin, encompassing its southern, central, and northern parts. The analysis revealed
that rainfall distribution in the basin exhibited a non-uniform pattern both temporally and
spatially. Annual rainfall generally decreased from south to north in the Ceyhan River basin,
and the spatiotemporal distribution of rainfall in the southern part differed noticeably from
the central and northern parts. Additionally, there was a decreasing tendency observed
in long-term rainfall variations. On the other hand, the long-term trend and decadal
variations of temperature indicated an increasing trend across the Ceyhan River basin, with
the northern parts experiencing colder temperatures compared with the southern parts.
Assessing the relative contributions of each month to the annual rainfall and temperature, it
was found that the warm months of June, July, and August made significant contributions
to the overall temperature, accounting for approximately 13% of the total annual amount.
In contrast, the contribution of July, August, and September to the overall rainfall was
relatively lower compared to other months of the year.

This study was limited to analyzing only ground truth drought across/near the
basin, and only meteorological indicators (i.e., SPI and STI) were implemented to detect
drought risk. Recent studies have proved the efficiency of satellite data [7] and considering
anthropogenic impacts and land use change [9,13] for drought monitoring, prediction, and
assessment. Therefore, hydrological indicators for drought assessment and evaluation of
the human–water relationship could be considered as topics for future studies. Developing
drought resilience plans in the face of increasing water scarcity is also required in practice.
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