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Abstract: The expansion of urban areas and the increasing frequency and magnitude of intense
rainfall events are anticipated to contribute to the widespread escalation of urban flood risk across the
globe. To effectively mitigate future flood risks, it is crucial to combine a comprehensive examination
of intense rainfall events in urban areas with the utilization of detailed hydrodynamic models. This
study combines extreme value analysis techniques applied to rainfall data ranging from sub-hourly
to daily durations with a high-resolution flood modelling analysis at the building level in the centre of
Thessaloniki, Greece. A scaling procedure is employed to rainfall return levels assessed by applying
the generalised extreme value (GEV) distribution to annual maximum fine-temporal-scale data, and
these scaling laws are then applied to more reliable daily rainfall return levels estimated by means of
the generalised Pareto distribution (GPD), in order to develop storm profiles with durations of 1 h
and 2 h. The advanced flood model, CityCAT, is then used for the simulation of pluvial flooding,
providing reliable assessments of building-level exposure to flooding hazards. The results of the
analysis conducted provide insights into flood depths and water flowpaths in the city centre of
Thessaloniki, identifying major flowpaths along certain main streets resulting in localised flooding,
and identifying around 165 and 186 buildings highly exposed to inundation risk in the study area
for 50-year storm events with durations of 1 h and 2 h, respectively. For the first time in this study
area, a detailed analysis of extreme rainfall events is combined with a high-resolution Digital Terrain
Model (DTM), used as an input into the advanced and fully featured CityCAT hydrodynamic model,
to assess critical flowpaths and buildings at high flood risk. The results of this study can aid in
the planning and design of resilient solutions to combat urban flash floods, as well as contribute to
targeted flood damage mitigation and flood risk reduction.

Keywords: rainfall extremes; simple scaling; flood inundation modelling; building flood exposure;
CityCAT

1. Introduction

Urban surface water floods are amongst the most widely distributed natural hazards,
endangering lives and causing damage to properties worldwide. The extent and severity
of the damage is a product of both the intensity and duration of extreme rainfall events
(variable in space and time), and their interaction with the complex flowpaths in a city
on the ground surface and below it [1]. Impermeable surfaces in urban areas, impeding
infiltration and creating overland flow which exceeds the drainage capacity of the existing
infrastructure, renders cities vulnerable to flash floods. Climate change and urbanisation
are expected to increase urban flood risk, contributing to different components of the
flooding system. Climate change, associated with global warming and an increase in the
frequency and severity of extreme weather events, is anticipated to intensify flooding
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hazards. Urbanisation will contribute to the increase in flooding hazards, caused by a
decrease in infiltration, baseflow and lag times and an increase in runoff volumes and
peak discharges [2,3], but also to the increasing impacts of urban floods (increase in poten-
tial flood damages) caused by the growth of settlements and assets in flood-prone areas
followed by a rise in property value in such areas [4,5].

Nowadays, urban floods affect both developing and developed countries, with the
impacts of pluvial flooding being a major problem due to frequent natural disasters in urban
areas [6]. Flood damage mitigation in urban areas includes both structural and non-structural
measures. Structural measures involve urban flood defences and flood control structures or
designing or upgrading stormwater and drainage networks. Non-structural measures mainly
focus on flood early warning systems and preventive actions [5,7]. Urban flood modelling
combined with exposure assessment of the buildings and population affected represents
a principal non-structural measure to effectively manage urban flooding events and their
adverse effects, as well as a prerequisite for disaster prevention and mitigation.

Flood modelling is a powerful tool in understanding the hydrodynamics of historic
flood events, and in some cases, the construction of accurate IDF (intensity–duration–
frequency)/DDF (depth–duration–frequency) curves can be used to predict future events
that will cause damage to the urban fabric [8]. There exist several studies combining flood
inundation modelling with hydrological modelling and the unit hydrograph theory, mainly
focusing on fluvial flooding in small or larger catchments [9–14], using DEMs (Digital
Elevation Models) or DTMs (Digital Terrain Models) with a computational grid resolution
ranging between 5 m and 100 m. However, it should be noted that the combination of an
incorrect representation of urban features in the flood model such as buildings, bridges,
infrastructure, etc., and the resampling of the DEM/DTM multiple times might cause large
inconsistencies [1,15,16] and overestimation of the flooding hazard in areas with minor
inundation issues and vice versa. Unlike studies modelling fluvial flood inundation in
urban areas, studies focusing on the exposure assessment of urban areas to pluvial floods
are rather limited, and started receiving significant interest quite recently. Zhu et al. [17]
used the LISFLOOD-FP hydrodynamic model to simulate flooding in Lishui City, China,
and employed the building-scale population distribution map to assess the population
affected. Park et al. [5] evaluated flood risk for different building types, conducting
vulnerability and exposure analysis in five regions of Ulsan City, South Korea. Their
analysis resulted in a classification of each building type into five risk-related classes.
Stefanidis et al. [18] presented a coupling of hydrological and hydraulic modelling on a
national scale to produce flood hazard maps regarding flooding exposure in residential
areas and infrastructure in Greece. Bertsch et al. [19] presented a sensitivity analysis and
validation of a generic flood exposure analysis following a large storm event in Newcastle
upon Tyne, UK, where more than 70% of the inundated buildings in the area were correctly
identified during the storm event.

Pluvial flood risk assessment in urban areas, associated with estimating the hazard,
exposure, and vulnerability components for the affected system, is therefore a major chal-
lenge for future societies. There is a great need to combine hydrological and hydrodynamic
modelling to understand the impacts of urban floods, the water flowpaths in a city, and
the urban features exposed to high flood risk. This study combines a detailed analysis
and modelling of extreme rainfall events in the centre of Thessaloniki, Greece, with an
advanced hydrodynamic model, CityCAT, to simulate pluvial flooding, significantly assist-
ing a reliable assessment of exposure to flooding. The results of this study can aid in the
planning and design of resilient solutions against urban flash floods, as well as contributing
to targeted flood damage mitigation and flood risk reduction.

CityCAT has previously been applied in studies in the UK [1,19–22] and the USA [23]
(Environmental Justice of Urban Flood Risk and Green Infrastructure Solutions-Urban
Systems Lab, Urban Flooding, Equity, and Green Infrastructure (arcgis.com, accessed on
10 July 2023)), where detailed and reliable spatial datasets were available, such as DTMs,
building footprints, green spaces, and roads. This study also aims to demonstrate and
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assess the universal applicability of CityCAT, even in regions where comparable datasets
may not be readily available, emphasising the value of integrating the model with extreme
rainfall data to enhance flood resilience in urban areas. The practical implementation of
the model in this study will assist local authorities and engineers in improving their future
flood adaptation strategies. This study also marks the first published implementation of a
flood exposure analysis calculator at the building level in a large Greek city, as opposed to
conventional assessments limited to flood zoning.

2. Materials and Methods
2.1. Study Area and Available Datasets

The historic centre of Thessaloniki city in Greece was the study area of the present
work, located in the northern part of Greece. Thessaloniki is part of the municipality of
Central Macedonia, and it is the second largest city in Greece with a population of around
814,000 (Thessaloniki Population 2023: worldpopulationreview.com, accessed on 5 June
2023). The dense city centre facing the coastal front is characterised by historic buildings,
residential properties, marketplaces, and a few green open spaces (see Figure 1). This part
of Thessaloniki has suffered from severe storms and flash floods in the last decade, causing
significant damage to roads, basements, local stores, etc. It should be noted that, during
storm events, the roads are seen to become the main flowpaths for floodwater.
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2.2. Extreme Rainfall Assessment 
Extreme value theory includes two main approaches for identifying and modelling 

the extreme values of a random process, namely the block-maxima approach where the 
extremes follow a generalised extreme value (GEV) distribution, and the peaks-over-
threshold (POT) approach that fits the extremes using a generalized Pareto distribution 
(GPD). In the former approach, the observation period is divided into nonoverlapping 
equal intervals (of length usually equal to one year) and block maxima are selected to be 
fitted according to a GEV distribution [24]: 

𝐺(𝑥; 𝜇, 𝜎, 𝜉) = ⎩⎨
⎧exp ቊ− ቂ1 + 𝜉 ቀ𝑥 − 𝜇𝜎 ቁቃିଵ కൗ ቋ , 𝜉 ≠ 0exp ቂ−exp ቀ𝑥 − 𝜇𝜎 ቁቃ , 𝜉 = 0 (1)

where µ, σ and ξ are the location, scale and shape parameters of the distribution, respec-
tively. The POT approach employs two probability distribution functions: one for the in-
tensity of exceedances over an appropriately defined threshold, typically a GPD, and an-
other for the number of events per year (typically a Poisson distribution, or alternatively 
a constant number is used). The cumulative distribution function of the GPD is given by 
[24]: 

𝐺(𝑥; 𝜎, 𝜉, 𝑢) = ൞1 − ቂ1 + 𝜉 ቀ𝑥 − 𝑢𝜎 ቁቃିଵ కൗ , 𝜉 ≠ 01 − exp ቀ- 𝑥 − 𝑢𝜎 ቁ , 𝜉 = 0 (2)

Figure 1. An overview of the study area in Thessaloniki, Greece: (1) the city centre and the compu-
tational domain (with red colour); (2) the urban features, where grey denotes the buildings, green
denotes the permeable areas and yellow to brown shading indicates the surface elevation of the area.

Two different datasets are available in the study area for the analysis of extreme rainfall
events. The first dataset consists of daily rainfall data at AUTh (Aristotle University of
Thessaloniki) station located in the centre of the city and covering 64 years (1958–2021) of
measurements (no missing data are present), obtained from the database of the School of
Geology, AUTh. The second dataset includes monthly maximum rainfall depths for rainfall
durations of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h and 24 h at Mikra station,
located in the eastern part of the city. This dataset was made available by the Hellenic
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National Meteorological Service (HNMS) and covers a period of 25 years (1963–1987). It is
therefore evident that the second dataset includes rainfall measurements of finer temporal
scales than the first one, but it contains only monthly maximum values, and its length is
significantly shorter than that of the daily rainfall series available at AUTh. It should also be
noted that the second dataset contains missing values. To proceed with the extreme value
analysis of all available datasets, annual maxima were first extracted for both the daily
and the sub-daily series, and each dataset was tested for stationarity and trends [24]. The
datasets examined satisfy the hypothesis of stationarity, while no statistically significant
trends were detected.

2.2. Extreme Rainfall Assessment

Extreme value theory includes two main approaches for identifying and modelling
the extreme values of a random process, namely the block-maxima approach where the
extremes follow a generalised extreme value (GEV) distribution, and the peaks-over-
threshold (POT) approach that fits the extremes using a generalized Pareto distribution
(GPD). In the former approach, the observation period is divided into nonoverlapping
equal intervals (of length usually equal to one year) and block maxima are selected to be
fitted according to a GEV distribution [24]:

G(x; µ, σ, ξ) =

exp
{
−
[
1 + ξ

(
x−µ

σ

)]−1/ξ
}

, ξ 6= 0

exp
[
− exp

(
x−µ

σ

)]
, ξ = 0

(1)

where µ, σ and ξ are the location, scale and shape parameters of the distribution, respec-
tively. The POT approach employs two probability distribution functions: one for the
intensity of exceedances over an appropriately defined threshold, typically a GPD, and
another for the number of events per year (typically a Poisson distribution, or alternatively
a constant number is used). The cumulative distribution function of the GPD is given
by [24]:

G(x; σ, ξ, u) =

{
1−

[
1 + ξ

( x−u
σ

)]−1/ξ , ξ 6= 0
1− exp

(
− x−u

σ

)
, ξ = 0

(2)

where σ and ξ are the scale and shape parameters of the GPD, respectively, while u is
the defined threshold value. The scale parameter of the GPD, sometimes referred to
as the modified scale parameter, is expressed as a function of the respective GEV scale
parameter as:

σGPD = σGEV + ξ(u− µ) (3)

considering that the shape parameter, ξ, of the GPD is equal to that of the corresponding
GEV. The GPD-Poisson, which employs the Poisson distribution to model the number of
exceedances over the threshold value per year, is characterized by three parameters, the
exceedance rate, λ, the scale, σ, and the shape, ξ, parameters.

Considering the threshold of the POT approach, a high value improves the validity
of the asymptotic approximation of the GPD, but at the same time increases the vari-
ance of parameter estimates because of the reducing dimensions of the excess sample.
In contrast, a very low threshold may increase bias from model misspecification [25,26].
Finding a trade-off between these two issues is critical in fitting an extreme value distribu-
tion and producing reliable estimates of extremes. The parameters of the extreme value
distributions were assessed using both maximum likelihood estimation (MLE) and the
L-moments [27] approach.

2.2.1. POT Threshold Selection

When the POT approach is used to model rainfall extremes, an appropriate threshold
should be selected to detect exceedances and define the extreme sample. Various threshold
selection methods have been proposed in the literature, such as empirical methods, distance
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measure approaches, or diagnostic plots such as the mean residual life plot and GPD
parameter estimate stability plots [28]. However, these approaches have a significant level
of subjectivity in the threshold selection process. This work used two methodologies, aiding
in creating a more automatic threshold selection process [29]. These threshold selection
methods were proposed by Bader et al. [30] (henceforward referred to as threshold selection
method (a)) and Silva Lomba and Fraga Alves [31] (henceforward referred to as threshold
selection method (b)) facilitating a less ambiguous and more objective selection of daily
extreme rainfall events.

Threshold selection method (a) [30] considers a set of candidate thresholds u1 < . . . < ul,
each having ni exceedances, i = 1, . . ., l. Let H0

(i) denote the null hypothesis that the
distribution of ni exceedances above the threshold ui follows the GPD. Following the
forward stop rule of G’Sell et al. [32], a rejection rule was constructed by returning a cutoff
level k̂, such that H1 to Hk̂ are rejected:

k̂ = max{k ∈ {1, . . . , l} : −1
k ∑k

i=1 log(1− pi) ≤ a} (4)

where a is a prespecified significance level and pi I = 1, . . ., l are the corresponding p-values
of the l hypotheses. If there is no k̂ ∈ [1, . . ., l], there is no rejection of the null hypothesis.

The p-values in Equation (4) are assessed using the Anderson–Darling (AD) test for
each candidate threshold, with the respective statistic assessed as:

A2
n = −n− 1

n∑n
i=1(2i− 1)

[
log
(

z(i)
)
+ log

(
1− z(n+1−i)

)]
(5)

where z(i) = F
(

y(i)
∣∣∣θ̂n

)
is the probability integral transformation of the order statistics

of the exceedances y(1) ≤ . . . ≤ y(n), based on the maximum likelihood estimator of θ, θ̂n,
under the null hypothesis H0. F denotes the cumulative distribution function of the GPD
for each candidate threshold.

Threshold selection method (b) [31] is based on L-moments. For the random variable X
with distribution function F, the theoretical L-moments λr+1 with r = 0, 1, . . . are expressed
as linear functions of the specific probability weighted moments (PWM):

ar = M1,0,r = E
{

X[1− F(X)]r
}

(6)

with the dimensionless L-moment ratios L-skewness, τ3 = λ3/λ2, and L-kurtosis, τ4 = λ4/λ2,
calculated as functions of the L-scale, λ2, and the third, λ3, and fourth, λ4, L-moments,
respectively. Let ar be the unbiased estimator of ar for an ordered sample x1:n ≤ . . . ≤ xn:n:

ar =
1
n ∑n

i=1

(
n− i

r

)
xi:n

(
n− 1

r

)−1

, r = 0, 1, . . . , n− 1 (7)

with the unbiased sample L-skewness, t3 = l3/l2, and L-kurtosis, t4 = l4/l2, calculated as func-
tions of the sample L-scale, l2, and the third, l3, and fourth, l4, sample L-moments, respectively.

A set of candidate thresholds {ui}I
i=1 are first defined with I = 10 or 20 sample quantiles.

The minimum Euclidean distance is then defined between the sample L-skewness, τ3,ui ,
and L-kurtosis, τ4,ui , for each threshold value and the respective quantities of the theoretical
GPD curve:

dui = min
τ3

√(
t3,ui − τ3

)2
+
(
t4,ui − g(τ3)

)2, for i = 1, . . . , I, with g(τ3) = τ3
1 + 5τ3

5 + τ3
(8)

The best candidate threshold is then defined as:

u∗ = argmin
ui ,1≤i≤I

{dui} (9)
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characterized by L-moment statistics that fall closer to the respective values of the theoretical
L-moment ratio curve.

2.2.2. Scaling Rainfall Extremes

Rainfall features of different temporal scales can be linked using scaling models,
mainly based on the multifractal behaviour of rainfall. Temporal downscaling and temporal
disaggregation methods are used to produce finer-temporal-scale rainfall data from coarser
resolution observations. Temporal downscaling usually refers to the generation of data of
a high temporal resolution by means of statistical techniques, most commonly stochastic
models, calibrated using information on the statistics of data from lower resolution temporal
scales. Temporal disaggregation indicates the generation of high-resolution temporal data
based on coarser time scales, so that the former add up to the totals of the second scale.
This can be performed by means of a temporal partitioning of low-temporal-resolution
amounts using a recursive rule or by repeatedly adjusting stochastic models to the generated
high-resolution data. Within the general framework of temporal disaggregation, different
methodologies have been developed in the literature. Some quite simple techniques,
based on assumptions regarding the association of specific characteristics of the probability
distribution functions of rainfall amounts at different time scales, have been developed by
Liu and Wang [33] and Chen et al. [34,35], among others. However, these techniques do
not represent the basic statistics of the fine temporal scales of precipitation in a satisfactory
way, nor the intermittency of precipitation events. Precipitation stochastic generators are
also utilized for temporal disaggregation purposes of rainfall amounts. Methods based on
point-process models for the temporal disaggregation of hydro-meteorological data are
quite widespread, producing satisfactory results [36–40]. Lee et al. [41], Salas and Lee [42]
and Lee and Jeong [43] introduced a nonparametric model for the temporal disaggregation
of hydro-meteorological variables, which incorporates k-nearest-neighbour resampling
and a genetic algorithm. Temporal disaggregation of hydro-meteorological data is also
performed by means of machine learning techniques (i.e., Kumara et al. [44]).

The hypothesis of scale invariance [45] is usually applied to link rainfall intensities
of different temporal scales. More specifically, the hypothesis of scale invariance states
that annual maximum rainfall intensities, Id and Iλd, corresponding to durations d and λd,
respectively, can be related by the following equation [46–48]:

Iλd = λβ Id (10)

where equality corresponds to the similarity of probability distributions. The coefficient λ is
the ratio of scale invariance between the known duration D and the duration to be assessed,
d, and β is the self-similarity index of the studied rainfall process. The qth moments of
rainfall intensity are obtained from Equation (10) as follows [46]:

E
(

Iq
λd

)
= λβ(q)E

(
Iq
d

)
(11)

where β(q) is the scale exponent of order q, estimated by log-transforming Equation (11):

logE
[

Iq
λd

]
= β(q)logλ + logE

[
Iq
d

]
(12)

Therefore, the exponent β can be assessed as the slope of the linear relationship
described by Equation (12). The abovementioned scaling behaviour can also be detected in
quantiles of rainfall intensities corresponding to durations d and λd, considering that their
cumulative distribution function (CDF) has a standardized form independent of the rainfall
duration [48]. In this work, a scaling procedure is applied to rainfall intensity quantiles
corresponding to different durations, considering that their CDF has a standardized form
independent of the rainfall duration. The scaling laws are assessed for all return periods for
rainfall durations from 5 min to 30 min and from 30 min to 24 h, considering that rainfall
dynamics change quite significantly in convective events.
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Intensity–duration–frequency (IDF) and depth–duration–frequency (DDF) curves
based on local precipitation measurements summarise the relationships between rainfall
dynamics, namely rainfall intensity or depth, duration and frequency (return period), and
are currently utilized for engineering design and management applications, such as flood
risk protection structures and infrastructure or flood-mitigation projects. The IDF (DDF)
curves are constructed for different return periods, representing the variation of rainfall in-
tensity (depth) with duration. In this work, IDF and DDF curves were created following the
methodology described in Galiatsatou and Iliadis [48]. Theoretical probability distribution
functions were fitted to annual maximum or POT rainfall intensities of particular durations
ranging from shorter periods, e.g., 5 min, to daily events. When annual maximum rainfall
intensities (or depths) were available, the GEV distribution (Equation (2)) was fitted to the
samples of different durations, and rainfall return levels were assessed as:

XT =

µ− σ
ξ

{
1−

[
−ln

(
1− 1

T

)]−ξ
}

, ξ 6= 0

µ− σ ln
[
−ln

(
1− 1

T

)]
, ξ = 0

(13)

for a defined return period, T. When the GPD (Equation (2)) is fitted to rainfall POTs, the
return levels are given by [24]:

XT =

{
u + σ

ξ

[(
Tnyζu

)ξ − 1
]
, ξ 6= 0

u + σln
(
Tnyζu

)
, ξ = 0

(14)

where ny is the number of observations per year and ζu is the total exceedance rate of the
threshold u. Confidence intervals for return levels estimated using both the GEV and GPD
are assessed using the delta method [49].

2.3. Flood Exposure

An efficient flood exposure tool, developed by Bertsch et al. [19], was used to calculate
the flood exposure likelihood for buildings. Figure 2 presents the schematic workflow of
the flood exposure analysis tool. Each building was assessed for flood risk using simulated
flood depths in a 3 m buffer zone around its perimeter, where the mean and the 90th
percentile values were calculated, with the proposed value for the buffer zone (see Figure 3)
depending on the resolution of the computational grid (2 m in this study). A simple
classification scheme shown in Table 1 was used to categorise buildings at low, medium
and high flood risk.
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Table 1. Classification scheme to calculate flood exposure likelihood for buildings.

Exposure Class Mean Depth (m) 90th Percentile (m)

Low <0.10 <0.30

Medium <0.10 ≥0.30
≥0.10–<0.30 <0.30

High ≥0.10 ≥0.30

2.4. Modelling System and Model Set Up

Over the last decade, many studies have reviewed hydraulic and hydrodynamic
models which have been developed to simulate surface flows [6,51–53], and one of the
most advanced and fully featured is the City Catchment Analysis Tool—CityCAT (for a full
description, see Glenis et al. [20]) developed at Newcastle University. CityCAT is a unique
hydrodynamic model able to simulate fully coupled surface and pipe network flows, and it
can represent natural drainage systems and built-up areas, with the explicit representation
of buildings, where the buildings’ footprint is excluded from the computational grid, and
different types of blue-green infrastructure (BGI) [20–22,54] (such as blue/green roofs, water
butts, swales, etc.), thus enabling the assessment of different alleviation measures. The
model outputs include maps and time series of water depth, flow velocity, and the volume
in and out of manholes, gully drains, buildings, etc. The required inputs are: (a) a high-
resolution Digital Terrain Model (DTM) to unlock the full potential of the model, although
depending on urban layouts, a lower resolution model may still be very functional; (b) the
buildings’ footprint; (c) green spaces to calculate the infiltration with the Green–Ampt
method [55]; and (d) the IDF and DDF curves to generate storm profiles with the rainfall–
runoff method [56], to be applied over the whole domain with a uniform assumption.

The flood domain studied here was modelled using CityCAT for two different design
storm events, with a magnitude of 1 in 50 years and a duration of 1 h and 2 h. The buildings’
footprint was extracted from the ONEGEO data (https://onegeo.co/data, accessed on
10 May 2023) and the permeable areas from OpenStreetMap (https://www.openstreetmap.
org, accessed on 10 May 2023). The computational grid was constructed using the DTM
provided by the Hellenic Cadastre (http://www.ktimatologio.gr/en, accessed on 10 May
2023) at a resolution of 2 m (each cell with an area of 4 m2), so the total number of
computational cells in the flow domain was 125,192, covering an area of 0.78 km2. The
representation of the buildings in the model was performed following the ‘Building Hole’
approach where a non-flow boundary is generated around buildings to redistribute the

https://onegeo.co/data
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.ktimatologio.gr/en
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rainfall to the nearest grid square (for a full description and performance relative to other
methods, see Iliadis et al. [1]). Following the previously described approach, this study
explored the likelihood of flood exposure for 1165 buildings. The roughness coefficient
(Manning’s n) was defined as 0.02 for impermeable areas and 0.035 for permeable areas.
Due to the limitations in the Hellenic National regulations in urban flood modelling, and the
intended design of the combined sewer system for storms with a return period of 10 years
in the city centre of Thessaloniki (based on design cross-sections of existing combined
sewers), a simple assumption was made in this work, that 20% of the rainfall enters the
drainage system. In other countries, i.e., the UK, there is an instruction to flood modellers,
when they do not combine the drainage system with the surface, to exclude specific rainfall
from the model (e.g., 6 mm–15 mm).

3. Results
3.1. Extreme Rainfall Assessment

Threshold selection for the daily rainfall data was performed using both well-known
threshold selection techniques, such as the mean residual life plot (MRL) and parameter
stability plots, while also accounting for site-specific characteristics of extreme rainfall,
together with the two new threshold selection techniques presented in Section 2.2.1. The
MRL plot of the daily rainfall sample at AUTh station is presented in Figure 4.
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The MRL plot identifies a range of possible threshold values in the interval 10 mm ≤ u
≤ 30 mm. Figure 5 presents the GPD parameter stability plots for the modified scale (scale
parameter of the GPD), and shape parameter, ξ, for thresholds in [10,30] mm. Based on
stability characteristics of the GPD stability plots, while also considering the uncertainty of
the parameters represented using 95% confidence intervals shown as vertical lines for each
threshold, a threshold between 14 mm ≤ u ≤ 27 mm is considered to be a good candidate.

The threshold selection method (a) was applied for threshold values in the entire
range, 10 mm ≤ u ≤ 30 mm. The significance level selected was set at 5%. The forward
stop rule applied did not explicitly identify a cutoff level. However, it has been observed
that the threshold u = 22 mm was the only one giving a p-value of the AD statistic lower
than 5%. The threshold selection method (b) provided clearer results, indicating u = 22 mm
as the threshold providing a local minimum to the Euclidean distance criterion. The
threshold u = 28 mm provided the global minimum of the distance dui in the studied
interval. However, this threshold level ended up with only 134 POT samples, corresponding
to just λ = 2.09 exceedances per year. Therefore, the threshold u = 22 mm was selected to
perform the extreme value analysis of the daily rainfall data, corresponding to 221 POT
samples, with around λ = 3.45 exceedances per year.
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Using a threshold u = 22 mm, the GPD was fitted to daily rainfall maxima (Equation (2))
using both MLE and the L-moments approach, with both approaches providing consis-
tent results, with higher return level estimates assessed using MLE. Figure 6 presents
rainfall return level estimates assessed using Equation (14), with the parameters of the
GPD calculated using the MLE approach. The black line represents maximum likelihood
rainfall return level estimates, while the blue lines represent the upper 97.5% and the lower
2.5% confidence limits (95% confidence interval). Round marks in the return level plot
correspond to measured data from the available extreme rainfall sample. It should be noted
that the most extreme 24-hourly rainfall measurement was 98 mm, and was observed in
1985 and 2014. The maximum likelihood return level estimate significantly underestimates
this value, while the upper 97.5% confidence limit seems to better fit the most extreme part
of the observed sample. More specifically, for a return period of 64 years, equal to the daily
rainfall sample length, the maximum likelihood estimate of the rainfall return level is about
84 mm, and the respective 97.5% upper confidence limit is 100.5 mm. Based on this finding,
the upper 97.5% confidence limit for daily rainfall return levels was used in the scaling
methodology presented in Section 2.2.2 to extract rainfall return levels corresponding to
finer temporal scales.

The GEV distribution (Equation (1)) is then fitted to annual maximum rainfall intensi-
ties for time periods of 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h and 24 h, available
at Mikra station for the period 1963–1987 using L-moments (due to the small sample size
of this dataset). Rainfall return levels for the different durations are assessed for return
periods of 2, 5, 10, 20, 50, 100, 200 and 500 years using Equation (13). For each return
period, plots of Log(i) and Log(λ) are created, and linear functions are then fitted, dividing
the plots into two parts, the first one corresponding to rainfall durations from 5 min to
30 min, and the second one from 30 min to 24 h. To end up with two different rainfall
duration groups, a number of trials were performed considering different duration groups,
and finally we selected those providing the highest coefficients of determination, R2, for
all return periods. Figure 7 presents the linear relationships between the log-transformed
quantiles (log-transformed return levels) of rainfall intensity and log-transformed scale
factors of different durations, for return periods of 5 years (left panel) and 50 years (right
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panel). The plots include the linear function equations for rainfall durations in the intervals
of 5 min to 30 min and 30 min to 24 h, and the respective coefficients of determination.
Table 2 presents estimates of the self-similarity index (estimates of −β) assessed for all
return periods and for the two groups of rainfall duration.
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Table 2. Self-similarity indices, −β, for all return periods and rainfall durations of 5 min–30 min and
30 min–24 h.

Return Period (Years) 5 min–30 min 30 min–24 h

2 0.5415 0.7286
5 0.5674 0.7379
10 0.5908 0.7400
20 0.6136 0.7407
50 0.6418 0.7407

100 0.6614 0.7403
200 0.6794 0.7398
500 0.7008 0.7390
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The self-similarity indices presented in Table 2 are then used in Equation (12) to
temporally downscale daily rainfall return levels assessed from fitting the GPD to data
from AUTh station (1958–2021). More specifically, daily rainfall return level estimates
corresponding to the 97.5% upper confidence limit (see Figure 6) are used in the scaling
process. Rainfall return level estimates extracted for durations of 5 min, 10 min, 15 min,
30 min, 1 h, 2 h, 6 h, and 12 h are used to construct IDF and DDF curves for the study site.
The formulas extracted to describe the IDF and DDF curves are given below:

i
(mm

h

)
=

16.63T0.2152

t0.7116 and p(mm) = 16.63T0.2152t0.2884 (15)

where T is the return period (years) and t is the rainfall duration (h). Figure 8 presents IDF
and DDF curves for Thessaloniki based on Equation (15) for return periods of 2, 5, 10, 20,
50, 100, 200, and 500 years.
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3.2. Modelled Flow Depth

A detailed analysis of the areas where maximum water depths are highlighted and
analysis identifying the critical roads during heavy rains will be presented in this sec-
tion. The rainfall depth for 50-year events, specifically for durations of 1 h and 2 h, is
evaluated. The findings indicate that the assessed rainfall depth is approximately 70%
higher than the quantiles derived from the DDF curves extracted from the shorter-duration
dataset spanning 25 years (1963–1987). This high difference is attributed to: (i) using the
upper 97.5% confidence limit to assess daily rainfall return levels of the longer time series
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(1958–2021), (ii) fitting a POT model to the 64-year daily series to assess extreme quantiles,
and (iii) missing observations in the shorter series perhaps leading to an underestimation of
the extreme sample. To simulate these two storm events, the CityCAT model is employed.
It should be noted that when selecting the duration for modelling purposes, it is essential
to consider the critical duration that triggers the most significant flood response, taking
into account factors such as time-to-peak and other relevant characteristics. In the case of a
catchment area spanning only a few square kilometres, a duration of 1 or 2 h is often suffi-
cient to adequately represent the hydrological processes and capture the flood dynamics
effectively. These durations are typically suitable for encompassing the key rainfall patterns
and associated runoff generation within the catchment, enabling accurate flood modelling
and analysis. The application of the CityCAT model in simulating the two storm events
(50-year events with durations of 1 h and 2 h, see Figure 9) provides valuable insights into
flood depths and water flowpaths within the study area. Note that the simulated storm
events here exhibit similarities to previously observed storms as reported by the Hellenic
National Meteorological Service (HNMS).
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The flood maps produced by the model outputs, depicted in Figure 10 (maximum
flood depths), clearly identify a major water flowpath along Agias Sofias street (see Figure 1
to locate the street), where the darker blue illustrates water depths exceeding 30 cm. This
indicates that the street is highly susceptible to flooding during intense rainfall events.
Furthermore, the presence of small ponds in various parts of the catchment, attributed
to the complex and dense topography of the area, highlights the potential for localised
flooding. Identifying these ponding areas is crucial for understanding flood risk and
implementing measures to minimise the impacts, such as sacrificial zones, the creation of
retention ponds, the improvement of surface drainage in specific locations, or converting
the impermeable pavements to permeable pavements.

The study area’s locations and roads, discussed below, have experienced substantial
water buildup during intense rainfall events in the past, as reported by local authorities and
residents. However, additional efforts are required to compare and confirm these observed
occurrences with the results obtained through modelling. The modelled water depths of this
work were calculated to estimate the maximum levels on the following roads (see Figure 1
to locate the streets): (a) Palaion Patron Germanou and Pavlou Mela. This particular area
demonstrates a significant propensity for water pooling, with estimated water depths
exceeding 30 cm. (b) Notably, Proxenou Koromila experiences frequent ponding, with
estimated flood depths ranging from 25 cm to 41 cm. This road is particularly susceptible
to water accumulation during storm events, which can lead to hazardous conditions. (c) In
certain parts of Mitropoleos street, water depths exceeding 25 cm have been estimated.
This poses a risk of localised flooding which would result in traffic disruption.
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The estimated water depth and the flow direction for the two storms with 1 h and
2 h durations can be seen in Figures 11–13, where we zoom in on these areas. Overall, the
contribution of a detailed flood model, such as CityCAT, is crucial to developing a better
understanding of the flood dynamics, quantifying water depths with high accuracy, and
locating areas at high flood risk to improve inundation resilience in dense cities.
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3.3. Exposure Likelihood to Buildings

In order to identify the urban features exposed to flood risk, an innovative tool was
used, as described in Section 2.3. The analysis of flood exposure to buildings in the study
area provides valuable insights into the vulnerability of urban features to flood risk. Note
that this area has faced inundation issues from extreme events in the past, for which no
formal reports exist, but are well known by local people.

Table 3 provides the total number of inundated buildings per scenario in the study
area. The number of buildings classified as being at high risk for the first storm event (1 h
duration) is 165, and that for the second storm event (2 h duration) is 186. These values are
nearly twice as high as for the buildings with medium flood exposure. Most of the high-risk
buildings are located on the streets mentioned in Section 3.2, where the flood depth is more
than 30 cm. Furthermore, in the studied area of the city centre, many buildings house
businesses, particularly on their ground floor, often containing vulnerable assets, while
there also exist numerous buildings of historical value.

Table 3. Total number of inundated buildings per scenario for the centre of Thessaloniki.

Storm Scenarios Medium High

50-year event with a duration of 1 h 90 165
50-year event with a duration of 2 h 99 186
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Figure 14 illustrates the flood depths and the resulting flood exposure of buildings
during the two generated storm events (50-year storm events with durations of 1 h and 2 h).
The use of colour-coded zones helps to categorize buildings based on the flood depths in the
buffer zone. The red-coloured buildings indicate high-risk, where the flood depth exceeds
the 30 cm threshold. These buildings are estimated to be more vulnerable to damage
from flooding, and it is crucial to prioritize them for adaptation measures and enhance
their resilience to future flooding. Buildings depicted in orange indicate a medium risk of
flooding, where damage from flooding is still significant. Lastly, a grey colour highlights
the buildings at low risk, with minimal flood depths and lower vulnerability to flooding.
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It should be noted that further investigation is needed into the 30 cm threshold
to categorise buildings according to their flood risk, in order to provide more accurate
estimations to understand the risk and the vulnerability profile of the city’s buildings.

4. Conclusions

This study combines a detailed contemporary analysis of extreme rainfall events in
Thessaloniki, Greece, with an advanced hydrodynamic model to simulate pluvial flooding,
assisting in the reliable assessment of building exposure to flooding risks. A dual scheme
is employed to assess extreme rainfall: (i) extreme daily rainfall, resulting from a long
daily series, is analysed using a GPD. Two threshold detection methods are applied, to
assist a less ambiguous selection of daily extreme rainfall events. (ii) Extreme rainfall of
shorter annual maximum series ranging from sub-hourly to sub-daily durations is analysed
using the GEV distribution. A scaling procedure is applied to rainfall return level estimates
assessed from (ii), and the resulting scaling laws are applied to the more reliable daily
rainfall return levels of (i), in order to finally derive storm profiles with durations of 1 h
and 2 h. The resulting storm profiles are used to drive the hydrodynamic model CityCAT
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to simulate flooding, estimate the water depths, identify the critical water flowpaths and
finally assess the total number of inundated buildings through a novel exposure analysis
calculator per extreme rainfall scenario in the historic centre of Thessaloniki. Furthermore:

1. Typical storm events have durations spanning 1 h to 2 h, so both durations have been
used here to see how sensitive the damages are to storm duration. For storms of
the same return period, a modest increase is found for the 2 h storm relative to the
1 h storm.

2. The CityCAT model provides valuable insights into flood depths and water flowpaths,
identifying a major water flowpath along Agias Sofias street, which is highly suscepti-
ble to flooding during intense rainfall events. The presence of small ponds in various
parts of the studied catchment further highlights the potential for localised flooding.

3. The estimated likelihood of flood exposure to buildings reveals the vulnerability
of urban features to flood risk. Due to the previous flood events in the area, the
number of buildings at high risk for both storm events underscores the importance of
addressing flood impacts on the built environment.

4. The modelling system is suitable for assessing the performance of flood-resilience strate-
gies such as retention ponds, surface drainage improvements, and permeable pavements.

This study showcases the unique capabilities of CityCAT in its application to a country
like Greece, which faces challenges of limited data availability. By leveraging globally
accessible datasets, a high-resolution Digital Terrain Model (DTM, provided by the Hellenic
Cadastre), and a detailed analysis of extreme rainfall events, this model facilitates a better
understanding of the dynamics of urban flooding. It is noteworthy that in Greece, flood
exposure analysis is conducted here for the first time at the level of individual buildings,
moving away from the conventional approach of assessing flood risk in predefined zones.
The identification of critical flow paths and the assessment of buildings at high flood risk
serve as key considerations for future work. This includes expanding the catchment area,
adding the current sub-surface drainage system or developing new synthetic methods to
represent the system, implementing the model, and validating against historical storm
events. These efforts are aimed at making informed decisions to develop flood-resilience
solutions that safeguard people, assets, and infrastructure from future flood events.
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