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Abstract: The Ottawa River Watershed is a vast area that stretches across Ontario and Quebec and
holds great importance for Canada’s people, economy, and collective history, both in the present
and the future. The river has faced numerous floods in recent years due to climate change. The
most significant flood occurred in 2019, surpassing a 100-year flood event, and serves as a stark
reminder of how climate change impacts our environment. Considering the limitations of machine
learning (ML) models, which heavily rely on historical data used during training, they may struggle
to accurately predict such “non-experienced” or “unseen” floods that were not encountered during
the training process. To tackle this challenge, our study has utilized a combination of numerical
modeling and ML to create an integrated methodology. Indeed, a comprehensive dataset of river
flow discharge was generated using a numerical model, encompassing a wide range of potential
future floods. This significantly improved the ML training process to generalize the accuracy of
results. Utilizing this dataset, a novel ML model called the Expanded Framework of Group Method
of Data Handling (EFGMDH) has been developed. Its purpose is to provide decision-makers with
explicit equations for estimating three crucial hydrodynamic characteristics of the Ottawa River:
floodplain width, flow velocity, and river flow depth. These predictions rely on various inputs,
including the location of the desired cross-section, river slope, Manning roughness coefficient at
different river sections (right, left, and middle), and river flow discharge. To establish practical models
for each of the aforementioned hydrodynamic characteristics of the Ottawa River, different input
combinations were tested to identify the most optimal ones. The EFGMDH model demonstrated
high accuracy throughout the training and testing stages, achieving an R2 value exceeding 0.99. The
proposed model’s exceptional performance demonstrates its reliability and practical applications for
the study area.

Keywords: Expanded Framework of Group Method of Data Handling (EFGMDH); flow velocity;
floodplain width; machine learning forecasting; river flow depth; numerical model; Ottawa River;
water resource management

1. Introduction

The Ottawa River is a significant river that runs through Ontario and Quebec in
eastern Canada. It is part of the St. Lawrence Basin and is the largest tributary to the
St. Lawrence River. The Ottawa River plays a crucial role in the region’s hydrological
cycle, acting as a primary drainage basin for an extensive watershed. The river collects
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and transports significant volumes of water, runoff, and sediment from its vast catchment
area, influencing local and regional hydrological patterns [1]. The Ottawa River and its
surrounding areas have experienced significant flooding events throughout history. In
2017, heavy rainfall and snowmelt led to extensive flooding in communities along the river,
including Gatineau and Ottawa, reaching levels not seen in over 50 years [2]. It caused
insured damages exceeding 220 million CAD [3], deemed as the century’s flood. During
the spring of 2019, the Ottawa River encountered a flood that broke the previous record
set just two years before. This caused the evacuation of thousands of people, extended
states of emergency, and approximately 200 million CAD in insured losses [4]. This flood
was exceptionally severe, with a discharge of 5980 m3/s, surpassing the expected level for
a 100-year flood. Flooding in the Ottawa River region can occur due to a combination of
factors, including heavy rainfall, rapid snowmelt, ice jams, and spring thaws [5]. The river’s
large drainage basin and the potential for high water levels in its tributaries can exacerbate
the risk of flooding [6]. According to climate change projections, there may be an increase
in extreme weather events, such as heavy rainfall and precipitation, which could result
in more frequent occurrences of flood-producing rainfall [4,7–9]. This could potentially
increase the risk of flooding in the Ottawa River region, emphasizing the importance of
adaptive strategies and long-term planning [10]. Consequently, developing predictive
models for estimating floodplain width, flow velocity, and river flow depth during different
flood events is crucial to enhance our understanding of flood dynamics, facilitating flood
risk assessment, and supporting effective flood management strategies.

An accurate calculation of hydrodynamic characteristics is fundamental for effective
flood management strategies. Floodplain width, river flow depth, and flow velocity are
key factors that provide critical insights into the behavior and extent of flooding events.
By quantifying the floodplain width, decision-makers can assess the potential impact on
surrounding areas and identify at-risk zones. The measurement of floodplain width is
vital in understanding the scale and impact of a flood event. It helps assess the potential
inundation area, determines flood risk zones [11,12], and plans flood mitigation and man-
agement strategies [13]. River flow depth is a vital parameter for assessing the volume
of water present and determining its potential to cause damage. The importance of river
depth concerning floods can be understood through the following points: (i) Flood risk
assessment [14,15]: Constitutes a cornerstone of disaster management and urban planning.
Accurate estimates of river depth play a pivotal role in predicting the potential extent and
severity of flooding. Researchers and policymakers can formulate effective strategies to
mitigate flood-related risks, allocate resources, and prioritize vulnerable areas for interven-
tion by analyzing historical flood data alongside river depth information. (ii) Hydraulic
capacity: Understanding river depth is central to evaluating a watercourse’s hydraulic
capacity, which refers to the volume of water a river channel can safely convey. Inad-
equate river depth can lead to increased flow velocities and, subsequently, heightened
flood risks. By quantifying river depth, engineers and hydrologists can optimize hydraulic
designs to ensure that rivers maintain their conveyance abilities even during high-flow
events. (iii) Floodplain mapping [16]: Accurate floodplain mapping is indispensable for
delineating areas susceptible to inundation during flood events. River depth data serves
as a fundamental input for modeling floodplain extents. Detailed floodplain maps aid
in land-use planning, infrastructure development, and emergency response coordination.
Moreover, they empower communities to make informed decisions regarding building
construction and resource allocation in flood-prone regions. (iv) Infrastructure design [17]:
River depth information guides the design and construction of infrastructure, safeguarding
against flood-related damage and disruption [16]. Bridges, culverts, and embankments
must be engineered to withstand varying water levels. Inaccurate river depth estimations
can compromise these assets’ structural integrity, leading to catastrophic failures during
flood events. A precise understanding of river depth ensures resilient infrastructure that
can endure the challenges posed by changing hydrological conditions. (v) Emergency
response planning: Rapid and coordinated emergency response is essential to minimize
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loss of life and property damage during floods. Accurate river depth data enables authori-
ties to anticipate the magnitude of potential flooding and allocate resources strategically.
This facilitates the timely deployment of personnel, equipment, and supplies to the most
vulnerable areas, enabling efficient rescue and relief efforts. Flow velocity measurements
help understand the speed at which water moves, aiding in predicting flood progression
and identifying areas prone to rapid inundation. The flow velocity during different floods
is another crucial parameter with several vital implications. Here are some reasons why
velocity is essential in understanding floods: (1) Flow dynamics [18]: The rate at which
water moves within a river channel affects flood propagation and influences the interaction
between water and its surroundings. Fluid mechanic principles dictate that varying flow
velocities can lead to different flow patterns, such as laminar or turbulent flow, which
in turn impact the behavior of floodwaters as they interact with structures, vegetation,
and natural topography. (2) Flood hazard mapping [19]: Flow velocity helps determine
the extent to which floodwaters can inundate a region, influencing floodplain delineation.
This information is fundamental for identifying areas at risk, guiding land-use planning,
and enabling emergency management agencies to develop targeted response strategies for
regions vulnerable to swift-moving floodwaters. (3) Sediment Transport [20]: During flood
events, fast-moving waters can transport sediments, debris, and pollutants downstream,
potentially exacerbating flood impacts and altering river morphology. Understanding veloc-
ity patterns aids in predicting sediment deposition and erosion rates, facilitating informed
decision-making for riverbed management and sediment control measures. (4) Hydraulic
engineering design [21]: Structures such as bridges, culverts, and flood control channels
need to be designed to withstand the forces exerted by flowing water. Accurate velocity
estimations enable engineers to tailor structures to specific flow conditions, ensuring their
stability and functionality even during extreme flood events. (5) Flood modeling and
forecasting [22].

HEC-RAS (Hydrologic Engineering Centers-River Analysis System) has gained renown
for its proficiency in scrutinizing and emulating river hydraulic processes. It has established
itself as a well-recognized and extensively embraced software in the realm of hydraulic
modeling, boasting a vast user community [23–25]. This software offers an array of capabili-
ties for assessing and simulating river hydraulics, encompassing aspects such as floodplain
deluge scenarios, sediment conveyance, water surface profiles, and flow rates [26–29]. It
demonstrates its competence in accommodating diverse hydraulic conditions essential for
the cartography of floodplains and handling intricate river systems, utilizing Geographic
Information System data [30,31]. Nevertheless, it is worth noting that the computational
demands of running simulations in HEC-RAS can vary based on the scale and intricacy of
the model, sometimes necessitating substantial computational resources [32].

Machine Learning (ML) has gained widespread application in the prediction and
analysis of time-varying cross-section rating curves [33,34] and hydrodynamic character-
istics of rivers [35,36], efficiently processing and analyzing large data volumes, enabling
accurate floodplain width, river depth, and flood flow velocity predictions [15,37,38].
Group Method of Data Handling (GMDH) [39] is a prominent and widely recognized ML
technique [40–43]. The GMDH offers several advantages compared to the other ML tech-
niques, including automatic feature selection [43], employing a self-organizing algorithm
for optimizing the structure and complexity of the model [44], interpretability by provid-
ing simple and practical models [45], non-linearity handling [46], and adaptability [47].
These advantages make GMDH a valuable tool in various domains, particularly when
dealing with complex datasets. Nevertheless, the GMDH has limitations, including the
exclusion of non-adjacent layers, restriction to second-order polynomials, and a limitation
to two neurons per layer. To overcome these drawbacks, the Expanded Framework of
GMDH (EFGMDH) is introduced in the current study for forecasting the hydrodynamics
characteristics of the river.

Although previous studies have demonstrated the high predictive capabilities of
various ML algorithms in flood prediction, their accuracy heavily relies on the historical
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data used during the training process [48]. Acknowledging that none of these algorithms
can anticipate “non-experienced” or “unseen” floods is essential. Given the impacts of
climate change, significant changes in flood patterns have been observed in Canada. For
instance, the 2019 flood surpassed the discharge levels expected once every 100 years,
which caught decision-makers by surprise as such an event was unprecedented in historical
records dating back to the 1900s.

To address these challenges, this study aims to combine numerical modeling with
the ML approaches. A comprehensive dataset of river flow discharge will be generated
using the numerical model (i.e., HEC-RAS), encompassing a wide range of potential future
floods. This extensive dataset will serve as training input for ML algorithms, facilitating the
development of user-friendly explicit equations for decision-makers. These equations will
enable the direct calculation of three important hydrodynamic characteristics of the Ottawa
River, including floodplain width, flow velocity, and river flow depth. By integrating
numerical modeling and ML, this research enhances flood prediction accuracy and equips
decision-makers with valuable tools for proactive flood management. This comprehensive
approach acknowledges the evolving nature of flood patterns due to climate change. It
provides a framework for anticipating and mitigating the impacts of future floods on the
Ottawa River and its surrounding areas.

2. Materials and Methods
2.1. Study Area

The Ottawa River runs for approximately 1271 km (790 miles) from its source in Lake
Capimitchigama in Quebec to its mouth at the confluence with the St. Lawrence River in
Montreal, Quebec. The Ottawa River has a large drainage basin, covering an area of about
146,300 square kilometers, which extends its hydrological significance beyond its immediate
vicinity. As it finally merges with the St. Lawrence River, providing approximately 80%
of the water flow, it plays a crucial role in maintaining the water balance and ecosystem
well-being of the broader watershed.

The study area was chosen upstream of the city of Ottawa to be able to analyze the
impacts of high flows to protect the city. Then, the study area was selected in a stretch
of river comprising at least two hydrometric stations to ensure reliable model calibration.
Finally, the delimitation between the start and end of the zone is based on the region’s
division of the Digital Elevation Model (DEM). Once this zone has been chosen, a division
into sub-zones is carried out to share the river evenly. The zones are delimited according to
the speed of flow, the width of the riverbed, and the nature of the banks. The geographical
location of the study area and upstream and downstream boundaries of the study area are
provided in Figure 1.

In the Ottawa River basin, during the period from October to April, temperatures
remained lower than average, leading to frozen ground that was incapable of absorbing the
moisture from the melting snow. However, most snow and ice did not begin the melting
process until the middle of spring, resulting in certain forested regions experiencing snow
accumulation exceeding the typical amount by 50%. From mid-April to mid-May, the
area experienced a significant period of heavy rainfall, causing Ottawa to receive double
its average precipitation with an accumulation of 150 mm. The combination of rain and
melting snow overwhelmed the Ottawa River, surpassing its capacity. As a result, riverside
communities in Ontario and Quebec were inundated by rising water levels. Table 1 provides
the descriptive statistics of the variables at the training and testing stages. Based on the
provided information in this table, it can be concluded that, on average, the magnitudes of
all inputs (i.e., slope, nLeft, nMiddle, nRight, and flow discharge) and outputs (i.e., river flow
depth, flow velocity, and floodplain width) exhibit consistency at both stages. The nLeft,
nMiddle, and nRight are Manning’s roughness coefficients at the left, middle, and right sides
of the channel, respectively, at each cross-section. In each zone, the slope of the riverbed
was derived from the DEM. Furthermore, the standard deviations of these variables also
indicate consistent variability in the measurements at both stages. Additionally, the sample
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variance values for all variables reflect comparable levels of dispersion in the measurements
of all variables at both stages. The positive kurtosis values of the slope, flow velocity, and
floodplain width at both training and testing stages suggest distributions with relatively
heavier tails and more peaked shapes compared to a normal distribution. Conversely, the
kurtosis values for the other parameters (i.e., nLeft, nMiddle, nRight, flow discharge, and river
flow depth) are negative, indicating distributions with relatively less peaked shapes and
lighter tails than a normal distribution. Moreover, the positive skewness values indicate
right-skewed distributions for all input and output variables, indicating longer tails on the
right side.
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Table 1. The descriptive statistics of the variables at the training and testing stages.

Parameter Stage Mean SD K S Min Max

Slope Train 0.358 0.352 2.199 1.760 0.05 1.27
Test 0.361 0.353 2.212 1.757 0.05 1.27

nLeft
Train 0.0248 0.01053 −1.33 0.03 0.01 0.04
Test 0.0249 0.01060 −1.35 0.04 0.01 0.04

nMiddle
Train 0.0247 0.010419 −1.293 0.040 0.01 0.04
Test 0.0248 0.010504 −1.314 0.047 0.01 0.04

nRight
Train 0.0248 0.010516 −1.320 0.038 0.01 0.04
Test 0.0249 0.010582 −1.335 0.047 0.01 0.04

Flow discharge (m3/s)
Train 4075.64 1489.824 −0.892 0.338 2000 7000
Test 4135.29 1501.258 −0.872 0.361 2000 7000

River flow depth (m) Train 3.11 0.649247 −0.179 0.376 1.87 5.22
Test 3.14 0.658579 −0.222 0.402 1.83 4.93

Flow velocity (m/s) Train 0.611 0.235912 1.310 1.225 0.29 1.52
Test 0.613 0.240759 1.314 1.195 0.27 1.57

Floodplain width (m) Train 1019.94 704.7546 0.798 1.279 131.8 2713
Test 1021.67 692.4157 0.824 1.255 187.1 2713.4

SD = Standard Deviation; K = Kurtosis; S = Skewness; Min = Minimum; Max = Maximum.

2.2. Expanded Framework of GMDH (EFGMDH)

The Group Method of Data Handling (GMDH) (Ivakhnenko 1978) is a ML algorithm
that belongs to the class of inductive modeling techniques, which has since been developed
and applied in various fields [49,50]. GMDH, as a self-organizing ML technique [51],
iteratively constructs interconnected polynomial models, starting with a simple model and
progressively adding complexity in subsequent layers. The GMDH algorithm works by
organizing the input variables into layers, where each layer represents a different level
of complexity. The “number of layers” is a parameter the user defines before starting the
model. The algorithm generates candidate models within each layer by combining different
input variable subsets and evaluating their performance using various statistical criteria.
The best-performing models from each layer are selected and become the input for the next
layer. This process continues until a satisfactory model is obtained.

Let us assume h input variables and H observations for the purpose of estimating the
target parameter (T) in the following manner [52]:

T = Q(xi1, xi2, . . . , xih) (i = 1, 2, . . . , H) (1)

Here, H represents the total number of observations or samples available, h signifies the
number of input variables, Q() denotes the function establishing the relationship between
the inputs, and T represents the actual target value.

The GMDH network has the ability to learn from diverse input systems, enabling it to
effectively estimate the target variable through a distinct method [52], as shown below:

T̂ = Q̂(xi1, xi2, . . . , xih) (i = 1, 2, . . . , H) (2)

Here, T̂ represents the approximated target value and Q̂() represents the approximated
function that maps the inputs to the target value. Indeed, the GMDH network is trained to
find the best possible approximation of the target variable based on the given input system.

During the training phase, the primary challenge lies in determining and controlling
the GMDH network to minimize the objective function. The objective function is defined
as the squared difference between the approximated outputs generated via the GMDH



Hydrology 2023, 10, 177 7 of 32

network and the actual outputs. The goal is to find the network configuration that produces
the closest approximation to the proper target, as shown below.

EGMDH
min

=
H

∑
i=1

(
T̂ − Ti

)2 (3)

In this context, T represents the actual output, T̂ represents the approximated output
generated via the GMDH network, H represents the number of samples available for
training and evaluation, and EGMDH represents the objective function of the GMDH
model.

The Volterra series presents a compelling argument that establishes a fundamental
formula for the network connection between the input and target parameters. It firmly
supports the viewpoint that all systems can be effectively approximated by employing
an infinite number of discrete series formulae [53]. Notably, the Kolmogorov–Gabor
polynomial serves as a potent manifestation of the discrete form of the Volterra series,
characterized by its definition as follows:

Q = P0 +
h

∑
m=1

Pmxm +
h

∑
m=1

h

∑
n=1

Pmnxmxn +
h

∑
m=1

h

∑
n=1

h

∑
o=1

Pmnoxmxnxo (4)

In this context, {P1, . . . Ph} represents a set of unknown parameters, where h denotes
the number of input variables. On the other hand, {x1, . . . xh} represents the input variables
themselves. The unknown parameters {P1, . . . Ph}, determined via the training process, are
crucial in defining the relationship between the input variables {x1, . . . xh} and the output
variable.

An abridged representation of Equation (4), attained via the incorporation of second-
order polynomials that exclusively engage two neurons, can be articulated as follows:

Q̂(xm, xn) = P1 + P2xm + P3xn + P4x2
m + P5x2

n + P6xmxn (5)

In the provided equation, xm and xn signify the inputs of the recently formed neurons,
while P = {P1, P2, P3, P4, P5, P6} represents the collection of undisclosed parameters.

Within the conventional GMDH framework, the mathematical formula represented by
Equation (5) is employed to establish a mapping between the neurons in the input layer,
which correspond to the input variables and the output neuron located in the output layer.
This mapping is achieved by utilizing newly produced neurons situated in the hidden
layer(s). It is worth noting that all the created neurons, whether in the hidden layer(s) or
the output layer, are generated using Equation (5). The distinction among the quadratic
equations utilized to generate fresh neurons can be categorized into two primary aspects:
(i) the computed values of the unidentified parameters P = {P1, P2, P3, P4, P5, P6}, and
(ii) the nature of inputs (each neuron can be produced using solely two neurons).

The overall configuration of the network is established by amalgamating these quadratic
polynomials alongside certain constraints, including the maximum allowable number of
layers and the maximum permissible count of neurons in each layer. In the initial hidden
layer, the GMDH algorithm employs a universal formula to compute the probability of
two independent parameters derived from all input variables. By utilizing the neurons
produced in the initial layer, the neurons in the subsequent layer are formed similarly.
This iterative process persists until the maximum allowable number of layers is attained.
The total number of feasible combinations achievable with two variables for k variables is
A = R(R − 1)/2.

A matrix-based equation is formulated for each row of A by employing the second-
order polynomial specified in Equation (5). This equation establishes the relationship
between the variables and the corresponding row of A.

HP = Q (6)
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where

H =


1 x1m x1n x1mx1n x2

1m x2
1n

1 x2m x2n x2mx2n x2
2m x2

2n
...

...
...

...
...

...
1 xAm xAn xAmxAn x2

Am x2
An

 (7)

P = [P1, P2, P3, P4, P5, P6] (8)

Q = [Q1, Q2, . . . , QA]
T (9)

Equation (6) contains only one unknown variable, P, which is calculated in the follow-
ing form:

P =
(

HT H
)−1

HTO (10)

The classical GMDH methodology offers numerous advantages when compared to
alternative ML techniques, including (i) provision of straightforward quadratic equations
suitable for practical applications; (ii) self-organizing capability, allowing for the automatic
design of the final model’s structure even in the absence of prior knowledge regarding
the relationship between the target and corresponding input variables; (iii) each layer of
the GMDH model contributes to prediction, enabling the removal of specific parameters
without substantially impacting the overall outcome; (iv) the GMDH network carries a
lower risk of overfitting, reducing the potential for the model to fit too closely to the
training data [54]; and (v) the GMDH-based sorting algorithms exhibit a high degree of
programmability, allowing for efficient customization and adaptation [49,55]. However,
it is important to acknowledge the limitations of the conventional GMDH methodology,
which include the following:

(1) Polynomial structures (i.e., degree and number of inputs): The classical GMDH
approach is limited to second-order polynomial structures with only two inputs.

(2) Indirect connection with non-adjacent layers: In the classical GMDH, the generation
of each new neuron in the nth layer is solely based on the existing neurons in the
adjacent (n − 1)th layer.

(3) Model complexity: In the classical GMDH, the complexity of the model is controlled
by the user via the specification of the maximum number of neurons and layers prior
to the modeling process. However, this approach does not guarantee the discovery of
an optimal structure based solely on these two parameters and the objective function
defined in Equation (3).

To address these limitations, the current study introduces the Expanded Framework
of GMDH (EFGMDH) for the prediction of hydrodynamic characteristics in rivers. The
EFGMDH framework aims to overcome the drawbacks associated with classical GMDH
by offering enhanced capabilities and an improved modeling performance in the field of
river forecasting. The proposed method incorporates the utilization of four distinct sets
of polynomials to construct the final model structure: a second-order polynomial with
two inputs (Equation (5)), a second-order polynomial with three inputs (Equation (11)), a
third-order polynomial with two inputs (Equation (12)), and a third-order polynomial with
three inputs (Equation (13)). The final structure of the model allows for the simultaneous
combination of these polynomials. Additionally, the model facilitates the generation of
new neurons from all neurons in the previous layers, including both neighboring and
non-neighboring layers, as shown below.

Q̂(xm, xn, xo) = P1 + P2xm + P3xn + P4xo + P5x2
m + P6x2

n + P7x2
o + P8xmxn + P9xmxo + P10xnxo (11)

Q̂(xm, xn) = P1 + P2xm + P3xn + P4x2
m + P5x2

n + P6xmxn + P7xmx2
n + P8x2

mxn + P9x3
m + P10x3

n (12)
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Q̂(xm, xn, xo) = P1 + P2xm + P3xn + P4x3 + P5x2
m + P6x2

n + P7x2
o

+P8xmxn + P9xmxo + P10xnxo + P11x3
m + P12x3

n + P13x3
o + P14x2

mxn
+P15x2

mxo + P16x2
nxm + P17x2

nxo + P18x2
o xm + P19x2

o xn + P20xmxnxo

(13)

Furthermore, the objective function employed in the EFGMDH model is the Akaike
Information Criterion (AIC) [56]. The AIC provides a robust method for model selection by
balancing goodness of fit and model complexity, allowing researchers to make informed
decisions when choosing the most appropriate model for their data. AIC is based on
information theory principles and follows the maximization of the likelihood function
while penalizing for model complexity. The equation for the corrected version of the AIC
(AICc), which has been utilized in recent hydrology studies [57–59], is provided as follows:

AICc = L × Ln

(
1
L

L

∑
i=1

(Qo,i − Qm,i)
2

)
+

2KL
L − K − 1

(14)

Here, the variables Qo and Qm represent the measured and estimated target variable,
respectively. The total number of samples is denoted by L. The Ln is the natural logarithm.
Additionally, the number of tuned parameters required to develop the final EFGMDH-
based network (all polynomials in the final model) is represented by K. For second-order
polynomials with two and three inputs (Equations (5) and (11)), the value of K is 6 and 10,
respectively. On the other hand, for third-order polynomials (Equations (12) and (13)), K
are (10) and (20) for polynomials with two and three inputs, respectively.

The AICc value is calculated for each model under consideration, and the model with
the lowest AICc is typically chosen as the best-fitting model. Therefore, AICc allows for the
comparison of models with different numbers of parameters, enabling the selection of a
simpler model if it provides a comparable fit to a more complex one.

2.3. Reliability Analysis

Reliability analysis is a statistical technique used to assess the consistency, stability,
and dependability of measurements, tests, or instruments. It aims to determine the extent
to which a measurement or test produces consistent and reliable results over time or across
different conditions. The reliability analysis (RA) [60] is defined as follows:

RA(%) =
100
L

L

∑
i=1

Zi (15)

Zi =

{
0 Ei > β
1 Ei ≤ β

(16)

Ei(%) =

(
Qi − Q̂i

Qi

)
× 100 (17)

Within the provided context, Q and Q̂ correspondingly symbolize the measured and
anticipated hydrodynamic attributes. The permissible relative discrepancy is indicated
by β. The precise value of β is reliant on the particular project and can fluctuate based
on specific requisites. However, as a general guideline, it is often advisable to establish a
maximum β threshold of 0.2 or 20% [61]. This present investigation examines diverse β
values, encompassing 0.01, 0.02, 0.05, 0.1, 0.15, and 0.2. The assessment of these distinct
β values aims to ascertain their influence on the precision and efficacy of the anticipated
hydrodynamic characteristics.

2.4. Goodness of Fit

Five distinct statistical measures are employed to evaluate the constructed models’
effectiveness for estimating the Ottawa River’s hydrodynamic characteristics using the
EFGMH approach. These measures are divided into four primary categories: (i) correlation-
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based indices, including the coefficient of determination (R2) and the Nash–Sutcliffe Effi-
ciency (NSE); (ii) an absolute-based index known as the Normalized Root Mean Square
Error (NRMSE); (iii) a relative-based index called the Mean Absolute Percentage Error
(MAPE), and (iv) a hybrid measure referred to as the Corrected Akaike Information Crite-
rion (AICc). The mathematical definitions of R2, NSE, NRMSE, and MAPE can be found in
Equations (18)–(21), while AICc has been defined in Equation (14).

R2 =
∑L

i=1
[
(Qo,i − Qo)(Qm,i − Qm)

]2
∑L

i=1 (Qo,i − Qo)
2
(Qm,i − Qm)

2 (18)

NSE =
∑L

i=1 (Qo,i − Qm,i)
2

∑L
i=1 (Qo,i − Qo)

2 (19)

NRMSE =

√
1
L ∑L

i=1 (Qo,i − Qm,i)
2

∑L
i=1 Qo,i

(20)

MAPE =
1
L

L

∑
i=1

∣∣∣∣Qo,i − Qm,i

Qo,i

∣∣∣∣ (21)

where Qo and Qm represent the observed and modeled values of the target variable (re-
spectively), H denotes the number of samples, Qo and Qm correspond to the average of
the observed and modeled values of the target variable, respectively. The model efficiency
characterization based on R2, NSE, and NRMSE intervals is provided in Table 2 [62].

Table 2. Descriptive performance of different indices.

Index R2 NSE NRMSE

Unsatisfactory R2 < 0.5 NSE < 0.4 30% < NRMSE
Acceptable - 0.4 < NSE < 0.5 -
Satisfactory 0.5 < R2 < 0.6 0.5 < NSE < 0.65 20% < NRMSE< 30%

Good 0.6 < R2 < 0.7 0.65 < NSE < 0.75 10% < NRMSE < 20%
Very Good 0.7 < R2 < 1 0.75 < NSE < 1 NRMSE < 10%

The coefficient of determination, denoted as R2 gauges the combined dispersion in
comparison to the individual dispersion of both the observed and predicted datasets.
The main advantage of the coefficient of determination is that it provides a simple and
interpretable measure of how well the independent variable(s) predict the dependent
variable. Its range lies between 0 and 1, where 0 signifies no correlation, implying that
the prediction does not explain the observed variation. On the other hand, a value of
1 indicates that the dispersion of the forecast perfectly matches that of the observation,
signifying a strong correlation and accurate prediction. This allows researchers to evaluate
the regression model’s predictive power and overall effectiveness. Nevertheless, it is
important to acknowledge that the coefficient of determination, despite its usefulness,
possesses certain limitations and potential drawbacks. One limitation is its insensitivity
to additive and proportional differences [60]. This means that even if there are consistent
differences between the observed and predicted values, the coefficient of determination may
still yield a high value, giving a false impression of accuracy. Additionally, the coefficient of
determination can be overly sensitive to outliers, meaning that a single extreme data point
can significantly impact the calculated value [60]. This sensitivity to outliers can potentially
skew the overall assessment of the model’s performance. It has been recommended to
consider complementary statistical measures to mitigate these limitations.

The NSE ranges from negative infinity to 1, with 1 indicating a perfect fit between
the model predictions and the observed values. Negative values indicate that the mean
of the observed values would provide a better predictor than the model. This relative
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measure allows for model performance comparisons across different studies or scenarios.
As a correlation-based index, the NSE overcomes the bias of the mean. The NSE compares
the model’s predictions to the mean observed value, which helps overcome the bias issue
of R2. R2 can be biased if the model predictions are systematically overestimating or
underestimating the observed values.

The MAPE is widely employed as a metric for assessing the precision of a forecasting
model. It quantifies the average absolute percentage deviation between predicted and
actual values. The MAPE range spans from 0% to positive infinity. A lower MAPE value
signifies higher accuracy, with 0% indicating a flawless prediction in which the predicted
values precisely match the actual values. Conversely, higher MAPE values indicate a more
significant percentage of error in the predictions when compared to the actual values. The
MAPE has several notable advantages: simplicity, scale independence, and interpretability.
Its straightforward calculation makes it easy to understand and apply. Furthermore, the
MAPE is not influenced by the scale of the data, allowing for direct comparisons across
different datasets or forecasting models. However, it is crucial to recognize that the MAPE
can be sensitive to zero or small actual values. In cases where the actual values are close to
zero or exceptionally small, the MAPE may yield infinite or exceedingly high values. This
occurs because the calculation of percentage error involves dividing by the actual value,
and when the denominator is small, even minor errors can be significantly magnified.

The NRMSE, also referred to as the scatter index [63], is a metric commonly used to
assess the accuracy of a prediction or forecasting model. As per the equation provided
(Equation (20)), the NRMSE offers a normalized version of the root mean square error,
effectively addressing the challenges posed by varying scales in different comparisons.
An additional advantage of this index is its interpretability, which is expressed as a ratio
or percentage. This characteristic facilitates the interpretation and communication of the
accuracy of the predictions. By providing a clear understanding of the error relative to
the average magnitude of the actual samples, the NRMSE allows for a straightforward
assessment of the error magnitude.

The AICc is a dimensionless index. It does not have any specific units of measurement
because it is calculated based on log-likelihood values and the number of parameters in the
model. The AICc value itself represents a relative measure of the quality or goodness-of-fit
of different models. By comparing the AICc values of different models, one can evaluate
their relative performance and choose the model that achieves the optimal trade-off between
goodness of fit and complexity. The AICc value is not bounded and can range from negative
infinity to positive infinity. The lower the AICc value, the better the model is considered
to fit the data while taking into account model complexity. When comparing models, a
smaller AICc value indicates a better fit and a more parsimonious model.

2.5. The Framework for Estimating the Hydrodynamic Behavior of the River

The Ottawa River Watershed, spanning across Ontario and Quebec, experienced
the most notable event in 2019, reaching the magnitude of a 107-year flood event (i.e.,
5980 m3/s). This occurrence is a stark reminder of climate change’s profound influence
on our environment. In light of the limitations of ML models, which heavily rely on
historical data during their training phase, accurately predicting such “non-experienced”
or “unseen” floods can be challenging. These unprecedented floods, not encountered
during the training process, present difficulties for ML models in accurately forecasting
their occurrence and magnitude.

This study has implemented an integrated approach that combines numerical mod-
eling techniques with ML methodologies to address this challenge. By integrating these
two approaches, the analysis’ predictive capabilities have been enhanced. The numerical
modeling aspect allows us to simulate and understand the complex dynamics of the Ottawa
River Watershed, taking into account various hydrological factors and the simulation of
floods that the watershed has never experienced. Simultaneously, machine learning tech-
niques enable learning from historical data, identifying patterns and making predictions
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based on the available and newly generated data via the numerical model. This integrated
methodology leverages the strengths of both approaches, providing a more comprehensive
and robust framework for assessing and predicting floods in the Ottawa River Watershed,
even in the face of unprecedented or unseen events.

The conceptual framework of the current study is provided in Figure 2. In the first
step, the HEC-RAS is employed to simulate river flow during different hydrodynamic con-
ditions at the Ottawa River. Several parameters must be considered to calibrate HEC-RAS
for flood modeling, including Manning’s roughness coefficients, cross-sectional geometry,
and boundary conditions. The boundary conditions implemented in the model primarily
revolve around water levels. The critical height is typically entered as the default condition
for the upstream boundary when precise information about the boundary is lacking. This
choice ensures that the model has a defined starting point for simulating the flow. On the
other hand, it is assumed that the water level has reached the normal height for the down-
stream boundary. Additionally, the model requires the specification of the downstream
stream’s slope when the normal height condition is selected. The software calculates this
slope, which is a crucial parameter for accurately representing the hydraulic behavior of
the river downstream.

Generating a comprehensive dataset of river flow discharge using a numerical model
is a crucial step in enhancing the accuracy and effectiveness of the ML training process.
A diverse set of scenarios and conditions can be captured by simulating a wide range of
potential future floods via the numerical model. Therefore, a data bank is generated by
employing the calibrated HEC-RAS. This extensive dataset enables the ML model to learn
from a broader spectrum of situations, including various flood magnitudes, flow patterns,
and hydraulic characteristics. As a result, the ML model becomes more robust and capable
of generalizing its predictions, even for “non-experienced” or “unseen” flood events that
were not part of the historical training data.

With the development of the novel machine learning model, the Expanded Frame-
work of Group Method of Data Handling (EFGMDH), a significant advancement in flood
modeling for the Ottawa River is marked. Its primary objective is to provide decision-
makers with explicit equations for estimating three crucial hydrodynamic characteristics:
floodplain width, flow velocity, and river flow depth. The EFGMDH model relies on a
comprehensive dataset generated from the numerical model, encompassing a wide range
of potential future floods to achieve accurate predictions. The model takes into account
several inputs, including the location of the desired cross-section, river slope, Manning
roughness coefficients for different river sections (right, left, and middle), and river flow
discharge. Various input combinations are rigorously tested and assessed to establish
practical models for each hydrodynamic characteristic. The goal is to identify the most
optimal inputs that yield precise estimations. Figure 3 provides a detailed overview of the
input combinations.

An essential aspect of the model development process is the division of the dataset
into training and testing sets for validation. In this study, 70% of all samples, amounting
to 397 samples, are randomly selected to form the training dataset. These samples are
used to train the machine learning model, enabling it to learn from the data and establish
explicit equations for estimating the hydrodynamic characteristics. The remaining 30%
of samples, totaling 170 samples, are set aside as the testing dataset. These samples are
used to validate the model’s performance on unseen data, serving as a measure of its
generalization capability. By evaluating the model’s predictions on this independent testing
dataset, one can assess the model’s accuracy and reliability when confronted with new or
previously unseen scenarios. This approach ensures that the model is adequately trained
and capable of providing accurate estimates for the hydrodynamic characteristics of the
Ottawa River while also validating its performance on the data it has not encountered
during the training process. Such a rigorous validation process enhances confidence in the
model’s applicability and usefulness for decision-making purposes.
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coefficient at the left, middle, and right sides of the channel at each cross-section).

In the subsequent step, the machine learning models for each hydrodynamic charac-
teristic of the Ottawa River, developed using the EFGMDH approach, undergo a thorough
validation process using two distinct approaches. The first approach is quality-based vali-
dation, which involves plotting scatter plots of the testing samples. The second approach
is quantitative-based validation, where various statistical indices are applied to evaluate
the model’s performance. These indices are categorized into different groups, includ-
ing correlation-based indices (e.g., R2 and NSE), a relative-based index (e.g., MAPE), an
absolute-based index (e.g., NRMSE), and a hybrid index (e.g., AICc). Applying these indices
and visually comparing the model’s predictions allows for a comprehensive evaluation of
its predictive capabilities, providing valuable insights into its strengths and weaknesses.
Furthermore, a sensitivity analysis examines the developed models’ sensitivity for each
Ottawa River hydrodynamic characteristic to each input variable. By understanding the
sensitivity of the models, one can prioritize and focus on improving the accuracy of crucial
input variables, leading to an enhanced overall model performance.

The developed ML models are rigorously assessed and fine-tuned through this com-
prehensive validation and sensitivity analysis to provide reliable floodplain width, flow
velocity, and river flow depth estimates. This process ensures the models’ robustness and
applicability for decision-making and flood management in the Ottawa River region.
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3. Results and Discussion

Figure 4 shows the minimum and maximum floodplain widths at different zones.
It presents the results of a numerical simulation conducted to assess floodplain width
characteristics in various zones (Z1 to Z9) during different flood events. These zones
represent distinct geographical areas or segments within the study region. The data
obtained from the simulation is measured in meters (m) and provides essential insights
into the variations in floodplain width across the zones under different flood conditions.
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Figure 4. The minimum and maximum floodplain widths at different zones.

The simulation results show variations in floodplain width across different zones
during various flood events, indicating the influence of local topography and hydrological
conditions on flood behavior. The narrowest and widest floodplain widths are measured
at Z1 (i.e., 395.8 m) and Z6 (i.e., 2030.5 m), respectively. Indeed, it becomes evident that
moving closer to the central areas of the investigated region shows an increasing trend in
the floodplain width. This trend is indicated by both the minimum and maximum values
of the floodplain width, highlighting the tendency of floodplain width to change in relation
to the river’s central areas.

Zone Z7 shows the highest relative difference between the minimum and maximum
value of floodplain width, indicating relatively more significant fluctuations in floodplain
width within this zone across different flood scenarios. Z1 exhibits a substantial relative
error between its maximum and minimum floodplain widths, signifying significant vari-
ability in flood behavior within this zone during different flood events. However, it is
essential to note that the relative error of Z1 (Relative error = 66%) is ranked second after
Z7 (Relative error = 228%). This means that while Z1 shows considerable variability in its
floodplain width, another zone, Z7, exhibits even more significant variability between its
maximum and minimum floodplain widths. Z8 and Z9 have minimal relative error values,
suggesting more stable and uniform floodplain widths within these areas during different
flood events.

Z6 exhibits the most significant difference of 675.8 m between its minimum and
maximum floodplain widths, indicating substantial variations in flood behavior within
this region, likely influenced by complex topography and hydrological factors. Similarly,
Zone Z1 shows a significant difference of 251.2 m, highlighting considerable fluctuations
in floodplain dimensions. Z7 and Z4 also demonstrate notable differences of 300.6 m and
250.7 m, respectively, signifying significant variability in floodplain widths within these
areas. On the other hand, Z2, Z5, Z8, and Z9 exhibit smaller differences in floodplain width,
with spreads of 12.3 m, 92 m, 5.5 m, and 7.8 m, respectively, suggesting more consistent
floodplain dimensions within these zones. The spatial variability of floodplain width is
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crucial for flood risk assessment, management, and effective flood mitigation strategies
across the study area.

Figure 5 indicates the river flow depth, flow velocity, and floodplain width scatter
plots for eight EFGMDH-based models at the testing stage. For the river flow depth, the
results indicate that, except for M2, all the models employed to predict river flow depth
demonstrate a commendable performance. Throughout the entire range of river flow
depth, the disparity between predicted and actual values remains minimal. The subpar
performance of EFGMDH in predicting river flow depth using the considered variables
underscores the crucial significance of flow discharge (Q) relative to the other variables
showcased in Figure 3. None of the other variables can compensate for the absence of
the flow discharge’s impact, whereas in the case of the other models with a satisfactory
performance, the omission of one variable is compensated for by the others. To conduct a
more detailed comparison of the different models’ river flow depth forecasting accuracy,
the performance will be assessed using the statistical indices provided in Figure 6. These
indices serve as crucial metrics to evaluate and differentiate the models’ effectiveness in
accurately predicting river flow depth.

M1 has the highest R2 and NSE values, indicating a strong correlation and predictive
capability. It also has a relatively low NRMSE and MAPE, implying accurate predictions.
However, its AICc value is higher compared to some other models, indicating it might
be more complex. M2 shows the lowest R2, NSE, and highest MAPE values, indicating
a poorer performance in explaining the variance and predicting the dependent variable.
However, it has a relatively low AICc value, suggesting it might be a simpler model than
M8. Model M3 has the lowest AICc value, indicating a good balance between model
accuracy and simplicity. It has high R2 and NSE values, suggesting a strong correlation
and predictive capability. Its NRMSE and MAPE values are also relatively low, implying
accurate predictions. M4, M5, M6, M7, and M8 have higher R2 and NSE values than
M2, suggesting a better predictive capability. Their NRMSE and MAPE values are also
lower than M2, indicating more accurate predictions. Among these models, M7 and M8
have the highest R2 and NSE values after M1. However, despite their strong R2 and NSE
performance, they are ranked as relatively weaker models according to AICc, with M7
ranked 6th and M8 ranked 8th in terms of their overall performance. In conclusion, M3
stands out as it has the lowest AICc value, indicating a good balance between accuracy and
simplicity. It performs well regarding R2, NSE, NRMSE, and MAPE, making it a strong
candidate for the best-performing model.

Like the river flow depth, the scatter plots presented in Figure 5 for the EFGMDH’s
performance in predicting flow velocity indicate that all models, except for M2, deliver
acceptable results. The only distinction between M2 and M1 is the absence of flow discharge
usage, which seems to impact its prediction performance. Nonetheless, all the other models
demonstrate a satisfactory performance in predicting flow velocity. To carry out a more
comprehensive evaluation of the precision of various models in predicting flow velocity,
their performance will be examined through the utilization of statistical metrics furnished
in Figure 6.

M3 stands out as the best-performing model among all the EFGMDH-based models
based on the AICc value. It has the lowest AICc value (−1444.21), indicating a good balance
between accuracy and model complexity. Additionally, M3 has very high R2 and NSE
values, showing an excellent correlation between the independent input and dependent
variables (i.e., flow velocity). It also has very low NRMSE and MAPE values, suggesting
accurate predictions with minimal percentage errors. It should be considered Model M3 as
the most suitable and robust model for flow velocity predicting due to its top-ranked AICc
value and excellent performance in the other statistical indices.



Hydrology 2023, 10, 177 17 of 32

Hydrology 2023, 10, x FOR PEER REVIEW 17 of 33 
 

 

flow discharge’s impact, whereas in the case of the other models with a satisfactory per-
formance, the omission of one variable is compensated for by the others. To conduct a 
more detailed comparison of the different models’ river flow depth forecasting accuracy, 
the performance will be assessed using the statistical indices provided in Figure 6. These 
indices serve as crucial metrics to evaluate and differentiate the models’ effectiveness in 
accurately predicting river flow depth. 

    

    

    

    

    

1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M1
1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H
River flow depth (m) - measured

M2
1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M3
1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M4

1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M5
1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M6
1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M7
1.5

2.5

3.5

4.5

5.5

1.5 2.5 3.5 4.5 5.5Ri
ve

r f
lo

w
 d

ep
th

 (m
) -

EF
G

M
D

H

River flow depth (m) - measured

M8

0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M1
0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M2
0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M3
0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M4

0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M5
0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M6
0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M7
0.2

0.5

0.8

1.1

1.4

1.7

0.2 0.5 0.8 1.1 1.4 1.7

Fl
ow

 v
el

oc
ity

 (m
3 /s

)-
EF

G
M

D
H

Flow velocity (m3/s)- measured

M8

0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M1
0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M2
0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M3
0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M4
Hydrology 2023, 10, x FOR PEER REVIEW 18 of 33 
 

 

    
Figure 5. Scatter plots of the river flow depth, flow velocity, and floodplain width for eight 
EFGMDH-based models at the testing stage. 

 
Figure 6. Statistical indices for the developed EFGMDH-based models in river flow depth, flow ve-
locity, and floodplain width forecasting. 

0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M5
0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M6
0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M7
0

1000

2000

3000

0 1000 2000 3000

Fl
oo

dp
la

in
 w

id
th

 (m
)-

EF
G

M
D

H

Floodplain width (m)- measured

M8

Figure 5. Scatter plots of the river flow depth, flow velocity, and floodplain width for eight EFGMDH-
based models at the testing stage.
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Figure 6. Statistical indices for the developed EFGMDH-based models in river flow depth, flow
velocity, and floodplain width forecasting.

M8, M5, and M7 also perform well regarding AICc values, ranking close to Model M3.
The main difference between M5, M7, and M* with M3 is the lake use of n_R, Y, and X,
respectively. They have high R2 and NSE values, indicating strong correlations and pre-
dictive capabilities. Additionally, they exhibit low NRMSE and MAPE values, suggesting
accurate predictions with minimal percentage errors. While their AICc values are slightly
higher than that of M3, these models are still strong contenders and may provide excellent
results for researchers. M1, M4, and M6 perform well in most statistical indices, with high
R2 and NSE values indicating reasonably strong correlations and predictive capabilities.
However, their AICc values are higher than those of Models M3, M8, M5, and M7, sug-
gesting relatively more complexity. While these models may provide acceptable results,
it should carefully compare their performance to the top-performing models (especially
Model M3). M2 exhibits the lowest performance among all the EFGMDH-based models
based on the AICc value. It has the highest AICc value (−702.4584124), indicating poorer fit
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and higher complexity than the other models. Additionally, it has the lowest R2 and NSE
values, showing weaker correlations and predictive capabilities. Furthermore, it has the
highest NRMSE and MAPE values, suggesting more significant prediction errors and less
accuracy. In conclusion, for seeking the most accurate and reliable model, priority should
be given to M3, which has the lowest AICc value and performs excellently in the other
statistical indices.

The modeling performance for floodplain width has decreased in each model com-
pared to the other variables. However, despite this decline, a consistent trend is observed
throughout the modeling process, and the overall EFGMDH function remains nearly con-
stant in all models, leading to no significant difference between the estimated and predicted
values. M1, M2, M4, and M6 particularly poorly predict maximum floodplain width
values. Interestingly, regardless of variations in this variable, the predicted values via
EFGMDH remain unchanged, resulting in constant values across several samples with
different floodplain widths. On the other hand, the other models demonstrate a good
qualitative performance, necessitating further quantitative investigation to evaluate the
model comparison.

The comparative analysis of the EFGMDH-based models based on various statistical
indices and the AICc values in Figure 6 provide valuable insights for model selection
and interpretation. Among the eight models (M1 to M8), Model M3 consistently emerges
as the best-performing model across multiple statistical indices. It demonstrates strong
correlations (high R2 and NSE values) with the dependent variable and achieves accurate
predictions with low NRMSE and MAPE values. M3 is top ranking in both the statisti-
cal indices and the AICc value highlights its robustness and reliability in capturing the
underlying relationships in the data. The AICc value is a valuable criterion for balancing
model accuracy and complexity. Model M3’s lowest AICc value indicates that it offers the
best trade-off between accuracy and parsimony. Models M6 and M5 also exhibit relatively
low AICc values, making them suitable alternatives to Model M3 for achieving a good
balance between accuracy and simplicity. M7 and M8 demonstrate the highest AICc values,
indicating that they are relatively more complex and might overfit the data. Although they
exhibit strong correlations and accurate predictions, their higher complexity may raise
concerns about generalizability to new data or potential overfitting. M2 and Model M1,
despite showing a satisfactory performance, have relatively higher AICc values than the
top-performing models. Given that M3 is the best model concerning all three variables,
Table A1 illustrates the corresponding relationships associated with each of them.

Figure 7 depicts the structure of all the models developed for forecasting river flow
depth, flow velocity, and floodplain width using EFGMDH. The black dotted circles indi-
cate variables not utilized as input, while the red dotted circles denote input variables that
EFGMDH did not incorporate into the optimal function. This emphasizes the feature selec-
tion capability of EFGMDH. This figure illustrates various structures used for predicting
the three variables in question (river flow depth, flow velocity, and floodplain width). The
structure of the EFGMDH-based models for river flow depths and flow velocity comprises
models with 2, 3, 4, and 6 layers, while for the floodplain width, it consists of models with
2, 4, and 6 layers. The model architectures can be examined from four perspectives: (i) the
utilization of existing neurons, whether in adjacent or non-adjacent layers, (ii) the input
of each neuron, either with two inputs or three inputs, (iii) the inclusion or exclusion of
all input variables to model each of the three variables, (iv) the complexity of the model.
These aspects are essential to consider while analyzing the prediction models presented in
the figure. In the following section, each of these cases will be thoroughly reviewed for all
the models.
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Figure 7. EFGMDH-based structure for all developed models in forecasting the river flow depth,
flow velocity, and floodplain width.

The first layer of all models consists of neurons that serve as input variables, forming
an adjacent layer. For the second layer, all structures except M1, M4, M7, and M8, which
are related to floodplain width, are generated using neurons from both adjacent and non-
adjacent layers. M1 and M4 have only one neuron in the second layer, while M7 and M8
have three neurons. One neuron in M7 and M8 is solely generated using neurons from
the adjacent layers, while the other two employ neurons from both the adjacent and non-
adjacent layers. M3, designed for river flow depth and velocity, and M5 and M6, explicitly
developed for floodplain width forecasting, have only two layers. For models with more
than two layers, the neurons in the third layer are generated using existing neurons from
both the adjacent and non-adjacent layers. Notably, all generated neurons in the third layers
of all models with more than two layers use input neurons, which contributes to finding
a more optimal structure via a simpler scheme. The same principle applies to neurons
produced in the fourth to sixth layers for structures with more than three layers.

Analyzing all the presented structures reveals that 18.8% of the generated neurons for
river flow depth, 22.85% for flow velocity, and 12.5% for floodplain width are associated
with neurons having two inputs, while the rest have three inputs. This combination of two
and three-input neurons has contributed to the optimal structure achieved via EFGMDH.
Notably, all neurons with two inputs are exclusively found in the first layer. In structures
related to river flow depth, M5 and M6 each have one neuron with two inputs, while in
M7 and M8, the two neurons in the first layer are formed using only two input parameters.
For structures related to flow velocity, M4, M5, and M6 have one neuron each with two
inputs, while in M7 and M8, the two neurons in the first layer are formed using only two
input parameters. As for structures related to floodplain width, M4 has one neuron with
two inputs, and in M7 and M8, the two neurons in the first layer are formed using only
two input parameters.

The presented structures indicate that, with the exception of M8, which is related to all
target variables (river flow depth, flow velocity, and floodplain width), the defined inputs
(eight inputs for M1 and seven inputs for M2 to M8) were not utilized in the final structure.
Notably, over 70% of the models do not incorporate at least two considered variables in
their final structure. This feature selection ability of EFGMDH during model training has
resulted in the inclusion of only the most relevant variables, thereby preventing excessive
model complexity. Furthermore, this feature selection process proves advantageous when
we are uncertain about accurately distinguishing the influential variables in estimating the
target variable. The model complexity is managed effectively by using only the most valu-
able variables. This streamlined approach optimizes model performance while avoiding
unnecessary complexities in the final results.

Based on the structures presented in Figure 7, it is evident that the complexity of the
models varies not only in terms of the number of neurons in each layer but also in terms
of the number of layers. The characteristics of these structures, including the number of
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neurons and the number of tuned parameters (K in Equation (14)), are provided in Figure 8.
The total number of neurons for the river flow depth, flow velocity, and floodplain depth
prediction models is 33, 355, and 40, respectively. Among the eight models presented using
EFGMDH for predicting various variables, 50% of the models related to floodplain width
exhibit the highest complexity, while the remaining two variables (river flow depth and
flow velocity) have the highest complexity percentage of 25%.
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Figure 8. The characteristics of developed EFGMDH-based structures: (a) number of Neurons;
(b) number of tuned parameters (K).

Table 3 exhibits the results of the reliability analysis (RA) for the developed EFGMDH-
based models at the testing stage. For developed models at floodplain width forecasting
and at a β = 1%, M1 has an RA of 83.42%, indicating that 83.42% of the estimates for river
flow depth have a relative error within 1%. The RA for M2 is 5.03%, which means only
5.03% of the estimates meet the 1% relative error threshold. The RAs for M3 to M8 are
also relatively low, indicating that these models have limited accuracy at this β value. For
β = 2%, the RAs for M1 and M3 to M8 have increased, showing improved accuracy. M2’s
RA has increased as well, but it is still relatively low compared to the others. For β = 5%, M1
and M3 to M8 achieves an RA of 99.50%, which means they estimate the river flow depth
with a relative error of 5% or less in 99.50% of cases. M2’s RA has improved but is still not
as accurate as the other models. For β = 10% and above, all models (M1 to M8) reach a
perfect RA of 100%, indicating that they provide estimates with a relative error within the
specified Beta threshold. In conclusion, at low β values (1% and 2%), most models (except
M1 and M2) struggle to meet the stringent accuracy requirements. Additionally, at higher
β values (5% and above), all models successfully meet the accuracy criteria, providing
reliable estimates of river flow depth.

For developed models at flow velocity forecasting and at a β = 1%, M1 has an RA of
36.18%, indicating that only 36.18% of the estimates for flow velocity meet the 1% relative
error threshold. In addition, the RAs for M2, M5, and M7 are relatively low, suggesting
that these models have limited accuracy at this β level. For β = 2%, the RAs for M1, M2,
M5, and M7 have improved compared to the 1% β level. Moreover, M3, M4, and M8 show
higher RAs at this β value. For β = 5%, M1, M2, M5, and M7 still have relatively low RAs,
although there is an improvement compared to the lower Beta levels. In addition, M3, M4,
and M8 maintain high RAs, with M8 achieving a perfect RA of 99.5%, indicating accurate
estimates for most cases. For β = 10% and above, all models (M1 to M8) achieve perfect
RAs of 100%, meaning they provide estimates with a relative error within the specified
Beta threshold for all cases. In conclusion, several models struggle to meet the stringent
accuracy requirements at low β values (1% and 2%). Moreover, at higher β values (5% and
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above), most models (except M1, M2, M5, and M7) successfully meet the accuracy criteria,
providing reliable flow velocity estimates.

Table 3. The results of the reliability analysis for the developed EFGMDH-based models at the testing
stage.

Parameter β (Equation (17)) M1 M2 M3 M4 M5 M6 M7 M8

R
iv

er
flo

w
de

pt
h

1% 83.42 5.03 61.31 59.30 66.83 67.84 80.90 84.42
2% 96.98 10.05 88.94 87.44 94.47 94.97 94.97 95.98
5% 99.50 20.10 99.50 99.50 99.50 99.50 99.50 99.50
10% 100 39.20 100 100 100 100 100 100
15% 100 59.30 100 100 100 100 100 100
20% 100 74.87 100 100 100 100 100 100

Fl
ow

ve
lo

ci
ty

1% 36.18 2.51 59.30 56.28 59.30 25.13 59.80 58.79
2% 70.35 4.02 90.45 81.41 90.45 46.73 85.93 91.46
5% 91.96 14.07 99.50 99.50 99.50 85.93 99.50 99.50
10% 100 36.18 100 100 100 96.48 100 100
15% 100 52.76 100 100 100 99.50 100 100
20% 100 69.35 100 100 100 100 100 100

Fl
oo

dp
la

in
w

id
th

1% 70.85 42.71 44.22 69.85 48.24 51.76 73.87 70.85
2% 84.42 60.80 65.33 84.42 70.85 67.34 85.43 85.93
5% 91.46 83.92 83.42 90.95 88.94 88.44 94.97 94.47
10% 93.47 88.94 92.96 93.47 95.48 94.47 97.99 98.49
15% 95.48 92.46 95.98 95.48 96.98 96.98 98.49 98.49
20% 96.48 92.96 97.49 96.48 97.49 97.49 98.99 98.99

For developed models at floodplain width forecasting and at a β = 1%, M1 has an RA
of 70.85%, indicating that 70.85% of the estimates for floodplain width meet the 1% relative
error threshold. Moreover, the RAs for M2, M3, M5, and M6 are relatively high, suggesting
that these models provide accurate estimates at this Beta level. For β = 2%, the RAs for M1,
M2, M3, M5, and M6 have improved compared to the 1% Beta level. M4, M7, and M8 also
show higher RAs at this Beta value. For β = 5%, all models (M1 to M8) achieve high RAs at
this Beta level, ranging from 91.46% to 94.97%. In addition, M2, M3, M5, M6, M7, and M8
achieve a perfect RA of 94.97%, indicating accurate estimates for most cases. For β = 10%
and above, all models continue to achieve high RAs, with some reaching a perfect RA of
100% at Beta values of 15% and 20%. In conclusion, at low β values (1% and 2%), some
models have relatively lower RAs, while the others exhibit higher accuracy. Moreover, at
higher β values (5% and above), all models (M1 to M8) successfully meet the accuracy
criteria, providing reliable estimates of floodplain width.

To calculate the sensitivity of the optimal models for river flow depth, flow velocity,
and floodplain width presented in Table A1, a Partial Derivative Sensitivity Analysis (PDSA)
is applied [41,64]. In this approach, the partial derivative of the final model concerning
each input variable is calculated to determine the sensitivity of the desired model to each
input variable. This analysis helps identify how changes in each input variable affect the
model’s output or predictions. The extent of the computed partial derivative correlates
directly with its impact on the predicted outcome. Positive and negative values for a partial
derivative indicate that adjusting the input parameter value results in either a reduction or
escalation of the outcomes, respectively.

Four input variables for the river flow depth forecasting are based on the developed
model: X, Y, the Manning coefficient at the left side of the cross-sectional area (nLeft), and
flow discharge (Q) (Figure 9). Generally, sensitivity values demonstrate an ascending
pattern as the X values increase, with the lowest sensitivity value corresponding to the
initial point and the highest value linked to the farthest point. Negative sensitivity values
indicate an indirect correlation between X changes and the river flow depth value. Thus, if
the variable’s value is lower than the actual value, the predicted river flow depth derived



Hydrology 2023, 10, 177 25 of 32

from the EFGMDH-based relationship will decrease. Conversely, it will increase if the
variable’s value is higher than the actual value. Based on the provided data, it seems like
the sensitivity values for river flow depth are generally small (in the range of −3 × 104 to
10−4). This suggests that small changes in the input variable X have a relatively minor effect
on the model’s prediction for river flow depth. The sensitivity of the developed model for
the river flow depth forecasting to variable Y is comparable to the sensitivities observed for
variable X, with a sensitivity range between −0.0008 and 0.0004. As depicted in Figure 1,
when Y = 0, it is associated with Z1, and as the Y values decrease, they correspond from
Z2 to Z9. The sensitivity values for the higher Y values are negative, but the sensitivity
gradually shifts towards the positive values as the Y values decrease. This implies that at
higher Y values, changes in Y have an indirect relationship with river flow depth, whereas,
at lower Y values, the relationship becomes more direct. Specifically, an increase in the
variable Y leads to a decrease in the calculated river flow depth at the highest Y value
according to the developed EFGMDH model. Conversely, as the Y values decrease, an
increase in Y results in an increase in the estimated river flow depth. It is essential to note
that at the lowest Y value, the sensitivity exhibits both negative and positive aspects. The
sensitivity analysis of the introduced EFGMDH-based model for river flow depth reveals
that it shows positive sensitivity to both the nLeft and flow discharge across all ranges of the
Manning coefficient. This implies that reducing the value of either of these variables will
result in a decrease in the estimated river flow depth. However, the main distinction lies
in the magnitude of sensitivity between these two input variables. The sensitivity value
is relatively low for flow discharge but significantly higher for the Manning coefficient.
Consequently, the developed model exhibits the most heightened sensitivity to changes in
the Manning coefficient compared to the other input variables.
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Developed flow velocity forecasting using the EFGMDH-based technique involves five
input variables: X, Y, Slope, the Manning coefficient at the middle of the cross-sectional area
(nMiddle), and flow discharge (Q). A sensitivity analysis was performed on the model’s input
variables, revealing that the Manning coefficient exhibited the highest absolute sensitivity
compared to the other variables. In contrast, the sensitivities of the other input variables
were relatively lower. Both X and Y (representing the desired zone location), as well as
slope, showed mixed positive and negative sensitivities across their respective ranges.
Notably, for X, the sensitivity increased in the middle zones (Z4 and Z5), where all the
sensitivities were positive. Conversely, the sensitivity decreased for Y as the desired zone
location moved toward the lower zones. At the last zone (Z9), the sensitivity of the model
to X was utterly negative, indicating that an increase in X resulted in an enhancement in the
calculated flow velocity via the developed model. The model’s sensitivity to the Manning
coefficient at the middle of the cross-sectional area (nMiddle) consistently exhibits negative
values across all ranges of this variable. This means that an increase in the Manning
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coefficient decreases the estimated flow velocity via the developed EFGMDH-based model.
Furthermore, it is essential to note that as the value of the Manning coefficient increases,
the sensitivity ranges of the desired variables reduce. Specifically, the maximum absolute
sensitivity value decreases from 18 to 8. This indicates that higher values of the Manning
coefficient led to a narrowing of the sensitivity range for the model’s output variables,
implying reduced variability in the model’s predictions. The sensitivity of the model to
flow discharge is the same as the nMiddle with the difference being that all sensitivity values
are positive, and the changing trend of this variable has a direct relationship with the
changes in flow velocity.

Developing the EFGMDH-based model for floodplain width forecasting involves five
input variables: X, Y, Slope, the Manning coefficient at the left of the cross-sectional area
(nLeft), and flow discharge (Q). In the beginning and end zones, the sensitivity of the model
to Y is negative, while this value is positive in the middle zones. For variable X, except
for Z1, the sensitivity value is positive for the initial and middle zones and Z9 as the last
zone, while this value is negative for Z7 and Z8. For slope, the sensitivity in the final zone
is strongly positive, so that its value is the highest compared to the sensitivity in all slope
values and even the sensitivity of the model to the other parameters. In slope values less
than 0.5, the sensitivity is distributed in two ways, positive and negative, so it is impossible
to accurately check the model’s behavior concerning the changes in this variable in this
range. For both the Manning coefficient and flow discharge, the sensitivity is distributed
positively and negatively, with the difference being that the model’s sensitivity to the
Manning coefficient is significantly higher than the flow discharge. For both variables, the
sensitivity in the middle values is almost lower than the small and large values of these
two variables. The comparison of the model’s sensitivity to all variables shows that the
developed model based on EFGMDH for floodplain width forecasting has the highest
sensitivity to the Manning coefficient and slope, and its value is almost negligible for the
other variables.

4. Conclusions

This study has delved into the significant impact of climate change on flooding events
within the Ottawa River Watershed. Notably, the occurrence of unprecedented floods, exem-
plified by the 2019 event surpassing a 100-year flood magnitude, underscores the urgency
of developing effective strategies. Addressing this challenge necessitated the integration of
advanced numerical modeling and machine learning techniques. This approach employed
an expansive dataset of river flow discharge generated by implementing a sophisticated
numerical model. This dataset encompasses a diverse spectrum of potential future flooding
scenarios. Building upon this foundation, the Expanded Framework of Group Method of
Data Handling (EFGMDH) has been devised, a novel model that provides decision-makers
with actionable equations for estimating three pivotal hydrodynamic variables: river flow
depth, flow velocity, and floodplain width. The primary outcomes of the present study can
be summarized as follows:

â According to the numerical model’s results, the floodplain width has the potential to
expand significantly, ranging from 131 m to 2706 m.

â The optimal model for river flow depth incorporates three key input variables: the
location of the desired cross-section, the Manning roughness coefficient at the middle
of the river section, and flow discharge. The optimal model of flow velocity includes all
the variables used in the optimal model for river flow depth as well as the river slope.
Similarly, the input variables influencing the floodplain width forecasting closely
resemble those for river flow depth, with the sole distinction being the utilization
of the Manning roughness coefficient on the left side of the channel rather than
the middle.

â The average relative error of the optimal models is impressively low, staying below
4%. Specifically, it stands at approximately 1% for the floodplain width and river flow
depth, whereas it reaches 3.3% for the flow velocity.
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â The reliability analysis revealed that the developed model for river flow depth fore-
casting exhibits a remarkable forecasting ability, with a maximum relative error of 1%,
2%, and 5% observed in more than 61%, 88.94%, and 99.5% of all samples, respectively.
Similarly, the developed model demonstrates a strong forecasting ability for flow
velocity, achieving a maximum relative error of 1%, 2%, and 5% in 59.3%, 90.45%, and
99.5% of all samples, respectively. Regarding the floodplain width, approximately 93%
of all samples are estimated with a relative error of less than 10%, while an impressive
97.5% of all samples exhibit a relative error of less than 20%.

â The outcomes of the sensitivity analysis indicate that the models devised for fore-
casting flow velocity and river flow depth are notably sensitive to the changes in the
Manning coefficient. This variable substantially impacts the predictions, while the
sensitivity to the other input variables is relatively insignificant. Similarly, the model
formulated for floodplain width forecasting demonstrates a high sensitivity to the
variations in both the Manning coefficient and river slope. In contrast, the sensitivity
of this model to the other variables in the predictions is relatively minor compared to
these two key factors.

While this study provides site-specific insights into the Ottawa River Watershed,
its implications extend far beyond. The amalgamation of numerical modeling, machine
learning, and rigorous analysis yields findings that offer valuable lessons for addressing
flood dynamics in a changing climate. By emphasizing these broader lessons, it aims to
contribute to the collective efforts of researchers, practitioners, and policymakers working
toward more resilient and informed flood management strategies worldwide.
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Appendix A

Table A1. The MATLAB code for forecasting the river flow depth, flow velocity, and floodplain width
based on the Optimum EFGMDH-based equations.

clc
clear
close all

%% load data
X = input(‘X = ‘); % The x-value of the desired point
Y = input(‘Y = ‘); % The y-value of the desired point
S = input(‘Slope = ‘); % Slope
n_Left = input(‘n_Left = ‘); % Manning coefficient at the left of cross section
n_Middle = input(‘n_Middle = ‘); % Manning coefficient at the middle of cross section
n_Right = input(‘n_Right = ‘); % Manning coefficient at the right of cross section
Q = input(‘flow discharge (mˆ3/s) = ‘);

x1 = X; x2 = Y; x3 = S; x4 = n_Left; x5 = n_Middle; x6 = Q;

%% River flow depth (RFD)
x7 = 0.7972056903 + 0.0007659680823.*x6 + 16.88170028.*x5 + 0.0002867820567.*x2 + 0.005613692975.*x5.*x6 +
5.676496159e−09.*x2.*x6 −0.0008570001524.*x2.*x5 −8.638518296e−08.*x6.*x6 −44.4405792.*x5.*x5 + 5.952063533e−08.*x2.*x2 +
2.305295172e−07.*x2.*x5.*x6 −2.035989348e−07.*x5.*x6.*x6 −0.02111346001.*x5.*x5.*x6 −4.075335301e−13.*x2.*x6.*x6
−0.03074844359.*x2.*x5.*x5 + 9.056171312e−14.*x2.*x2.*x6 −3.79246756e−07.*x2.*x2.*x5 + 4.997760689e−12.*x6.*x6.*x6
−1521.968883.*x5.*x5.*x5 + 3.083057165e−12.*x2.*x2.*x2;
RFD = abs(−0.2900228045 + 1.234843753.*x7 −0.0005781358266.*x2 −0.0001346222314.*x1 −4.360822339e−05.*x2.*x7
−2.015160439e−05.*x1.*x7 + 1.146685427e−07.*x1.*x2 −0.05644522239.*x7.*x7 + 1.47821108e−08.*x2.*x2 + 3.451788532e−08.*x1.*x1
+ 7.066940431e−09.*x1.*x2.*x7 −6.799545638e−06.*x2.*x7.*x7 + 4.321286273e−09.*x2.*x2.*x7 −2.141837514e−06.*x1.*x7.*x7 +
3.052993438e−12.*x1.*x2.*x2 + 1.935787496e−09.*x1.*x1.*x7 −6.513794428e−12.*x1.*x1.*x2 + 0.005365532215.*x7.*x7.*x7 +
8.916238379e−12.*x2.*x2.*x2 −2.313056762e−12.*x1.*x1.*x1);

clearvars -except x1 x2 x3 x4 x5 x6 RFD

%% flow velocity (FV)
x7 = 1.474565213 −7.308156372.*x3 −0.0001560907722.*x1 −0.0004949142711.*x1.*x3 + 21.75423527.*x3.*x3 + 3.02582281e−08.*x1.*x1
−0.0003472107353.*x1.*x3.*x3 + 2.791231595e−08.*x1.*x1.*x3 −8.529456535.*x3.*x3.*x3 −1.155022903e−12.*x1.*x1.*x1;
x13 = −0.1360195078 + 1.028402063.*x7 + 3.910710101e−05.*x6 −0.8366445106.*x5 + 0.000134919148.*x6.*x7 + 0.1929051563.*x5.*x7
−0.0002996366339.*x5.*x6 −0.6447329107.*x7.*x7 −5.216177489e−09.*x6.*x6 −56.46594555.*x5.*x5 −0.000961303297.*x5.*x6.*x7 +
6.307766164e−05.*x6.*x7.*x7 −8.878947595e−09.*x6.*x6.*x7 −9.348296029.*x5.*x7.*x7 + 2.322589467e−08.*x5.*x6.*x6 +
133.757665.*x5.*x5.*x7 + 0.006162093839.*x5.*x5.*x6 + 0.2938365097.*x7.*x7.*x7 + 4.206923428e−13.*x6.*x6.*x6 +
239.9073481.*x5.*x5.*x5;
x19 = −0.05870907751 + 1.105224445.*x13 −1.04362073.*x5 −5.612619849e−05.*x2 −2.445239522.*x5.*x13 +
3.453830754e−05.*x2.*x13 + 0.0005763893607.*x2.*x5 + 0.02887893977.*x13.*x13 + 54.11908599.*x5.*x5 −9.0669563e−09.*x2.*x2
−0.0001884641384.*x2.*x5.*x13 + 0.7812508388.*x5.*x13.*x13 −9.573783859.*x5.*x5.*x13 + 4.68892965e−06.*x2.*x13.*x13 +
0.01233195026.*x2.*x5.*x5 + 3.750247651e−09.*x2.*x2.*x13 + 1.44895404e−07.*x2.*x2.*x5 −0.0364101936.*x13.*x13.*x13
−28.08448094.*x5.*x5.*x5 −2.233752737e−13.*x2.*x2.*x2;
FV = abs(−0.01752654296 + 1.023173255.*x19 + 9.818796724e−06.*x6 + 0.03450509366.*x3 + 4.851687788e−07.*x6.*x19
−0.04397214982.*x3.*x19 + 1.280269998e−05.*x3.*x6 −0.04936644191.*x19.*x19 −2.629146563e−09.*x6.*x6 −0.1465817827.*x3.*x3
−8.968356176e−05.*x3.*x6.*x19 −2.033819906e−05.*x6.*x19.*x19 + 5.033790523e−09.*x6.*x6.*x19 + 0.2669554096.*x3.*x19.*x19 +
4.89567231e−09.*x3.*x6.*x6 + 0.2168957534.*x3.*x3.*x19 −1.744799093e−05.*x3.*x3.*x6 + 0.04280993439.*x19.*x19.*x19
−8.331301962e−14.*x6.*x6.*x6 + 0.06698642003.*x3.*x3.*x3);

clearvars -except x1 x2 x3 x4 x5 x6 RFD FV
%% floodplain width (FW)
x7 = −679.992725 + 0.2196734935.*x6 + 10919.49823.*x4 + 13664.18866.*x3 −4.678697179.*x4.*x6 + 0.2837997109.*x3.*x6 +
14303.59768.*x3.*x4 −3.996983967e−05.*x6.*x6 −97629.18489.*x4.*x4 −37997.37507.*x3.*x3 −2.437673051.*x3.*x4.*x6 +
0.0003322885856.*x4.*x6.*x6 + 43.4831633.*x4.*x4.*x6 −1.880126615e−05.*x3.*x6.*x6 −45754.46703.*x3.*x4.*x4
−0.0246360368.*x3.*x3.*x6 + 450.6618062.*x3.*x3.*x4 + 2.369560439e−09.*x6.*x6.*x6 −705267.0006.*x4.*x4.*x4 +
22426.0496.*x3.*x3.*x3;
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Table A1. Cont.

FW = abs(−2293.389243 + 8.422862121.*x7 −13.68973165.*x2 −1.777090887.*x1 −0.004633015004.*x2.*x7 −0.002796113632.*x1.*x7 +
0.01044069247.*x1.*x2 −0.00538860806.*x7.*x7 + 0.01391719301.*x2.*x2 + 0.001404047767.*x1.*x1 −5.386953196e−06.*x1.*x2.*x7 +
8.730973409e−06.*x2.*x7.*x7 −5.702382787e−06.*x2.*x2.*x7 + 4.399606728e−06.*x1.*x7.*x7 −6.246718283e−07.*x1.*x2.*x2
−1.256031897e−06.*x1.*x1.*x7 −1.149352293e−07.*x1.*x1.*x2 −9.511422362e−07.*x7.*x7.*x7 −5.124815679e−07.*x2.*x2.*x2 +
4.073166082e−08.*x1.*x1.*x1);

clearvars -except x1 x2 x3 x4 x5 x6 RFD FV FW

%% Disply
disp([‘River flow depth = ‘ num2str(RFD)])
disp([‘Floodplain width = ‘ num2str(FW)])
disp([‘Flow velocity = ‘ num2str(FV)])
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