
Citation: Hodson, T.O.; Doore, K.J.;

Kenney, T.A.; Over, T.M.; Yeheyis, M.B.

Ratingcurve: A Python Package for

Fitting Streamflow Rating Curves.

Hydrology 2024, 11, 14. https://

doi.org/10.3390/hydrology11020014

Academic Editor: Pingping Luo

Received: 4 January 2024

Accepted: 14 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

hydrology

Communication

Ratingcurve: A Python Package for Fitting Streamflow
Rating Curves
Timothy O. Hodson 1,* , Keith J. Doore 2 , Terry A. Kenney 3 , Thomas M. Over 4 and Muluken B. Yeheyis 5

1 U.S. Geological Survey Water Resources Mission Area, Urbana, IL 61801, USA
2 U.S. Geological Survey Central Midwest Water Science Center, Iowa City, IA 52240, USA; kdoore@usgs.gov
3 U.S. Geological Survey Water Resources Mission Area, West Valley City, UT 84119, USA; tkenney@usgs.gov
4 U.S. Geological Survey Central Midwest Water Science Center, Urbana, IL 61801, USA; tmover@usgs.gov
5 Environment and Climate Change Canada, 351 Saint-Joseph Boulevard, Gatineau, QC K1A PH3, Canada;

muluken.yeheyis@ec.gc.ca
* Correspondence: thodson@usgs.gov

Abstract: Streamflow is one of the most important variables in hydrology, but it is difficult to measure
continuously. As a result, nearly all streamflow time series are estimated from rating curves that
define a mathematical relationship between streamflow and some easy-to-measure proxy like water
surface elevation (stage). Despite the existence of automated methods, most rating curves are still fit
manually, which can be time-consuming and subjective. Although several automated methods exist,
they vary greatly in performance because of the non-convex nature of the problem. In this work,
we develop a parameterization of the segmented power law that works reliably with minimal data,
which could serve operationally or as a benchmark for evaluating other methods. The model, along
with test data and tutorials, is available as an open-source Python package called ratingcurve. The
implementation uses a modern probabilistic machine-learning framework, which is relatively easy to
modify so that others can improve upon it.

Keywords: rating curve; stage-discharge relation; Bayesian inference; uncertainty; Manning’s formula

1. Introduction

Streamflow time series are widely used in hydrologic research, water resource manage-
ment, engineering design, and flood forecasting, but they are difficult to measure directly.
In nearly all time-series applications, streamflow is estimated from rating curves or “ratings”
that describe the relation between streamflow and an easy-to-measure proxy, like stage. The
shape of the rating is specific to each streamgage and is governed by channel conditions at
or downstream from the gage, referred to as controls. Section controls, like natural riffles
or artificial weirs, occur downstream from the gage, whereas channel controls, like the
geometry of the banks, represent conditions along the entire stream reach (the upstream
and downstream vicinity of the gage). Regardless of the type, the behavior of each control
is often well-approximated with standard hydraulic equations that take the general form of
a power law with an offset parameter

q = C(h − h0)
b (1)

where q is the discharge (streamflow); h is the height of the water above some datum (stage);
h0 is the stage of zero flow (the offset parameter); (h − h0) is the hydraulic head; b is the
slope of the rating curve when plotted in log-log space; and C is a scale factor equal to the
discharge when the head is equal to one [1]. When multiple controls are present, the rating
curve is divided into segments with one power law corresponding to each control resulting
in a multi-segment or compound rating.

Although automated methods exist, most ratings are still fit manually using a graphical
method of plotting stage and discharge in log–log space. With the appropriate location
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parameter, each control can be fit to a straight-line segment in log space [1,2]. Variants of
this method have been used for decades, first with pencil and log paper and now with
computer-aided software. However, the fitting process is still done manually by adjusting
parameters to achieve an acceptable fit.

Single-segment ratings are easily fit by automated methods [3], but compound ratings
are more challenging because their solution is non-convex or multimodal [4]. As a result,
optimization algorithms can become stuck in local optima and fail to converge to the global
optimum. General function approximators, such as natural splines [5] or neural networks,
are sometimes able to avoid these calibration issues; however, their generality comes at the
cost of requiring more data to constrain their greater flexibility and prevent overfitting. In
contrast, power-law rating models are based on the hydraulic equations governing uniform
open-channel flow, like the Manning Equation [6]. Due to that physical basis, power laws
are potentially more robust than other generic curve-fitting functions, requiring less data to
achieve the same fit and being less prone to overfitting.

Several models for fitting rating curves already exist. Some, like power laws, are
physics-based in that their structure corresponds to the governing hydraulic equations [7,8];
some are more data-driven with more flexible structures like splines [5] or local regres-
sion [9]; and some are a hybrid of the two [10]. Each style of parameterization comes with
tradeoffs: physics-based parameterizations require less data but may be non-convex, which
makes them challenging to fit, whereas data-driven approaches are easier to fit but require
more data (e.g., [5]). However, different algorithms may achieve different tradeoffs in this
regard, and it is not obvious which approach is best. Existing physically-based param-
eterizations tend to use Bayesian sampling algorithms as opposed to optimization [11]
and incorporate priors (to constrain the solution domain), both of which can help with
non-convex fitting problems. Examples of priors include constraining the exponent b
to be around 5/3, constraining the number of rating segments, or constraining the tran-
sitions between segments around a particular stage. Being Bayesian, these algorithms
inherently estimate uncertainty in the fitted parameters and discharge, which is important
for many applications. However, many of these physically-based parameterizations differ
in their exact formulation, which, because of their non-convex nature, can greatly affect
their performance.

In this paper, we develop a parameterization approximating the classic segmented
power law used in most manual methods. Our implementation distinguishes itself by:

• Estimating the optimal locations of breakpoints, as well as the number of segments;
• Accounting for uncertainty in the measurements and the rating model;
• Fitting with minimal data;
• Using similar assumptions to current operational methods;
• Using a community-developed probabilistic programming library;
• Having an easy-to-use Python package with documentation, tutorials, and test datasets.

Together, these qualities make our implementation well-suited for operational use and
could make it a standard against which to benchmark new and existing methods.

2. Parameterization

Our parameterization of the rating curve uses a segmented power law, similar to classic
manual methods [1,2], as well as some automated methods [7,8]. However, these methods
differ in their parameterizations, which can greatly affect their performance because of the
non-convex nature of the optimization. As a result, some methods may require substantially
more data or constraints to achieve an acceptable fit. For example, the Reitan and Petersen-
Øverleir [7] parameterization slices the channel cross-section horizontally to form each
segment, such that segments stack one on top of the other. Once the stage rises beyond
the range of a particular control, that control is “drowned out” and flow through that
segment ceases to increase with stage. The Le Coz et al. [8] parameterization can slice the
cross-section horizontally or vertically but differs in that the segments are summed after
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transforming them back to their original scale, whereas Reitan and Petersen-Øverleir [7]
sum the segments in log.

The ratingcurve package implements several parameterizations, but after testing,
one seemed especially reliable and simple, which we adopted as our benchmark method,
that of slicing the channel cross-section vertically into control segments (so controls never
drown out) and summing them in log, which is somewhat like a ReLU (rectified linear
unit) neural network with hydraulic controls as neurons. This parameterization, which is
denoted in matrix and vector notation (i.e., bold upper (lower) case variables are matrices
(vectors) and unbolded variables are scalars), is given by

X = ln(max(h − hs, 0) + ho) (2)

ln(q) = a + bTX + ϵ + ϵo (3)

where h is vector of n stage observations; hs are the m unknown segment breakpoints;
the first of which is the stage of zero flow (i.e., h when q ≈ 0); max is the element-wise
maximum, which returns a n×m matrix; ho is a vector of m offsets with the first value being
0 and the rest being 1, which ensures that additional segments never subtract discharge
(hs and ho are broadcast to m × n matrices); q are discharge measurements corresponding
to each h measurement; a is a bias parameter equal to log(C), the scale factor; b0 is the
slope of the log-transformed segment; bi are cumulative b are the slopes adjustments of
each log-transformed segment (so the slope of the mth segment is ∑m

i=1 bi); ϵ is a scalar
giving the residual error; and ϵo is the uncertainty in each discharge observation (optional).
Operations combining matrices and vectors use standard broadcasting rules. For example,
when subtracting a length-m vector from a n × m matrix, the vector is repeated n times to
match the dimensions of the matrix.

The default priors and settings are documented in the ratingcurve package; in gen-
eral, they do not need to be modified. In addition to selecting the number of segments,
the user can specify a prior distribution on the breakpoints. The default assumes the
breakpoints are monotonically ordered and uniformly distributed across the range of the
data, hs,1 < min(h) < hs,2 < · · · < hs,nsegments < max(h). Alternatively, the user can specify
approximate locations for each breakpoint and their uncertainty as normal distributions.

Uncertainty in the discharge observations is typically reported as a standard error (SE)
or relative standard error (RSE, where RSE = SE/q). For convenience, we convert that
standard error to a geometric error as ϵo ∼ N(0, ln(1 + RSE)2). For small uncertainties, the
difference between the RSE and geometric error is negligible, and for large uncertainties, it
is not known which error model is more accurate. Like Reitan and Petersen-Øverleir [7],
we assume ϵ is normally distributed with mean zero and variance σ2, ϵ ∼ N(0, σ2). That
simplification can create unaccounted heteroscedasticity [12] but generally yields a reason-
able estimate for the rating and its uncertainty.

3. Calibration

The algorithm uses PyMC [13], an open-source Python library for Bayesian statistical
modeling and probabilistic machine learning. Using PyMC, the core model can be expressed
in several lines of code, making it easier to extend or modify, like changing the priors, the
parameterization of the rating curve, or the inference algorithm to achieve different tradeoffs
of speed and accuracy. This paper demonstrates two inference algorithms: Automatic
Differentiation Variational Inference (ADVI) [14] and Hamiltonian Monte Carlo with the
No-U-Turn Sampler (NUTS) [15]. ADVI is a Bayesian optimization algorithm, whereas
NUTS is a Markov chain Monte Carlo (MCMC) sampling algorithm. In general, MCMC
sampling is slower than optimization but better for non-convex problems [11].

4. Usage

The Data availability section provides links to the Python package and source code
repository, which includes additional documentation and tutorials. Here, we demonstrate
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the most basic usage, with additional examples provided in Appendix A. Given obser-
vations of discharge (q), stage (h), and, optionally, the standard error of the discharge
observations (e), a two-segment rating is fit with

rating = PowerLawRating(segments=2)
rating.fit(q, h, e, method="advi")
rating.plot()

and produces a plot like Figure 1.
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Figure 1. Two-segment rating curve, with 95-percent prediction interval, for the Green River near
Jensen, Utah (U.S. Geological Survey streamgage 09261000); generated by rating.plot() and fit
using ADVI. The circles with error bars show the discharge observations and their uncertainty.
Horizontal dotted lines show the segment breakpoints and their 95-percent prediction intervals.

A rating curve fit can also be exported as a table for use by other applications, as
illustrated in Table 1. In addition to the mean discharge for each stage, the table gives the
median and geometric standard error (GSE), which measures the dispersion of a log-normal
distribution,

GSE = exp

√√√√ 1
p − 1

p

∑
i=1

(
ln

q̂i
q̄

)2

= exp(std(ln(q̂))), (4)

where q̂ is a vector containing p samples from the modeled posterior distribution for
discharge at a given value of stage. The GSE is then multiplied and divided by the median
to estimate prediction intervals [16].

Table 1. Rating table generated by rating.table(). Units are feet (ft) and cubic feet per second
(ft3 s−1); geometric standard error (GSE) is a unitless factor.

Mean Median
Stage Discharge Discharge GSE

ft ft3 s−1 ft3 s−1 -

2.20 1376.14 1376.16 1.0107
2.21 1388.27 1388.27 1.0107
2.22 1400.41 1400.40 1.0107
2.23 1412.57 1412.55 1.0106
2.24 1424.74 1424.73 1.0106
. . . . . . . . . . . .
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5. Benchmarking Results

We compared the performance of our segmented power law against a log-transformed
natural spline and the generalized power law model with constant variance (GPLM) [10]
using a simulated three-segment rating curve. The spline is an example of a simple data-
driven model, whereas the GPLM is a hybrid of data-driven and physics-based approaches.

All of the models use log transformations, which helps with heteroscedasticity, and
can approximate complex functions like a multi-segment rating curve [5]. Unlike the spline,
the power laws have a physical basis: their parameters can have physical interpretations,
like the stage of zero flow, and their structure is similar to standard hydraulic equations,
like the formulas of Manning and Chézy [10]. However, segmented power laws are also
notoriously difficult to calibrate [5,7], and the model performance depends, in large part, on
the parameterization as well as its priors. If the calibration challenges are overcome, physics-
based models should yield high-quality fits with fewer observations [7]. Conceptually, the
segmented power law optimization searches for ways to transform the observations such
that each rating segment can be approximated by a straight line in log space. Therefore, an
optimal parameterization requires only two observations per rating segment. Our power-
law parameterization achieves that criterion, fitting three segments with six observations.

Each model was benchmarked against observations generated from a simulated a
three-segment rating curve. The simulated cross section consists of a control section resem-
bling an obtuse angled weir, a rectangular main channel, and a floodplain. Figure 2 shows
a side-by-side comparison of each model fit with 6, 12, 24, and 48 randomly selected stage-
discharge observations. For best accuracy, the curves were fit using MCMC algorithms (in
the case of our power law and the spline, we used NUTS). In the fits to our segmented
power law and the spline, we also specified that the power law had three segments and
that the spline had eight degrees of freedom, the same as the power law (one bias, three
offsets, three slopes, and one uncertainty). Otherwise, default settings were used.

Relative to our segmented power law, the natural spline fit 5–20× faster but yielded
poorer fits, particularly when n = 6 (Figure 2). Reducing the degrees of freedom might
improve performance when n = 6 but also sacrifices flexibility when n = 48.

In general, the accuracy of data-driven approaches is highly dependent on the avail-
ability of data. For example, Coxon et al. [9] recommend a minimum of 20 stage-discharge
measurements for their data-driven approach. Taken over the lifetime of a streamgage,
20 measurements may be manageable. However, ratings shift through time from erosion,
deposition, vegetation growth, debris/ice jams, etc. [17,18], and it may be impracticable to
collect 20 measurements between each shift. Furthermore, when applied to historical data,
it is impossible to collect additional observations. In either case, a physical parameterization
may be necessary to achieve an acceptable fit from limited data.

By comparison, the power law yielded a good fit with six observations—two fewer
than the number of model parameters. Our intent is not to disparage all splines—both
parameterizations are technically splines. Rather, we wanted to demonstrate a classic
tradeoff between being ease-of-fit and accuracy, which is a characteristic of data-driven and
physical approaches.

This paper focuses on one parameterization of the classic multi-segment power law,
but others might achieve better tradeoffs of speed and accuracy for certain situations. For
example, our comparison uses NUTS, which is accurate but slow. With six observations,
NUTS fit the three-segment power law in around 10 min. With 48 observations, NUTS
completed in 1 min; a 10× speedup. In general, stronger priors, more observations, or fewer
segments would reduce that time. By comparison, ADVI generally achieved a NUTS-like
fit in several seconds, but it occasionally failed to converge on the optimum solution.

A better parameterization might yield better convergence with a faster inference
algorithm. More work could be done in this regard, but our current version seems fast
and reliable enough for operational use and could serve as a benchmark for testing other
methods. For example, on the same simulated test, the GPLM and segmented power law
yielded similar fits, but the GPLM was substantially faster than NUTS. Notably, neither our
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model nor the GPLM address shifts in the rating curve through time or hysteresis. Such
limitations could, in theory, be addressed, and any such effort will depend, in part, on
building from a good starting parameterization.

n=6 n=12 n=24 n=48

n=6 n=12 n=24 n=48

n=6 n=12 n=24 n=48

Discharge

St
ag

e

Figure 2. Our segmented-power law model (top), a natural spline (middle), and generalized power
law model [10] (bottom) fit with different numbers of observations (n). The dashed red line is the true
rating curve and the circles are the simulated observations. Horizontal dotted lines show segment
breakpoints, knot locations, and stage of zero flow for the models, respectively. The shaded regions
depict 95-percent prediction intervals for the rating and breakpoints.

6. Conclusions

Despite the existence of automated methods, most stage-discharge rating curves are
still fit manually. Although the governing hydraulic equations are relatively simple and
well-understood, they are notoriously difficult to solve for multiple controls. Among the
automated methods, no parameterization has emerged as the standard, and functionally
equivalent parameterizations may vary greatly in performance. In the best case, a seg-
mented power law can fit a stage-discharge rating with two observations per rating segment.
Our parameterization achieves that, fitting a three-segment rating with six observations.
Furthermore, our relatively simple parameterization, use of a community-developed prob-
abilistic programming library, and packaging provide a benchmark for operationalizing
automated methods that could promote more widespread use, testing, and refinement by
the hydrologic community.
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USGS United States Geological Survey

Appendix A. Additional Examples

This appendix shows rating curves fit to example datasets collected by USGS or taken
from other studies [10,20], all of which are included in the ratingcurve package (Table A1
and Figure A1). The examples have one to three segments, some have uncertainty in the
discharge observations, and some do not. The Green River and Three-Segment Simulated
datasets were also used in the main text. For the Three-Segment Simulated dataset, ADVI
and NUTS sometimes yielded different breakpoints. Visual inspection of the plot gives a
good indication of whether ADVI converged to the optimal solution. In such cases, the
user may try refitting with ADVI or use NUTS. Adjusting the initialization could help to
mitigate this problem, but this occasionally introduced other undesirable effects, so the
current version uses a simple initialization.

Table A1. Test datasets included in the ratingcurve package.

Dataset Data Source

Chalk Creek, USA USGS streamgage 10131000
Colorado River, USA USGS streamgage 09185600

Green River, USA USGS streamgage 09261000
Provo River, USA USGS streamgage 10154200

Three-Segment Simulated This study
Mahurangi River, New Zealand Kiang et al. [20]

Nordura River, Iceland Hrafnkelsson et al. [10]
Skajalfandafljot River, Iceland Hrafnkelsson et al. [10]

Isére River, France Kiang et al. [20]

https://github.com/thodson-usgs/ratingcurve
https://github.com/thodson-usgs/ratingcurve
https://code.usgs.gov/wma/uncertainty/ratingcurve
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Figure A1. Example datasets fit with our segmented power law using default priors and ADVI. The
circles with error bars show the observations and their uncertainty. Circles without error bars are
observations without uncertainty information. Horizontal dotted lines show the segment breakpoints
and their prediction intervals.
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