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Abstract: The fidelity of the decadal experiment in Coupled Model Intercomparison Project Phase-5
(CMIP5) has been examined, over different climate variables for multiple temporal and spatial scales,
in many previous studies. However, most of the studies were for the temperature and temperature-
based climate indices. A quite limited study was conducted on precipitation of decadal experiment,
and no attention was paid to the catchment level. This study evaluates the performances of eight
GCMs (MIROC4h, EC-EARTH, MRI-CGCM3, MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM,
and CanCM4) for the monthly hindcast precipitation of decadal experiment over the Brisbane River
catchment in Queensland, Australia. First, the GCMs datasets were spatially interpolated onto a
spatial resolution of 0.05 × 0.05◦ (5 × 5 km) matching with the grids of observed data and then were
cut for the catchment. Next, model outputs were evaluated for temporal skills, dry and wet periods,
and total precipitation (over time and space) based on the observed values. Skill test results revealed
that model performances varied over the initialization years and showed comparatively higher
scores from the initialization year 1990 and onward. Models with finer spatial resolutions showed
comparatively better performances as opposed to the models of coarse spatial resolutions, where
MIROC4h outperformed followed by EC-EARTH and MRI-CGCM3. Based on the performances,
models were grouped into three categories, where models (MIROC4h, EC-EARTH, and MRI-CGCM3)
with high performances fell in the first category, and middle (MPI-ESM-LR and MPI-ESM-MR)
and comparatively low-performing models (MIROC5, CanCM4, and CMCC-CM) fell in the second
and third categories, respectively. To compare the performances of multi-model ensembles’ mean
(MMEMs), three MMEMs were formed. The arithmetic mean of the first category formed MMEM1,
the second and third categories formed MMEM2, and all eight models formed MMEM3. The
performances of MMEMs were also assessed using the same skill tests, and MMEM2 performed best,
which suggests that evaluation of models’ performances is highly important before the formation
of MMEM.

Keywords: CMIP5; decadal; precipitation; prediction; catchment; multi-model

1. Introduction

The evaluation of General Circulation Models (GCMs) has become a very important
task to measure the models’ uncertainty in future prediction of climate variables. Com-
parison of models predicted historical data with their corresponding observed values
determines how well the GCMs represent historical climate and thus forms an integral part
of the confidence-building exercise for climate predictions. It is assumed that the better
performance of models over the historical period leads to developing more confidence in
their future predictions. As the GCMs are used to explore the future climate variabilities
and potential impacts on the Earth, assessment of GCMs has been a growing need in the
climate research community. However, depending on the requirements, available resources,
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geographical locations, and variables considered to assess the model performances, as-
sessment strategies become different. Since the change of climate and its potential impact
on this planet varies from region to region, it is important to evaluate the models based
on different regions and spatial scales though the evaluation of climate models and their
ensembles is crucial in climate studies [1]. Research on regional or local climate variability
and their potential impacts are high in demand for transferring research-based scientific
knowledge to increase the resilience of society to climate change. This will help in planning
the future development of the infrastructures of a region [2].

Coupled Model Intercomparison Project Phase-5 (CMIP5) provides an unprecedented
collection of global climate data of different time scales including decadal experiments that
were produced by a wide range of GCMs [3]. Evaluation of CMIP5 decadal prediction
has been run so far based on different evaluation aspects such as different regions, differ-
ent climate variables, and their different spatial and temporal resolutions. For instance,
Choi et al. [4] investigated the prediction skill of CMIP5 decadal hindcast (“hindcast” is a
methodological approach used to recreate and analyze past weather or ocean conditions,
and model-generated historical data are termed as hindcast data) near-surface air tempera-
ture for the global scale, while other researchers have investigated other climate variables
on continental or regional scales [5–7]. Lovino et al. [5] evaluated decadal hindcast pre-
cipitation and temperature over northern Argentina and reported higher skills of models
to reproduce the temperature as opposed to precipitation, where precipitation skills were
found remarkably lower. Mckeller et al. [6] investigated the decadal hindcast maximum
and minimum temperature over the state of California and reported the best-performing
model. Likewise, Gaetani and Mohino [7] evaluated model performances to reproduce Sa-
helian precipitation and reported better-performing models. However, these studies were
for different geographical locations with coarser spatial resolutions for considered variables.
For instance, the spatial resolution of models used by Kumar et al. [2] and Choi et al. [4]
was 2.5◦, Gaetani and Mohino [7] used models of more than 1.1◦, and Lovino et al. [5]
used precipitation data of 1.0◦ spatial resolution. At a regional level, Mehrotra et al. [8] as-
sessed the multi-model decadal hindcast of precipitation for different hydrological regions
over Australia using 0.5◦ spatial resolution and reported lower skills for precipitation as
opposed to temperature and geopotential height. Climate data of 0.5◦ spatial resolution
cover a ground area equivalent to a square of 50 km length over the Australian region.
Comparatively, a 50 × 50 km area is very big where climate variabilities are also large and
frequency and magnitude of precipitation vary in a few kilometers (such as in Australia).
As the precipitation shows more spatial and temporal variability than temperature and the
model performances vary from region to region, the model performances at the local level
for finer spatial resolution are essential for precipitation.

Numerous studies have evaluated CMIP5 models over Australia [1,8–11], but studies
on evaluating CMIP5 decadal precipitation at catchment scale can hardly be found. After
Mehrotra et al. [8], who assessed the CMIP5 decadal hindcast precipitation over different
hydrological regions (0.5◦ × 0.5◦) in Australia, Hossain et al. [12,13] recently used the
CMIP5 decadal precipitation at a further finer resolution of 0.05◦ × 0.05◦ (5 × 5 km) for the
Brisbane River catchment in Australia for the first time. Hossain et al. [12,13] compared the
model performances for investigating the model drift and their subsequent correction using
alternative drift correction methods for both the monthly and seasonal mean precipitation.
However, they compared the model performances at a single grid point within the Brisbane
River catchment. On the contrary, Mehrotra et al. [8] used only a multi-model approach
but did not consider individual models finer than 0.5◦ spatial resolution. Local climate
variables of finer temporal and spatial resolution, especially for precipitation, are very
important for water managers for planning and developing infrastructures, as well as
decision-making for local businesses and agriculture. To maintain sustainable development
with effective future planning based on the models’ projected precipitation, it is important
to evaluate the performance of the CMIP5 models’ hindcast precipitation.
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Many researchers have suggested using MMEM [14–17] while using GCM data to
reduce the model biases. The use of MMEM may enhance the model performances [2,18]
by reducing the biases to some extent, but there is no information available on the ranking
of GCM models and, based on this, which and how many models should be considered to
produce MMEM so that it could provide better outcome. This is essential for CMIP5 decadal
precipitation because of its wide range in spatial and temporal variability in providing the
model output 10 years ahead. That is why the objective of this paper is, first, to categorize
the models based on their performances at the catchment level with a spatial resolution of
0.05◦ and, next, to identify the best combination of different models that would provide
better performance. This would help the water managers and policymakers to sort out
models depending on their specific needs while assessing the future water availability
based on the GCMs-derived precipitation on a decadal scale through CMIP5.

2. Study Area

In this study, the Brisbane River catchment (Figure 1) in Queensland was selected as
the study area, which is located in the eastern states of Australia between the latitudes
26.50 S~28.150 S and the longitudes 151.70 E~153.150 E. It has an area of 13,549 square
kilometers and a sub-tropical climate where most of the precipitation occurs during summer
(December–January–February) and minimum precipitation in winter (June–July–August).
From the monthly observed gridded precipitation (1911–2015) over the Brisbane River
catchment, it was found that the monthly precipitation varied from nil to 1360 mm with
an annual average precipitation of 628 mm, and the number of upper and lower extremes
were not quite small. The Brisbane catchment was selected because of its tropical climate
nature with low to moderate yearly precipitation variability.
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3. Data Collection and Processing
3.1. Data Collection

The CMIP5 decadal experiment provides 10-and 30-year-long ensemble predictions
from multiple modeling groups (henceforth mentioned as CMIP5 decadal hindcasts [19]).
For monthly decadal hindcasts precipitation from eight GCMs (out of ten)—MIROC4h, EC-
EARTH, MRI-CGCM3, MPI-ESM-MR, MPI-ESM-LR, MIROC5, CMCC-CM, and CanCM4—
decadal hindcast precipitation were downloaded from the CMIP5 data portal (https://esgf-
node.llnl.gov/projects/cmip5/ accessed on 20 June 2018). The other two models, HadCM3
(spatial resolution 3.75 × 2.5◦) and IPSL-CM5A-LR (spatial resolution 3.75 × 1.89◦), were

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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not considered in this study because of their relatively coarser spatial resolution and
different calendar system (HadCM3). For the initialized period 1960–2005, data simulated
over 10 years, which were initialized every 5 years during this period, were selected for
this study as they were found comparatively better than the 30-year simulation [20]. The
details of the selected models are given in Table 1.

Table 1. Selected models with the initialization year 1960–2005.

Model Name
(Modelling Center or Group)

Resolutions: ◦ lon × ◦ lat

Initialization Year (1960–2005)
60 65 70 75 80 85 90 95 00 05

Number of Ensembles

EC-EARTH
(EC-EARTH Consortium)

1.125 × 1.1215
14 14 14 14 14 14 14 14 10 18

MRI-CGCM3
(Meteorological Research Institute)

1.125 × 1.1215
06 08 09 09 06 09 09 09 09 06

MPI-ESM-LR
(Max Planck Institute for Meteorology)

1.875 × 1.865
10 10 10 10 10 10 10 10 10 10

MPI-ESM-MR
(Max Planck Institute for Meteorology)

1.875 × 1.865
03 03 03 03 03 03 03 03 03 03

MIROC4h
(AORI-Tokyo University, NIES and JAMEST)

0.5625 × 0.5616
03 03 03 06 06 06 06 06 06 06

MIROC5
(AORI-Tokyo University, NIES and JAMEST)

1.4062 × 1.4007
06 06 06 06 04 06 06 06 06 06

CanCM4
(Canadian Centre for Climate Modelling and

Analysis)
2.8125 × 2.7905

20 20 20 20 20 20 20 20 20 20

CMCC-CM
(Centro Euro-Mediterraneo per I

Cambiamenti Climatici)
0.75 × 0.748

03 03 03 03 03 03 03 03 03 03

The observed gridded monthly precipitation of 0.050 × 0.050 (≈5 × 5 km) was col-
lected from the Australian Bureau of Meteorology (Observed/Bureau). This data were
produced using the Australian Water Resources Assessment Landscape model (AWRA-L
V5) [21].

3.2. Data Processing

The GCMs’ resolutions (100–250 km) were found inadequate for regional studies due
to a lack of information at the catchment levels [22–24]. The regional climate model (RCM)
was useful to transfer the coarse spatial GCMs’ data to the local scale, but it needs a wide
range of climate variables as well as rigorous efforts to develop. For this reason, GCMs data
were spatially interpolated onto a 0.05 × 0.05◦ spatial resolution using the second-order
conservative (SOC) method matching with the grids of observed data. For the gridded
precipitation data, the SOC method was found comparatively better than other commonly
used spatial interpolation methods [25]. Skelly and Henderson-Sellers [26] suggested
GCM derive gridded precipitation to consider as areal quantities, and spatial interpolation
will not create any new information except the spatial precision of the data. Skelly and
Henderson-Sellers [26] also suggested that researchers could subdivide the grid box in
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almost any manner until the original volume remains the same. On the contrary, Jones [27]
suggested that precipitation flux must be remapped in a conservative manner to maintain
the water budget of the coupled climate system. While sub-gridding the GCM data using
the SOC method, it conserves precipitation flux from their native grids to subsequent
grids [27]. For this reason, this study used the SOC method for spatial interpolation as it
was followed in other research [13].

4. Methodology

A simple and direct approach for the model evaluation is to compare the model output
with the observations and analyze the differences. In this study, models were evaluated for
temporal skills, dry and wet periods, and total precipitation based on the observed values.
The meaning of the temporal skills and their descriptions are given below. Here, CC, ACC,
and IA are used to measure the temporal skills, FSS are used to measure the skills over
dry and wet periods, and field-sum and total-sum are used to measure the skills for total
precipitation. There are 496 grids in the Brisbane River catchment with a spatial resolution
of 5.0 × 5.0 km.

4.1. Correlation Coefficient (CC)

CC measures the linear association and presents the scale of temporal agreement
between predicted and observed values. Statistically, it measures how much closer the
scatter plot points to a straight line. The CC ranges from −1 to 1 for no to perfect correlation,
respectively.

CC =
∑
(

Fi − F
)(

Oi − O
)√

∑
(

Fi − F
)2
√

∑
(
Oi − O

)2
(1)

Here, F and F, represent models’ predicted and their mean value, whereas O and
O represent observed precipitation and their mean, respectively. In the following skill
tests, these notations will remain the same. Note that the mean was calculated for every
individual year.

4.2. Anomaly Correlation Coefficient (ACC)

ACC was suggested by Wilks [28] to measure the temporal correlation between anoma-
lies of the observed and predicted values. For the verification of numerical weather mod-
els’ prediction, ACC is frequently used. Its value ranges from −1 to 1 for no to perfect
anomaly matching.

ACC =
∑
{
(Fi − C)−

(
F − C

)}
∗
{
(Oi − C)−

(
O − C

)}√
∑(Fi − C)2

√
∑(Oi − C)2

(2)

Here, C represents the mean of the entire timespan (10 years) of the observed (Bureau)
data. The higher value of ACC will indicate the higher performance in reproducing the
monthly anomalies.

4.3. Index of Agreement (IA)

Wilmot [29] suggested IA to measure the accuracy of predictions. The index of
agreement can be calculated as follows.

IA = 1 − ∑n
i=1(Fi − Oi)

2

∑n
i=1

( ∣∣Fi − O
∣∣+ ∣∣Oi − O

∣∣)2 (3)

The index is bounded between 0 and 1 (0 ≤ IA ≤ 1). The value closer to 1 indicates
the most efficient predicting of the models.
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4.4. Fractional Skill Score (FSS)

FSS is a grid-box event that directly compares the fractional coverage of models’
predicted and observed values for the entire catchment. It measures how the spatial
variability of models’ predicted values corresponds to the spatial variability of the observed
values. FSS can be obtained as:

FSS = 1 −
1
N ∑N

(
Pf ,m − Pf , o

)2

1
N

[
∑N P2

f ,m + ∑N P2
f , o

] (4)

where Pf and N refer to calculated fraction and number of years, respectively. The subscript
m and o present the modeled and observed fractions, respectively. In this study, fractions
were calculated according to Roberts and Lean [30], but the entire catchment was considered
as a whole unit, and the temporal averages (for considered months) were taken instead
of the spatial averages. For doing this, threshold values; ≥85 percentile for the months of
wet seasons (December to February—DJF) and <15 percentile for the months of the dry
seasons (June to August—JJA) were considered. To obtain the fractions (say, for January),
the number of grid points covered for a specified threshold value was counted and then
divided by the total number of grids within the catchment. The differences between
the predicted and observed fractions (the numerators of Equation (4)) were calculated
for individual months. The FSS is a temporal average score for the catchment for each
considered month. It ranges from 0 to 1 for no to perfect match respectively.

4.5. Field-Sum and Total-Sum

The models’ ability to reproduce the total precipitation over the entire catchment was
considered as the spatial skills of the models. Field-sum is the sum of precipitation over
the entire catchment for individual time steps, and the total-sum is the field-sum over the
total timespan. Field-sum and total-sum of the models’ precipitation were compared with
the corresponding observed values.

5. Results and Analysis
5.1. Temporal Skills

The temporal skills are computed at every individual grid (total 496 grids) of the
catchment for all initialization years of each model. Spatial variations of models’ temporal
skills across the catchment for the initialization year 1990 (1991–2000) are presented in
Figure 2. The models were evaluated from the spatial perspective by counting the number
of grids covered by different models for different threshold values of CC, ACC, and IA,
as shown in Figure 3. The higher number of grids represents the higher spatial skill of
models across the catchment. From the comparison of temporal skills, it is evident that
model performance varied over the initialization years and across the catchment. From the
initialization year 1990 and onward, all models showed a comparatively higher number of
grids for the same thresholds of CC, ACC, and IA, and the lowest skill was observed in 1980.
With the increase of threshold values, the number of grids declined for all models in all
three temporal skills except CMCC-CM and MIROC5 in ACC. Compared to other selected
models, MIROC4h, EC-EARTH, and MRI-CGCM3 showed a higher number of grids for
all thresholds in which MIROC4h was much ahead of EC-EARTH and MRI-CGCM3. This
means that the temporal agreement, the resemblance of anomalies, and the prediction
accuracy of MIROC4h and EC-EARTH were spatially higher than the other models. This
study also checked the number of grids for the threshold ≥ 0.6 for CC and ACC but no
model could reproduce CC and ACC ≥ 0.6 at any grid. However, MIROC4h, EC-EARTH,
and MRI-CGCM3 showed a significant number of grids for the IA threshold ≥ 0.6, where
MIROC4h outperformed EC-EARTH and MRI-CGCM3 (Figure 3). Comparing the models,
MIROC4h showed higher temporal skills from the spatial perspective, followed by EC-
EARTH and MRI-CGCM3, while MPI-ESM-MR, MIROC5, and CMCC-CM showed the low
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to lowest temporal skills. Over the catchment MIROC5, MPI-ESM-MR, CanCM4 showed
comparatively better scores than CMCC-CM.
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5.2. Evaluation for Dry and Wet Periods

Skills to reproduce the dry and wet events were assessed at the selected grid and
over the entire catchment. For the selected grid, all months were considered against four
different thresholds (25th, 50th, 75th, and 90th percentiles correspond to 25, 60, 110, and
175 mm, respectively), whereas for the entire catchment, FSS were used for the months of
dry (JJA) and wet (DJF) periods only.

5.2.1. At the Selected Grid

A comparison to reproduce the dry and wet events based on the selected precipitation
thresholds at the selected grid is presented in Figure 4. This comparison was based on
the ratio of the number of months of respective precipitation thresholds (mentioned on
the top of the individual plot in Figure 4) in the model data to the observed data. It was
observed that EC-EARTH and MIROC5 could reproduce no dry events (Pr ≤ 25 mm), while
CMCC-CM overestimated the number of dry events to be almost double the dry events in
the observed data. Meanwhile, MIROC4h performed better to produce dry events, showing
50th and 75th percentile values compared with the other models. However, MIROC4h was
a little behind the MPI-ESM-MR for the extreme wet events (Pr ≥ 175 mm). This means
MPI-ESM-MR can reproduce extreme wet events better than the other models. EC-EARTH,
MPI-ESM-LR, and MPI-ESM-MR underestimated the events of threshold Pr ≤ 60 mm,
whereas these models overestimated the wet events (Pr ≥ 110 mm), which is an indication
of the models’ tendency to reproduce a higher number of wet events than opposed to dry.
However, MRI-CGCM3 performed similarly to MIROC4h in reproducing the number of
events for the threshold of ≤60 mm but underestimated the number of events thresholds
of ≥110 mm. To reproduce the extreme wet events (Pr ≥ 175 mm), all models showed
an underestimation, in which MPI-ESM-MR and MIROC4h showed considerably better
skills. The CMCC-CM and CanCM4 showed poorest and no skills, respectively, for extreme
wet events.
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Figure 4. Comparison of model skills to reproduce dry and wet events at a selected grid point.
Values 1.0 present perfect matching, while values below and above 1.0 present under- and over-
prediction, respectively.

5.2.2. Over the Entire Catchment

FSSs were calculated for the months of winter (dry) and summer (wet) seasons only.
FSS of all the initialization year of all models are shown in Figure 5. Results showed that
for the months of summer seasons (DJF), MRI-CGCM3 showed higher skills in December
and January but was a little behind EC-EARTH in February. On the contrary, CMCC-CM
showed the lowest skill in December but showed similar skills with other models in January
and February.
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However, except for the higher skill of MRI-CGCM3 and the lowest skill of CMCC-CM
in December, all other models showed similar skill scores with few variations in the winter
seasons. This indicates different models’ skills are almost similar to reproducing wet events.
In the dry season, MIROC5 showed the lowest skill, while EC-EARTH showed the higher
skill, which was even higher than MIROC4h and MRI-CGCM3. The FSSb15 scores of
EC-EARTH, MIROC4h, and MRI-CGCM3 were much better than the score obtained for
FSSa85. This reveals that these models are better for reproducing dry events as opposed to
wet events, and the reverse is true for MIROC5, MPI-ESM-MR, and CanCM4, respectively.

5.3. Evaluation for Total Precipitation
5.3.1. At the Selected Grid

To evaluate the model performances in reproducing the total precipitation, models’
cumulative (over time) precipitation at several randomly selected grids (evenly distributed
across the catchment) within the catchments and total precipitation over the entire catch-
ment were compared. The cumulative sum of monthly precipitation of different models at
the selected grid for different initialization years is presented in Figure 6. The models’ skills
showed both temporal and spatial variations in predicting accumulated precipitation, but
no model could reproduce the accumulated precipitation as observed. However, only a few
models (MIROC4h, MPI-ESM-LR, and MPI-ESM-MR) could reproduce the accumulated
precipitation close to the observed accumulation. Nevertheless, CMCC-CM, CanCM4,
and MRI-CGCM3 underestimated the accumulated precipitation, while EC-EARTH and
MIROC5 overestimated the accumulated values. With the change of grid locations, model
performances may change, but the relative performances among the models will remain
the same.

5.3.2. Over the Entire Catchment

For comparing the model performances on total precipitation over the entire catch-
ment, this study calculated the field-sum of the models and observed values then assessed
through the temporal skills as shown in Figure 7. The total-sum of the models and ob-
served values were also calculated and assessed through the ratio between model and
observed values (Figure 7). From the comparison, it was observed that the field-sum of
MIROC4h, EC-EARTH, and MRI-CGCM3 showed comparatively higher accuracy (IA),
temporal agreement (CC), and the resemblance of anomalies (ACC) with the field-sum of
the observed precipitation. The model performances on reproducing the total precipitation
varied over the initialization years (Figure 7d).

Before and after 1985, MRI-CGCM3 and MPI-ESM-MR showed comparatively better
resemblance with the observed total precipitation, followed by MIROC4h and EC-EARTH.
On the contrary, CMCC-CM showed the lowest performance to reproduce total-sum
precipitation throughout all initialization years. From the skill assessments, it was revealed
that the MIROC4h surpassed other models in almost all performance indicators, followed
by EC-EARTH and MRI-CGCM3, while MPI-ESM-LR and MPI-ESM-MR showed medium
skill scores. Lower skill scores were observed for MIROC5, CanCM4, and CMCC-CM,
respectively. MIROC4h was also marked as the best model to reproduce precipitation in
other studies [5,31], though these studies did not use the decadal experiments’ data. This
may be due to the finer resolution of the atmospheric component of MIROC4h, which has
enhanced its ability to capture the more realistic climate features [31,32] at the local level.

The overall skill assessment results revealed that all models showed comparatively
lower skills in the initialization years from 1960 to 1985 and better skills observed from the
initialization year 1990 and onward.
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5.4. Model Categorisation and Formulation of MMEM

Based on the skill comparisons, this study divided the models into three different
categories: Category-I, Category-II, and Category-III. While categorizing the models based
on their skills at the selected grid and over the catchment, MIROC4h, EC-EARTH, and
MRI-CGCM3 fell in the first category (Category-I), as they consistently performed in the top
three, and their performance metrics were found to be very close to each other. Similarly,
MPI-ESM-LR and MPI-ESM-MR were in the second (Category-II) category, as they showed
medium skill scores in all skill tests over the initialization years. Lastly, MIROC5, CanCM4,
and CMCC-CM fell in Category-III.

GCMs’ outputs indeed contain uncertainties and biases, which will cause a lower skill
score, but multi-model ensembles’ mean (MMEM) may enhance the models’ skills [2,13,17,18]
by reducing uncertainties [13,15–17]. In this study, the skill tests were employed on the
ensembles’ mean of individual models’ raw values (interpolated) only. Here, the arithmetic
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mean of multiple models is referred to as the MMEM. The performances of MMEMs were
also assessed based on the similar skill tests that were employed on individual models,
and the results are summarized below. To form the MMEMs, three different combinations
were considered. The arithmetic mean of Category-I models is referred to as first MMEM
(MMEM1), the arithmetic mean of the Category-I and Category-II models is referred to as
the second MMEM (MMEM2), and finally, the arithmetic mean of all models is referred to
as the third MMEM (MMEM3).
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5.5. Performance of MMEMs

The temporal skills at individual grids of the different thresholds, temporal skills
along with the ratios of the field-sum, and skill on reproducing dry and wet events of
different thresholds for MMEMs are presented in Figures 8–10, respectively. In general,
MMEMs showed better performance than the individual models for comparatively lower
thresholds of the performance metrics. For instance, the MIROC4h model showed the
highest number of grids for CC and ACC at the threshold 0.5 (Figure 3), but no MMEMs
could reproduce this number of grids at the same threshold (Figure 8). The same results
were also observed for IA at the threshold 0.6 (see Figure 8i), but for the lower thresholds,
MMEM2 showed better skill than MIROC4h in CC and ACC but not in IA. Among the three
combinations, MMEM2 surpassed the other two combinations in reproducing CC and ACC.
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Nevertheless, in the case of IA, MMEM2 was a little behind compared to MMEM1. Similar
results were evident for performance indicators obtained from the field-sum of MMEM
and the observed values (Figure 9), where MMEM2 showed the best performance for the
CC and ACC, but both MMEM2 and MMEM1 showed similar skills for IA. However, to
produce the dry and wet events, MMEMs showed lower performance as compared to the
individual models. For instance, MIROC4h, MRI-CGCM3, and MPI-ESM-MR captured
some dry events (Pr ≤ 25 mm) at the selected grid point (Figure 4), but no combination
could capture it (Figure 10), while for the wet events, MMEM showed very poor skills.
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Figure 10. Skill comparison of three MMEMs to reproduce dry and wet events at the selected grid
point. This comparison was based on the ratio, obtained from the number of months of the respective
precipitation thresholds (mentioned on the top of the individual plot) in the model data to the number
of months of observed values for different initialization years (Y-axis).

Meanwhile, MMEMs showed better performance indicators (CC, ACC, and IA) for the
total precipitation of the entire catchment (field-sum), which was even better than the indi-
vidual models. Nevertheless, MMEM was a little behind the MIROC4h and MRI-CGCM3
for the ratio of total-sum (sum over total time span and catchment) model combinations
over the corresponding observed values (see Figure 6).

6. Discussion

This study evaluated the performance of eight selected GCMs, contributed to CMIP5
decadal precipitation prediction, over Brisbane River catchment at 0.05-degree spatial
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resolution. For the evaluation, different skill metrics were employed from both temporal
and spatial perspectives. The models showed a wide range of performance scores over
the initialization years as well as across the catchments. This may have been due to the
differences in understanding of models on local climate features, the precipitation data of
finer temporal and spatial resolutions, or the combination of both.

Indeed, the model performances are dependent on the model assumptions or basic
principle on understanding the Earth’s climate system, its processes, and interactions
among atmosphere, oceans, land, and ice-covered regions of the planet. In addition to them,
decadal prediction skill also depends on the method of model initialization, and the quality
and coverage of the ocean observations [3]. Different initializations also may cause models’
internal variability, which is still open for further discussion. For the decadal prediction,
one of the most important aspects is the model drift and its correction [8]. However, to
evaluate the performance of models derived raw data, neither the drifts were investigated,
and no any drift correction methods were employed. The reason is that the drift correction
method itself may introduce additional errors that may not reflect the real performance
of the models [12,13]. Based on the understanding of physical, chemical, and biological
mechanisms of Earth’s systems, different modeling groups have come up with different
models with reproducing capabilities of climate variables that may vary over different
regions [4,33,34] and climate variables [2,35,36]. For instance, Kumar et al. [2] analyzed
the precipitation and temperature trends of the 20th century from 19 CMIP5 models and
reported that the models’ relative performances were better for temperature as opposed
to precipitation trends. Generally, models showed lower skill to simulate precipitation
than they did for temperature. This is because that the temperature was obtained from a
thermodynamic balance, while precipitation results were from simplified parameterizations
approximating actual processes (Flato et al. [1] and references therein). In addition, the
temporal and spatial scale (considered area) of the considered variables, including the
seasons of the year [18,37], may also be the reason for varying model performances. For
instance, few models can reproduce winter precipitation very well but others may not, and
vice versa. Likewise, Lovino et al. [5] evaluated CMIP5 model performances for decadal
simulation and concluded that both were the best models. They also suggested that the
MMEM could reproduce large-scale features very well but fail to replicate the smaller-scale
spatial variability of the observed annual precipitation pattern. These show clear evidence
that there is a spatial variation in the climate model performances across the globe as
they are developed by different organizations [38]. This study noticed the higher skills
in the initialization year of 1990 and onward, whereas lower skills were observed in the
initialization years from 1960 to 1985, but the reason behind the higher and lower skills
remains unknown. However, Meehl et al. [39] reported that the consequences of Fuego
(in 1974) and Pinatubo (1991) eruption degraded the decadal hindcasts skill of Pacific Sea
surface temperature in the mid-1970s and in the mid-1990s, respectively. Fuego was smaller
than Mount Pinatubo, and a lower degrade of skill in the mid-1970s and higher degrade of
skill in the mid-1990s were evident, but no degradation on the hindcast skill was evident
from Agung (erupted in 1963) and El Chichón (1982) [39]. In this study, models’ higher and
lower skills of initialization 1990s and 1980s seem neither relevant to volcanic eruption nor
the post-eruption sequences. Nevertheless, the observed precipitation or coverage of the
ocean observed state to initialize the models have been affected.

The CC and ACC values of all the selected models in all initialization years remained
under the threshold ≥ 0.6, which was marked as the threshold of significant level in
previous studies [4,5], though those studies were for coarser spatial resolutions and one of
them for different climate variables. Lovino et al. [5] compared CMIP5 model performances
over two variables at the local level and reported higher skill scores for the temperature than
precipitation of the same models where the skill scores for precipitation were remarkably
lower than the scores for temperature. Similar results were also reported by Jain et al. [31].
In this sense, it seems precipitation data with higher spatial resolution may be the reason for
not capturing the significant level of skills on linear association (CC) and phase differences
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or anomalies (ACC). However, few models have shown that the level of significance
(threshold ≥ 0.6, for example) for the performance metric IA, which is a measure of the
predicting accuracy that seems promising predictive skill of the models. However, the
studies that mentioned 0.6 as the level of significance for CC and ACC used either coarser
resolution data [5] or different climate variables [4]. For the local or regional level, as well
as models’ raw precipitation data of higher spatial and temporal resolution, 0.50 seems a
significant score, which is also the same for the similar performance metrics for the case of
total precipitation.

This study also investigated the model performances to reproduce the summer and
winter precipitation. Upon comparing the model skills to reproduce the extreme wet
(≥85 percentile of the observed values) and dry events (<15 percentile of the observed
values) across the catchment and at the selected grid, this study revealed that except CMCC-
CM, all models showed almost similar skills to reproduce the summer precipitation but
exhibited some variations to produce the winter precipitation. Similar skills were also
noted for other intermediate thresholds. This was due to the maximum and minimum pre-
cipitation occurring in Brisbane River catchment during summer and winter, respectively.
This means that models’ responses to reproduce summer precipitation were better than
the winter with the tendency to overestimate higher-precipitation events. However, the
Category-I model comparatively performed better to capture the dry events (Figure 5) than
the wet events, but this may vary for different regions around the globe. For instance, MRI-
CGCM3 showed very good skills and has been marked as the first category model in this
study but to reproduce the Sahelian precipitation, MRI-CGCM3 showed insignificant or no
skills, while MPI-ESM-LR and MIROC5 were categorized as the second- and third-category
models but were marked as improved skilled models for Sahelian precipitation [7].

Previous studies [5,31] have reported that MMEM improves the models’ skills to repro-
duce climate variables, but the selection of models to form MMEM is very challenging as
the arithmetic means of the models’ output may further lead to loss of individual ensembles’
signal [15]. This study also examined the performance of MMEM and revealed that MMEM
improves the performance metrics to some extent, but not always, and the performances are
highly dependent on models’ combination to form MMEM. For instance, MMEM2 showed
better performance metrics than the other two combinations in reproducing the extremely
dry and wet events where MMEM3 showed worse performance (Figure 10). On contrary,
for the highest thresholds of individual metrics, few individual models were found better
than MMEM3. Similar results have also been reported in some other studies [2,6] where
individual models were found better to some extent than the MMEM. However, lower
skills of CMIP5 models for decadal precipitation as compared to temperature is also true
for the MMEM, which was also reported by Mehrotra et al. [8].

In addition to understanding the climate system, the models’ configuration, as well as
structuring spatial and temporal resolutions of the simulating variables, also play a vital role
in determining the model performance [32]. In this study, except for CMCC-CM, models
with finer atmospheric resolutions performed better than the coarser resolutions’ models
(see Table 1 Category-I model). In other words, models of finer atmospheric resolutions can
reproduce local climate features better than the models of coarser spatial resolutions, and
similar results have also been reported in previous studies [5,31]. However, the lower skill
of CMCC-CM may be due to the difference in understanding or geographical locations.
However, for different climate variables like temperature, the performance of CMCC-CM
may be different [5]. This study will help the water manager, infrastructure developers,
and agricultural stakeholders to sort out the models before taking any decision in planning
and developing infrastructures based on the models’ predicted future precipitation. The
findings of this study will also help the researchers for hydrological modeling, as well as
other relevant stakeholders to increase the resilience of the society to climate change in
relation to future water availability and uncertainty.



Hydrology 2024, 11, 24 18 of 20

7. Conclusions

Evaluation of models’ performance is important to check the uncertainty of their future
projections. Eight models (GCMs), contributed to CMIP5 decadal prediction, were assessed
here for monthly hindcast precipitation over the Brisbane River catchment, Australia.
For the decadal hindcast, this was the first attempt that assessed the CMIP5 models at a
catchment level with finer spatial resolution where the performance of individual models
was reported based on a wide range of skill tests. Models were categorized based on their
performance for temporal skills, dry and wet periods, and total precipitation (over time and
space) at a selected grid and also over the entire catchment. In addition, this study assessed
the performance of different MMEMs formed from the combinations of different model
categories. Considering a wide range of skill tests from both the temporal and spatial
perspectives, the following conclusions are drawn.

• Models with higher atmospheric resolutions showed comparatively better perfor-
mances as opposed to the models of coarse spatial resolutions.

• Model performances varied over the initialization years and across the catchment.
From 1990 onward, the skills of all models improved across the catchment, where
MIROC4h showed the highest skills followed by EC-EARTH and MRI-CGCM3, re-
spectively. The internal structure of high atmospheric resolutions may be the main
reason for MIROC4h reproducing the local climate variables comparatively better than
the other.

• To reproduce the dry events and total precipitation over the entire catchment, EC-
EARTH and MRI-CGCM3, respectively, outperformed all models, while CMCC-CM
showed the lowest scores in all forms of skills. For capturing the wet periods, all
models showed almost similar skills with little exceptions for CMCC-CM and CanCM4
but for the dry periods, models showed a range of skill scores.

• Based on the performance skills, the GCM models were ranked into three categories in
ascending order: Category-I (MIROC4h, EC-EARTH, and MRI-CGCM3), Category-II
(MPI-ESM-LR and MPI-ESM-MR), and Category-III (MIROC5, CanCM4, and CMCC-
CM). MMEMs were formulated as MMEM1 of Category-I models, MMEM2 combining
Category-I and Category-II models, and MMEM3 as the combination of all three
categories. Out of these three different MMEMs, MMEM2 was found to perform better
than other MMEMs based on the overall skills, but MMEM1 performed relatively better
for the case of extreme wet events. This shows the necessity of forming suitable MMEM
for practical purposes of GCM data use, especially for the decadal precipitation.

The outcomes presented in this study are based on the historical data over one catch-
ment (Brisbane River catchment) in Australia where no future projected data were con-
sidered. All the considered models in this study contributed to the future projections for
decadal timescales, which are called short-term projections. From the performance obtained
in this study, it may assume that models’ response for the short-term future projection may
not vary significantly over the timespan. Note that Australia is very big, and a variety of
climates exist in different states and regions. Only one catchment like the Brisbane River
catchment will not represent the entire climatology of Australia.

Recently, the Decadal Climate Prediction Project (DCPP) data was released, which
contributed to the sixth Coupled Model Intercomparison Project (CMIP6). CMIP6 includes
more frequent hindcast start dates considering different climate scenarios than CMIP5.
Still, no study has evaluated CMIP5 decadal precipitation over an Australian catchment
at a finer resolution. As this is the first attempt to evaluate CMIP5 decadal precipitation
for an Australian catchment, a comparative study on similar models that contributed to
both CMIP5 and CMIP6 is recommended as a follow-up study. This would provide a more
robust understanding of the model performance over the same catchment.
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