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Abstract: The identification and characterization of barriers to river continuity are essential for
the preparation of an inventory of hydraulic infrastructure. To this end, it is necessary to define
the main identifying and characterizing elements of hydraulic infrastructures and descriptors of
ecological continuity, with information that can characterize them from the point of view of their
impact on the watercourse. Several authors have defined decision criteria for the removal of existing
hydraulic structures in watercourses and their application, reinforcing the environmental benefits
of the elimination of these hydraulic structures. In the present work, we proposed to develop a
methodology for the evaluation of barriers in the Selho River (Guimarães Municipality, Northwest
Portugal), elaborating an Environmental Condition Index (ECI) based on hydromorphological,
socioeconomical, and ecological criteria, which allowed the identification of 43 weirs, of which 95%
revealed quality inferior to Good. Following the application of a decision support methodology for
the removal of hydraulic structures, it was possible to determine that 16 of the 43 weirs evaluated
could be subject to removal, 26 would be under conditioned removal, and only 1 would be able to
remain unchanged.

Keywords: barriers; connectivity; Environmental Condition Index; weirs

1. Introduction

Rivers support some of the Earth’s richest biodiversity [1] and provide essential
ecosystem services to society [2], but are often fragmented by barriers [3]. Rivers are one of
the most threatened ecosystems in the world [4], especially affected by the longitudinal
disconnection of the fluvial systems [5–10].

River barriers can be defined as physical artificial structures of any type or height that
are likely to have an impact on river ecosystem longitudinal connectivity [11]. Barriers
to longitudinal connectivity can be classified into six types based on key features and
extent of habitat modification [12]: dams, weirs, sluices, culverts, fords, and ramps [13,14].
Recently, more attention has been directed towards smaller structures, which are less well
understood and constitute a large percentage of the barriers in many river systems [15,16].
These are structures with head drops of up to 1.0 m during low flow and streams and rivers
with mean flows of less than 1.0 m3/s [17]. In this work, we will focus on weirs—artificial
obstructions that cause an increase in the water surface level in the watercourse for some, if
not all, flow conditions [18], with less than 5 m height [12–14].

In 2020, AMBER, an EU research project, carried out extensive work on river barriers
and recorded over 600,000 across Europe, 85% of which were small structures [13]. While
much attention has historically been given to large dams [19,20], the potential importance
of small barriers (<5 m) is increasingly being recognized [14,16,21–24]. Most low-head
structures are unreported [25], and their number and location are consequently poorly
known [16,26,27].
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There is a wealth of scientific literature surrounding the multiple impacts of small river
infrastructures [26,28,29]. The magnitude and direction of primary and secondary effects
can vary considerably from site to site with barrier type and watershed characteristics [30–36].
The effect on connectivity depends particularly upon the location [37]. The effects of
river infrastructure on native freshwater fish are particularly well documented in the
literature [5,10,17,21,26,38–63]. Of all the environmental changes caused by river barriers,
the disturbance of natural water flows is typically the most damaging [8,13,16,44,58,64–70].
Barriers can also alter sediment transport [64,71,72] and have a hugely negative impact
on ecosystems and their processes [8,16,33,44,66–69,73–91]. Additionally, barriers often
create conditions favorable to the establishment and expansion of non-native, invasive
species [39,92] in the channel and adjacent riparian structures [29,72]. A number of studies
have described how barriers impact stream processes and/or forms [33,36,39,93–101].
Indeed, the cumulative impact of multiple barriers along a river system is very difficult to
assess [31].

Increasing concerns about these impacts has led to a growing call for the restoration of
rivers through the removal of barriers [102,103]. The problem of how to remove structures
in a systematic and cost-effective manner [11,14,29] is actual, and it is not surprising that
it is often seen as a valuable form of restoration [37,104–106]. From an environmental
point of view, removal represents the best solution in most cases and should always be the
objective where feasible [17]. Where full removal is not possible, there are other options for
reducing the impacts of structures [7,8,16,48,66,71,91,107–120]. However, many obsolete
small river barriers remain in place, in part due to their historical and cultural significance
and perceived insignificance in respect to river processes.

Strikingly, the extent of river connectivity remains little known for most European
rivers, despite the fact that the concept of river continuity is enshrined in the European
Union (EU) Water Framework Directive (WFD) [121]. Collectively, the negative impacts
caused by small barriers can reduce the ecological status of the water body assigned
under the WFD [17,31,122,123]. River continuity is a key environmental objective of EU
legislations, especially the WFD and the EU Biodiversity Strategy for 2030 [17,122,124].
For a water body to be classified as of good ecological status, its hydromorphological
condition must be such that the quality elements deviate only slightly from the reference
conditions. This may involve removing barriers that prevent the river from reaching good
status [8,18,31,44,68,69,93,112,125–131].

There are dozens of different barrier prioritization methods, which will typically
consider not just barrier removal but also other options [37,132–136]. Opportunities for
barrier removal depend on barrier typology, where they are located in the catchment, as
well as their sizes, ages, conditions, and impacts [11]. Small structures are much more
abundant [14] and also easier and cheaper to remove [11]. There is thus an increasing need
for numerical tools to help decision-makers correctly allocate resources to prioritize restora-
tion actions [137]. Removal of dams and weirs is a management tool that is increasingly
being developed by an array of scientists, environmental organizations, and governmental
actors [138]. We highlight the project AMBER, involved in the adaptive management of
barriers in Europe [139], the scoring system called DAMROS—Dam Removal Opportunity
Score [11]—which supports the shortlisting of applications for dam removal grants of
European Open Rivers Programme, and the LANBIOEVA (“Landscape Biogeographical
Evaluation”) methodology, applied to Mediterranean environments [140].

As far as barrier removal and/or adaptation is concerned, Portugal is lagging far
be-hind. In 2016, the Minister of the Environment created a working group (WG) with the
purpose of proposing a plan to remove the infrastructures that proved to be obsolete, for
lack of any socio-economic function, and the respective criteria to be adopted [141]. Seven-
thousand weirs and dams were counted, mostly very old, obsolete, and unused structures.
Some projects were developed using probabilistic models of structural connectivity [142–144].
Bochechas [145] refers to the need to create bases for the inventory and characterization
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of barriers in water lines and the elaboration of a proposal for the creation of the National
Cadastre of River Continuity.

Concerning the Selho River (northwestern Portugal), the information is very scarce. In
the Hydrographic Region 2 Management Plan, this watercourse presents the Ecological
State of “Bad” (The assessment of ecological status is based on the classification of various bi-
ological, chemical, physicochemical, and hydromorphological quality elements. Ecological
status is classified into one of five classes—Excellent, Good, Fair, Mediocre, and Bad [146].
Significant pressures are quantified and associated with urban, agricultural, and industrial
uses, responsible for the classification obtained [147]. Consequently, Guimarães Munici-
pality, through its Landscape Lab [148], is committed and involved in the rehabilitation
of this watercourse, as well as the other rivers within its territory. Between 2018 and 2020,
researchers from the Center for Communication and Society Studies (University of Minho,
Braga, Portugal) and the Landscape Lab (Guimarães, Portugal) developed the project
“Inventory and Environmental Assessment of barriers in the Selho River” [149]. Based
on this project, we have defined and discussed a methodology, which will be presented
in this paper, to assess 43 identified infrastructural barriers, considering the feasibility of
their removal and taking into account environmental aspects. Therefore, the objective of
this work is to present the methodology implemented and field-tested on the Selho River,
which is an innovative assessment method applied to small extent and highly fragmented
rivers, with a highly anthropized catchment area, using the cross-referencing of an index
(Environmental Condition Index—ECI) with the technical feasibility study. We consider
that this methodology has the potential to be applied in existing rivers throughout Europe
and in other parts of the world, with characteristics similar to those of the Selho River. For
the case of the Selho River, we considered all types of barriers, highlighting the small weirs
and following the Biodiversity Strategy for a focus primarily on “obsolete barriers”.

2. Materials and Methods

The Selho River basin is a sub-basin of the Ave River, with a predominant NE–SW
direction. The area of this basin is 68 km2 and is located almost entirely in the Guimarães
municipality. The Selho River runs for a distance of almost 21 km, resulting in a medium-
low average slope of only 2.4% in its main course. Forty-three weirs were identified and
located along the Selho River, distributed predominantly in the middle course of this
watercourse (Figure 1).

The Project “Inventory and Environmental Assessment of barriers in the Selho River”
lasted for 2 years (2018/2019) and was divided into 3 phases:

– Phase 1—inventory preparation. Initially, we defined the data to be collected and
included in the database to be built, taking into account the project objectives and
identifying the barriers based on the implementation of geospatial technologies and
preliminary visits to the Selho River [150–153].

In order to facilitate the fieldwork, we created a geodatabase (based on ESRI technol-
ogy) that allowed for the survey of georeferenced data, the geometric characteristics of the
barriers, and the hydrological, ecological, and economic–social conditions existing on the
respective banks and riverbeds, in a 50 m buffer around the stream to the riparian zone.

The fieldwork took place during 6 months in the year 2019 and had the collaboration of
students from the Masters in Geography of the University of Minho and joint coordination
with the Landscape Lab (Figure 2).
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To complete the inventory of barriers, we collected data on water quality parameters
and geomorphological and hydraulic characteristics of the river in 2 periods—late spring
and early fall—in order to ensure the best safety and mobility conditions along the banks
and in the riverbed. With the collected data, we developed a supporting Geographic
Information System (based on a spatial database) for the following phases. Robust priority
setting and action planning required robust data [31], and, in this context, data integration
in Geographic Information System (GIS) allowed for seamless analysis and visualization
of results.

– Phase 2—Creating a Multi-Criteria Index. We developed a matrix, adopting a multi-
objective approach with several criteria and indicators selected and combining dif-
ferent assessment methods. The eco-hydrologic and social metrics are presented in a
Multi-Criteria Index, which we called the Environmental Condition Index (ECI) and
will allow us to infer the size of the impact caused by each barrier, as a first step to
support the removal decision.

The selection of measurable criteria, indicators, and their values and weightings was
based on an thorough search and analysis of specialized scientific works and articles from
literature, national legislation, European directives (mainly the WFD), rules and regulations,
reports, projects, and programs. A matrix following an organization chart of the assessment
method was elaborated, in which we chose to apply a percentage to each criterion and a
weighting index from 0 to 4 for the respective classes (Tables 1–3). As not all criteria had
the same degree of importance, it seemed reasonable to consider differentiated weighting
indexes to optimize the results. Here, the indicators were ranked based on an empirical
evaluation of qualities and inputs.

We assessed each weir based on hydromorphological, ecological, and socioeconomic
criteria and created an Environmental Condition Index (ECI), valuing each indicator and
its classes qualitatively and quantitatively.

A maximum of five classes (0 to 4) were assigned to each criterion. Each class was
related to a specific score, which varied according to the characteristics of the single
criteria and its weighting. Class 4 of the classification referred to high-quality conditions
(hydromorphological, ecological, and socio-economic), whereas class 0 referred to low-
quality conditions. The scores of all assessed parameters were summed. The ECI value
was computed as follows: ECI = hydromorphological criterion + ecological criterion +
Socio-economic criterion. The score could range from 0 to 100. An index of 100 represented
the maximum environmental condition within the investigated reach, whereas an index
of 0 described minimum environmental conditions. Five environmental condition classes
were defined, according to the WFD definitions. These classes ranged from Excellent to
Bad and were defined as follows: 100–81 (Excellent), 80–61 (Good), 60–41 (Fair), 40–21
(Mediocre), and 20–0 (Bad) (Table 4).

With regard to the hydromorphological criterion, we assigned a total weight of 50%,
taking into account the following indicators and classes:

– Typology—the weirs were classified according to their heights (small dams or weirs),
characteristics of their obstacles (wall/enclosure), and conditions (permanent/
provisional). This followed the rules established in the Portuguese legislation, namely,
in Decree-Law 21/2018 and in the Regulation of Small Dams, annexed to Decree-Law
409/93, of December 14, referring to small dams with a height of less than 10 m or
with a height equal to or greater than 10 m and less than 15 m whose reservoirs have
a storage capacity equal to or less than 1 hm3. Consequently, lower evaluation (0)
was assigned to small dams (<10 m and >5 m) and higher (10) to provisional small
structures (<1 m) made of wood or light materials (Table 1);

– Body of water forming—we took into account the volume of the water retention that
the barrier could promote and whether or not there was enough hydraulic slope to
determine a waterfall or even allow free flow. We, therefore, assigned a value of 0 to
barriers with a reservoir and 10 to those that did not interfere with river flow;



Hydrology 2023, 10, 163 6 of 23

– Passability—the height, slope, and construction characteristics of the weir were the
elements considered to define the passability of fish species, which meant the exis-
tence of conditions to allow the passage of fish species upstream and downstream.
Passability was dependent on several parameters (e.g., barrier height, water depth,
barrier type, and presence of vertical drops) and varied depending on the swimming,
jumping, and climbing capabilities of each fish species [13,154]. The attribution of
values was according with the situation identified in each weir, considering the classes
of “Unsurpassable” (value 0) to “Fully Transposable” (value 10);

– Sediment accumulation—we measured sediment depth upstream of each barrier using
a 1

2 -inch Allen or a crow bar and, in some cases, using a probe. Higher evaluation
was attributed to barriers with a small amount of or no sediment accumulation (7.5)
and lower evaluation to the ones that promoted an accumulation superior to 3

4 of the
barrier height (0). Cases with sediment accumulation of about 50% of the height of the
barrier were attributed a value of 1.875;

– Erosion/sedimentation balance—we calculated the balance through the forms of ero-
sion and sediment accumulation observed on the bed and banks, upstream and
downstream of the weir. Considering the previous criteria evaluation, the ero-
sion/sedimentation balance considered the relation of sediment accumulation both
upstream and downstream of each barrier, the situations being considered with higher
values when the barrier did not interfere with sediment flow (7.5), or when there was
a balance on the sediments (5.625), and lower values when there was a significant
difference between erosion and accumulation (0);

– Downstream sediment loss—the classes were defined based on the relation between
the sediments deposited/transported downstream of the barrier. The excessive trans-
port of sediments downstream of the barrier was considered a negative factor, being
valued with 0, whereas the maintenance of sediments was valued with 5;

– Flow type—based on the observation of the current upstream of the barrier, we
identified the type of flow according to those established in the reference works in
fluvial geomorphology, with imperceptible flow valued at 0, and turbulent flow valued
at 2.5.

Table 1. Environmental Condition Index support matrix: hydromorphological criterion.

Hydromorphological
Criterion (50%) Class Weighting Value References

Typology (10%)

[11,13,17,141,145,155–162]

Small dam/wall 0 0

Rockfill Weir 1 2.5

Weir with sill/drain 2 5

Provisional 4 10

Body of water forming (10%)

[72,143,155,157,158,163–165]

Reservoir 0 0

Backwater 1 2.5

With waterfall 2 5

Without waterfall 3 7.5

Without interference 4 10
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Table 1. Cont.

Hydromorphological
Criterion (50%) Class Weighting Value References

Passability (7.50%)

[72,143,155,159,160,162,165]

Unsurpassable 0 0

Difficult 1 1.875

With device/easily
transposable 3 5.625

Fully Transposable 4 7.5

Sediment accumulation (7.50%)

[26,155–157,159–164,166–169]
Very high 0 0

Preponderant 1 1.875

Null/No interference 4 7.5

Erosion/sedimentation balance (7.50%)

[26,155,156,159,162–164,167,168]
Strongly unbalanced 0 0

Balanced 3 5.625

Imperceptible/not visible 4 7.5

Downstream sediment loss (5%)

[26,155,156,160,162,163,166–168]
High 0 0

Intermediate 1 1.25

No loss/insignificant 4 5

Flow type (2.50%)

[26,155,157,159,163,164,167]
Standing
water/imperceptible 0 0

Laminar 2 1.25

Chaotic/turbulent 4 2.5

To assess the ecological criteria, physico-chemical analysis of pH (Sorensen Scale),
dissolved oxygen (% O2 saturation), and conductivity (µS/cm, 20 ◦C) was carried out. We
also defined indicators on riparian vegetation, distinguishing the situation on the bank and
on the bed, based on the species observed. We added the indicator “Solid waste”, defining
the different classes, taking into account the amount, type, and area of deposition (beds
and banks).

For pH, the classes were defined according to the following: Bad = pH > 11; Mediocre
= pH between 4.5 and 5 or between 10 and 11; Fair = pH between 5 and 5.5 or between 9 and
10; Good = pH between 5.5 and 6.5 or between 8.5 and 9; and Excellent = pH between 6.5
and 8.5. The discrimination of dissolved oxygen classes (% O2 saturation) was performed
according to the following: Excellent > 90; Good 70–90; Fair 50–70; Bad 30–50; and Very Bad
< 30. Conductivity classes (µS/cm, 20 ◦C) were distinguished as follows: Excellent < 750;
Good 750–1000; Fair 1000–1500; Bad 1500–3000; and Very Bad >3000.

Margin structure refers to the existence or absence of vegetation and its quality. Aquatic
vegetation consists of identifying the type of vegetation present in the watercourse, and
solid waste criteria correspond to the presence or absence of pollution in terms of solid
residues and deposition area (bed and/or banks) (Table 2).



Hydrology 2023, 10, 163 8 of 23

Table 2. Environmental Condition Index support matrix: ecological criterion.

Ecological
Criterion (30%) Class Weighting Value References

Physical-chemical (7.50%)

[26,72,123,155,165,168–171]

pH (2.50%)

Bad 0 0

Mediocre 1 0.625

Fair 2 1.25

Good 3 1.875

Excellent 4 2.5

Dissolved Oxygen (2.50%)

Very bad 0 0

Bad 1 0.625

Fair 2 1.25

Good 3 1.875

Excellent 4 2.5

Conductivity (2.50%)

Very bad 0 0

Bad 1 0.625

Fair 2 1.25

Good 3 1.875

Excellent 4 2.5

Margin structure (7.50%)

[26,72,155–157,159,161,162,169,172]

Without vegetation 0 0

Weed/invasive 1 1.875

Fragmented riparian vegetation 3 5.625

Continuous Riparian 4 7.5

Aquatic Vegetation (10%)

[26,72,155,157,159,162,165,169,172]

Without vegetation 0 0

Weed/invasive 1 2.5

Herbaceous 2 5

Aquatic 3 7.5

Varied 4 10

Solid Waste (5%)

[157]
Bed and banks 0 0

Bed or banks 1 1.25

Meaningless 4 5

As for the indicators of the socio-economic criterion (Table 3), we followed the norma-
tive and regulations of the Portuguese legislation in force. Regarding the “Status” indicator,
we considered a weir “Inactive” whenever it was obsolete and/or in ruins and/or aban-
doned. A weir was active when it was functional and simultaneously associated with the
production of a given economic activity.
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Table 3. Environmental Condition Index support matrix: socio-economic criterion.

Socio-Economic
Criterion (20%) Class Weighting Value References

Status (10%)

[31,141,143,145,158,173,174]
Inactive 0 0

Functional 2 5

In operation 4 10

Legality (5%)

Illegal 0 0

[31,141,145,173]Authorization 2 2.5

Concession 4 5

Function (5%)

[31,145,161,168,170,173,175,176]

None 0 0

Agricultural/industrial 1 1.25

Hydraulic 2 2.5

Multiple 4 5

After the elaboration of the matrix, we defined the classification and ranges of the ECI,
based on what was established for ecological assessment in the WFD (Table 4).

Table 4. Environmental Condition Index (ECI) classes.

Classification Interval
Excellent 81–100
Good 61–80
Fair 41–60
Mediocre 21–40
Bad 0–20

– Phase 3—Feasibility conditions and technical decision for the removal of the barriers.
The ECI was created to understand the level of impact caused by the barriers of the
Selho River. However, we considered the need to validate the results of the ECI with
a technical decision to confirm or not the removal of the barriers that arose from
the assessment of the feasibility conditions. The technical decision was based on a
summary sheet implemented for each weir/dam, in which we included the ECI, the
main impacts, and the main feasibility conditions, structured in a set of 9 items, which
led the decision process to the most appropriate measure: location; characterization of
the obstacle (structure); status; legal situation; impacts; ECI value; technical decision;
justification; and viability.

Three feasibility possibilities were defined as follows:

– Maintenance—for weirs with ECI greater than 60 points and a legal situation framed
with the Portuguese Environment Agency (APA);

– Removal—for weirs with ECI lower than 61 points and an illegal situation;
– Conditional Maintenance—whenever one of the conditions defined for the “Removal”

decision or other duly substantiated factors were not met. It was the case of the ignorance
of the legality of the weir, the costs with barrier removal, impacts of removal in other
structures or river/ecosystem dynamics, or patrimonial value of the infrastructure.

In cases of maintenance (effective and conditional), mitigation measures should be
indicated in accordance with the hydrological and ecological impacts identified.
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This sheet assists the assessment process by breaking it down into a set of questions
with the objective of identifying the most appropriate measures. In some cases, additional
information will be required to finalize a decision.

The workflow of the barrier removal decision assessment is schematized in the
flowchart in Figure 3.
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3. Results and Discussion

Based on the inventory, we defined the main characteristics of the weirs:
1—The weirs were of small height and with simple permanent structures of rockfill,

sill, or spillway; 25 were inactive (Figure 4).
Accepted were the dams at Carvalho do Moinho (nº. 38, 7.5 m) for hydroelectric

exploitation and at Moinho do Buraco (nº. 39, 13 m), belonging to a textile industry already
abandoned (Figure 5).

The remaining weirs (41), which were mostly used for irrigation and mill operation,
were very small (less than 0.5 m high) (Figure 6).
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2—Barriers created by permanent structures caused backwater effects in most cases
(27), with significant environmental impacts, mainly because these weirs created a physical
barrier to fish passage (Figure 7). In 18 of the 43 weirs, fish passage was unfeasible.
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Figure 8. Two examples of significant sedimentation processes on Selho River (nos. 32 and 40).

The fluvial dynamics were greatly influenced by low water velocity due to the reduced
hydraulic gradient along the watercourse, which was the case for the predominant laminar
flow and the balance between erosion and sedimentation.

4—The environmental and hydrological impacts were reflected in the physical–chemical
quality of the water (Figure 9), namely, in the alteration of the dissolved oxygen value,
considered bad in 23 weirs.

5—From a biogeographic point of view, the low quality of riparian vegetation stood
out, with a predominance of invasive/infesting species occupying the banks of most areas
where the weirs were located. The aquatic vegetation presented very low occupation and
diversity by native plants, with herbaceous plants occupying the bed of the watercourse
(Figure 10).

With the data from the inventory, we filled in the matrix and obtained the ECI results,
which showed that 95% of the weirs had a status lower than “Good”. No barrier scored
excellent, and only weirs 14 and 42 had a good condition (Figure 11).

Consequently, Table 5 shows the results of the ECI calculation for each barrier consid-
ered. Based on the environmental assessment and removal feasibility sheets, it is possible
to present the most appropriate technical decision for each barrier (Tables 5 and 6).
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Table 5. Results of the Environmental Condition Index and Technical Decision for all weirs.

BN S001 S002 S003 S004 S005 S006 S007 S008 S009
ECI 40 33.125 21.875 42.5 43.125 48.125 33.75 26.875 51.25
TD CM CM CM CM R CM CM CM R
BN S010 S011 S012 S013 S014 S015 S016 S017 S018
ECI 56.875 53.125 41.25 41.25 74.375 50 43.75 41.25 43.75
TD CM CM CM CM CM CM CM CM CM
BN S019 S020 S021 S022 S023 S024 S025 S026 S027
ECI 45 35.625 54.375 48.125 48.125 35 34.95 25.625 46.875
TD R R CM R R CM R CM R
BN S028 S029 S030 S031 S032 S033 S034 S035 S036
ECI 32.5 26.875 55.625 50 60 33.125 35 35 43.125
TD R CM R CM R CM CM CM R
BN S037 S038 S039 S040 S041 S042 S043
ECI 53.125 40.625 21.875 24.95 58.75 63.75 30
TD CM M CM R R R R

BN—Barrier Number; ECI—Environmental Condition; TD—Technical Decision; M—Maintenance; CM—
Conditional Maintenance; R—Removal.
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Table 6. Synthesis of the analysis performed on the weirs, considering the three possible technical de-
cisions.

Technical Decision
Classification Maintenance Conditioned Maintenance Removal TOTAL
Good 0 1 1 2
Fair 1 14 9 24
Mediocre 0 11 6 17
TOTAL 1 26 16 43

In Figure 11, we show the distribution of the weirs by technical decision classification.
The result can be spatialized on the study area (Figure 12) and the distribution of the

different weirs according to the technical decision categories, which shows a concentration
of weirs with proposal for removal in more anthropized areas (especially close to the city
of Guimarães).

The analysis process resulted in the following recommendations:
(a) Removal of 16 weirs. These correspond to barriers whose ECIs are below 61 points

or/and abandoned and easy to execute from a technical point of view.
(b) Maintenance of 26 weirs under conditioned form. Additional information is

required, such as legal situation and activity, cost and complexity of the intervention, or
relationship with the hydraulic heritage. Based on this information, a final decision will
be made for removal or maintenance. In the case of maintenance, mitigation measures
should be defined. The maintenance work of a preventive character includes a set of works
aimed at selective cleaning of riparian and aquatic vegetation, desilting, construction of
fish passages, and monitoring and removal of solid waste. Other complementary measures
must be analyzed on a case-by-case basis:
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– Landscape integration measures that favor the recovery of the riparian gallery with
respect to some structures, like pipes, stormwater manholes, and sanitation;

– Removal of illegal abandoned or ruined structures and equipment (manholes, canals,
clandestine sewers, pipes, and overpasses).

(c) Maintenance of Carvalho do Moinho weir that feeds an active hydroelectric
power plant.

(d) Study cases to consider for intervention:

– Carvalho do Moinho weir—has concessions and measures to consider that should
take into account the removal of invasive plants, cleaning the bottom of the dam, and
recovery of the existing fish passage device;

– Moinho do Buraco Factory Weir and Roldes Weir—although the technical and financial
solutions are demanding, given the environmental and hydrological impacts, removal
is the appropriate option for these two weirs. However, taking into account the
historical character of the two hydraulic structures, we advise a photographic and
video study for future memory on the local industrial heritage;

– Weir and “levada” of Moinhos de Varandas—considering the local conditions that
are associated with a high risk of flooding, a hydrological study and a survey should
be carried out on the “levada” and the mills that still exist in this area that portray
significant local importance.
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4. Conclusions

Flexible, dynamic, and collaborative approaches are currently being implemented [14],
focusing their attention on important new challenges in river ecosystem restorations,
specifically to find the best solutions based on methodologies appropriate to the scale of
the intended interventions.

The project we are developing presents a scoring-and-ranking techniques approach in
a combination of physical, ecological, and socio-economic assessment criteria. This method
simplifies data [177] and can be applied rapidly [155].
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The method was shown to be a rigorous, versatile, and practical tool, based on simple,
flexible, and clear guidelines, with standard results that were easy to apply and interpret
for the correct and hierarchical management of weir removals at a local level. From this
perspective, it is an important instrument in territorial planning and a fundamental tool
for knowledge and decision-making, providing a comprehensive evaluation with a clear
applicability in management. This project will support the decision-making process after
being confirmed with a validation step (technical decision phase) [37,178–181].

The approach presented in this paper can be applied in a straightforward way to any
watershed that shows the model’s usefulness as a generic restoration planning tool [29].
This tool will be also useful for adaptive management of barriers towards fulfilling the
requirements of the European WFD [13]. The expected benefits of the project, and especially
the early involvement of the local population and stakeholders, aims to alleviate their
concerns and ensure, where possible, compatibility between different activities, and are,
therefore, crucial to the success of the project [31]. The most positive aspect was to define a
methodology at a local scale and suitable for the management of small rivers with a high
number of small barriers. This allows for greater proximity to the regional administration,
the municipality, and all local stakeholders.

It is evident that a project of this nature reveals some limitations and constraints. Firstly,
the Environmental Portuguese Agency (APA) database that was collected for the purposes
of ecological status assessment and monitoring compliance with Water Framework Direc-
tive was very incomplete. We tried to address this with complementary sources provided
by the Landscape Lab and with preliminary fieldwork. The socioeconomic criterion was
the most complex to assess. Data and information on the legal status of the barriers and the
activities they carried out were extremely difficult to find and required exhaustive work in
the archives of the Environmental Portuguese Agency. Some properties were abandoned,
and the current owners were unknown. Another limitation stemmed from the antiquity of
many barriers and the difficulty in finding their administrative files since they were not
part of the current APA archive. Some of the datasets were still incomplete, so the scores
should be treated as provisional and subject to revision as data quality improves. Another
aspect to take into account is some mistrust on the part of the local inhabitants whenever
we were in the field. Some conflicting situations with landowners who did not have titles
for the use of water resources and who were in an illegal situations were to be expected.
This showed the complexity of managing barriers, especially given the complexity and
scale of each situation and the increasing uncertainty about future conditions.

The method presented not only has methodological significance but also helps policy
makers determine river channel restoration priorities based on four key conditions [11]:
(1) they provide a meaningful gain in connectivity; (2) they are cost-effective to remove;
(3) they do not cause significant or long-lasting environmental damage; and (4) we are
dealing mainly with obsolete structures.

The continuity of our project was assured, as it was integrated into an already ap-
proved proposal of “REACTivar Guimarães—Renaturalization of the green corridors of
the Ave, Selho and Vizela Rivers” with funding of EUR 1.2 million (Operational Program
funded by the European Structural and Investment Funds)

The successes and failures of consultation processes, public participation, the roles of
local communities, the links between ecological restoration operations and local economic
development projects, and the perceived losses of valuable historic landscapes are some of
the issues facing this new stage of the project.

Barrier removal projects, when properly sited and carefully managed, can promote
highly durable restoration actions that permanently increase habitat connectivity and
improve natural river processes and functions important to the health of connected fresh-
water [12]. The growing number of scientific studies provide an important opportunity to
learn how to better manage watersheds and improve our understanding of river restoration
science [112,182].
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