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Abstract: This study addresses the challenge of utilizing incomplete long-term discharge data when
using gridded precipitation datasets and data-driven modeling in Iran’s Karkheh basin. The Multi-
layer Perceptron Neural Network (MLPNN), a rainfall-runoff (R-R) model, was applied, leveraging
precipitation data from the Asian Precipitation—Highly Resolved Observational Data Integration
Toward Evaluation (APHRODITE), Global Precipitation Climatology Center (GPCC), and Climatic
Research Unit (CRU). The MLPNN was trained using the Levenberg–Marquardt algorithm and
optimized with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Input data were pre-
processed through principal component analysis (PCA) and singular value decomposition (SVD).
This study explored two scenarios: Scenario 1 (S1) used in situ data for calibration and gridded
dataset data for testing, while Scenario 2 (S2) involved separate calibrations and tests for each dataset.
The findings reveal that APHRODITE outperformed in S1, with all datasets showing improved
results in S2. The best results were achieved with hybrid applications of the S2-PCA-NSGA-II
for APHRODITE and S2-SVD-NSGA-II for GPCC and CRU. This study concludes that gridded
precipitation datasets, when properly calibrated, significantly enhance runoff simulation accuracy,
highlighting the importance of bias correction in rainfall-runoff modeling. It is important to empha-
size that this modeling approach may not be suitable in situations where a catchment is undergoing
significant changes, whether due to development interventions or the impacts of anthropogenic
climate change. This limitation highlights the need for dynamic modeling approaches that can adapt
to changing catchment conditions.

Keywords: Levenberg–Marquardt algorithm; Multilayer Perceptron Neural Network; Non-dominated
Sorting Genetic Algorithm-II; principal component analysis; rainfall-runoff modeling; singular
value decomposition

1. Introduction

Rainfall-runoff (R-R) modeling, one of the major aspects of hydrological studies, uses
conceptual and data-driven models to depict and predict the amounts and patterns of
rainfall runoff. Most conceptual models require soil moisture data, land use information,
physical characteristics of the basin, etc. In developing countries, the use of conceptual
models is constrained due to the unavailability of data. However, in these circumstances,
data-driven models, which are accepted as replacements for conceptual models [1], can
allow the use of R-R modeling in these regions. Data-driven models extract the relation-
ship between the input and output data using data mining techniques, which allow them
to overcome some of the limitations of conceptual models in the mentioned area. In
addition, the relative ease of use of data-driven models has caused these models to be more
appropriate options in these areas.
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Artificial Neural Networks (ANNs) are the most widely used type of data-driven
model in hydrological and water-resource research. ANNs have been shown to perform
accurately in various fields of water resources. Streamflow forecasting [2–8], prediction of
groundwater levels [9–14], drought forecasting [15–17], flood forecasting [18–21], sediment
estimation [22–26], and evaporation modeling [27–29] are the most common uses of ANNs
in hydrology. Numerous studies utilize Artificial Neural Networks (ANNs) for rainfall-
runoff (R-R) modeling. For instance, ref. [30] applied ANN techniques to model the R-R
process in India’s Kolar basin. Similarly, ref. [31] investigated and compared data-driven
methods, including ANNs, with traditional conceptual models for simulating the R-R
process in the Krishna basin, also located in India. They used the Nedbor-Afstromnings
Model (NAM) as a conceptual model and an ANN as a data-driven model. The results
showed that the ANN performed better than the NAM. Ref. [32] applied a Multilayer
Perceptron Neural Network (MLPNN) and Radial Basis Function Neural Network (RBFNN)
to simulate the R-R process in the Brosna basin in Ireland. Their results indicated that
both neural networks performed well. Ref. [33] assessed the performances of machine
learning (ML) methods such as long short-term memory (LSTM) and ANNs in daily and
monthly rainfall-runoff prediction. They tested hydrological hysteresis as a vital parameter
in runoff modeling. They also concluded that LSTM is the optimal choice for accurately
simulating daily runoff, whereas ANNs are better suited for monthly modeling, offering
reduced uncertainty and a more straightforward process.

Although data-driven models reduce the amount of input information required for
rainfall-runoff (R-R) modeling and can be developed based solely on precipitation and
discharge data, even these minimal datasets are either limited or unavailable in some
areas. Incomplete long-term discharge data significantly hinder hydrological modeling,
especially in areas lacking sufficient monitoring infrastructure. This problem stems from
various factors such as equipment failure, debris, ice blockages, and human error, leading
to data gaps that affect the accuracy of runoff and hydrological parameter estimations. To
overcome these challenges, Artificial Neural Networks (ANNs) and global datasets like the
Climatic Research Unit (CRU) Time Series, Global Precipitation Climatology Center (GPCC)
data, and Asian Precipitation—Highly Resolved Observational Data Integration Toward
Evaluation (APHRODITE) dataset are utilized. ANNs leverage limited input data to predict
runoff, effectively filling in missing discharge data, while global datasets provide essential
rainfall information for areas without direct measurements. These solutions enhance the
precision and efficiency of hydrological studies in data-scarce regions [34]. In recent years,
the development of global datasets [35], which have satisfied the minimum needs for
rainfall information for R-R modeling, has resulted in these datasets becoming available to
researchers. Gridded precipitation datasets can be divided into three general categories:
gauge-based (e.g., the Climatic Research Unit (CRU) Time Series; Global Precipitation
Climatology Center (GPCC) data, and Asian Precipitation—Highly Resolved Observational
Data Integration Toward Evaluation (APHRODITE) dataset); satellite-based (e.g., CPC
Merged Analysis of Precipitation (CMAP)), and merged satellite-gauge products (e.g., the
Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission
(TRMM) 3b42) (www.climatedataguide.ucar.edu (accessed on 10 February 2024)). These
data have been used to examine phenomena such as drought [36–40], flood [41–43], runoff
modeling [44–48], and other scopes of hydrology and water resources [49–55].

The results of research on the accuracy and efficiency of the information differ in
various regions. Therefore, it is implausible that any dataset can be introduced as the single
most appropriate one. Ref. [56] used APHRODITE and National Centers for Environmental
Prediction (NCEP) rainfall data to simulate rainfall-runoff in the Amur River in Mongolia.
The results showed that APHRODITE performed more accurately. Ref. [45] evaluated
gridded precipitation datasets to simulate runoff in the Dak Bla basin in Vietnam. The
Soil and Water Assessment Tool (SWAT) model was employed for R-R modeling in the
aforementioned research, and rainfall data which were derived from various datasets,
such as APHRODITE, GPCP, TRMM, and Precipitation Estimation from Re-motely Sensed
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Information using Artificial Neural Networks (PERSIANN), were applied. The results
showed that APHRODITE and GPCP possessed advantages in runoff simulation. Ref. [57]
assessed the precision of the GPCC, APHRODITE, Modern-era Retrospective Analysis for
Research and Applications (MERRA), and Global Land Data Assimilation System (GLDAS)
datasets to monitor drought in Iran. The results showed that GPCC and APHRODITE
performed better than the two other two datasets (GLDAS and MERRA, which were
generated from model-running). Ref. [58] evaluated how well different sets of gridded
precipitation data performed in modeling rainfall-runoff and flood inundation in the
Mekong River Basin. The Mekong River Basin spans several countries including China, Lao
PDR, Myanmar, Thailand, Cambodia, and Vietnam. First and foremost, the performance of
the Rainfall-Runoff-Inundation (RRI) model in this basin was assessed by examining the
measured rainfall data. The APHRODITE, GPCC, PERSIANN, Global Satellite Mapping of
Precipitation (GSMaP), and TRMM datasets were used as inputs to the calibrated model.
The findings from the river discharge simulations showed that the TRMM, GPCC, and
APHRODITE datasets demonstrated superior performance compared to the other datasets.

The use of gridded precipitation datasets for simulating discharge and filling in miss-
ing data gaps has not been extensively explored. Among the limited studies available, most
focus on assessing the quality and accuracy of these precipitation datasets. Studies have
shown that the accuracy of these datasets differs from one region to another. Therefore, it
is not feasible to apply the findings universally across different areas. Furthermore, the
low and inadequate distribution of rain gauges and hydrometric stations in developing
countries such as Iran, and whether researchers have easy, quick, and free access to gridded
precipitation datasets (in case of successful application in hydrological studies), can play
an important role in providing the necessary information to carry out studies in these areas.
Therefore, this research evaluates the use of these data as a substitute for in situ data when
simulating discharge. For this purpose, R-R modeling was employed by using precipitation
data derived from the CRU TS, GPCC, and APHRODITE datasets for the Karkheh basin,
Iran. Data-driven models are widely recognized for their use in rainfall-runoff (R-R) mod-
eling, especially in regions with limited geographical and geomorphological information.
Therefore, modeling was conducted with the help of the MLPNN. The MLPNN was trained
using the Levenberg–Marquardt (LM) algorithm and the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II). Unlike LM, a single-objective optimization algorithm, the NSGA-II
is a multi-objective optimization algorithm. Hence, the NSGA-II can create a balance
between training and validation datasets for the development of a robust model. Also,
pre-processing was performed using principal component analysis (PCA) and singular
value decomposition (SVD). Accordingly, various training algorithms and pre-processing
methods were compared. So, the main objective of this study was to figure out if there
is any way to achieve long-term simulation of runoff in poorly gauged areas using the
minimum available information. The procedures are described in the following sections.

2. Materials and Methods
2.1. Case Study

The Karkheh basin covers 50,000 square kilometers in southwest Iran, at 30◦58′ to
34◦56′ N latitude and 46◦06′ to 49◦10′ E longitude. The Karkheh River is the main drainage
of this catchment, which is composed of two main branches: Semireh and Kashkan. The
output of this basin is measured at the Abdolkhan hydrometric station in the south of the
watershed. Figure 1 depicts the distribution of monthly discharge at this station. In this
research, discharge was simulated in monthly time steps for a period of 34 years (1967–2000)
at the Abdolkhan station. It should be noted that after 2000, some water resource projects
were developed in the basin, which significantly reduced river discharge downstream of
the basin. So, due to the fact that the runoff was strongly affected by the anthropogenic
alteration after 2000, we used the data collected prior to the year 2000. Fourteen rain-gauge
stations throughout the Karkheh basin (Figure 2) were used to conduct R-R modeling. The
specifications of these stations are given in Table 1. The Ravansar station had the maximum
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mean annual precipitation, at 548 mm, and Bostan had the lowest, at 208 mm. It should be
mentioned that all the average values are climatological averages over the study period.
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Table 1. Rain-gauge specifications in the Karkheh basin.

Station Name Latitude Longitude Average (mm) Max. (mm) Min. (mm) SD † (mm)

Doabmark 46◦47′ 34◦34′ 488 777 210 133
Dartot 46◦39′ 33◦33′ 443 623 232 103
Holian 47◦46′ 33◦46′ 336 613 100 118
Jelogir 46◦47′ 32◦58′ 470 793 259 151
Nourabad 47◦48′ 34◦05′ 461 833 152 133
Ravansar 46◦40′ 34◦43′ 548 773 334 96
Kangavar 48◦00′ 34◦30′ 395 620 222 84
Kermanshah 47◦07′ 34◦16′ 475 859 259 124
Malayer 48◦18′ 34◦15′ 305 413 132 55
Nahavand 48◦24′ 34◦09′ 396 593 226 87
Eslamabad Gharb 46◦48′ 34◦07′ 500 699 258 88
Kohdasht 47◦38′ 33◦32′ 444 631 246 87
Khoramabad 48◦17′ 48◦26′ 520 806 275 134
Abdolkhan 48◦22′ 31◦49′ 229 434 92 78

† Standard deviation.
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2.2. Databases

The CRU, GPCC, and APHRODITE precipitation data were used to implement R-R
modeling in addition to the in situ information from 14 rain gauge stations and output
discharge data during 1967–2000. From the 34 years of information, 14 data years were
used for model training, 6 years for validation, and 14 for model testing.

2.2.1. APHRODITE

The APHRODITE project was started by the Research Institute for Humanity and
Nature (RIHN) and the Meteorological Research Institute of Japan Meteorological Agency
(MRI/JMA) in 2006. This database provides daily precipitation with 0.25◦ × 0.25◦ and
0.5◦ × 0.5◦ spatial resolutions. APHRODITE precipitation data are available from 1951 to
2007 for the Middle East. This study utilized the APHRODITE Middle East precipitation
dataset V1101R1 at a 0.5◦ resolution for R-R modeling [59]. Precipitation data are available
at http://www.chikyu.ac.jp/precip/ (accessed on 10 February 2024). It is worth mentioning
that the temporal resolutions of the R-R modeling and APHRODITE precipitation are
monthly and daily, respectively. Accordingly, the temporal resolutions of the APHRODITE
data were converted to monthly values.

2.2.2. GPCC

The GPCC precipitation database was established in 1989 at the request of the
World Meteorological Organization (WMO) and is managed by Deutscher Wetterdienst
(DWD), Germany’s national meteorological agency. Monthly precipitation data are
provided for users at 0.5◦ × 0.5◦, 1◦ × 1◦, and 2.5◦ × 2.5◦ spatial grid resolutions. This
database offers a variety of rainfall data. In this study, reanalysis data (version 7) with a
0.5◦ × 0.5◦ resolution were used [60]. GPCC precipitation data were established from
75,000 ground rain gauges and are available from 1901 to 2013. These data are down-
loadable from http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html (accessed
on 10 February 2024).

2.2.3. CRU TS

CRU was founded at East Anglia University in England in 1972. This database
provides various climatic information with different spatial resolutions for regions around
the world. In this study, CRU TS 4.01 precipitation data were used [61]. These data are
available for all parts of the world at a 0.5◦ × 0.5◦ spatial resolution and at a monthly
temporal resolution from 1901 to 2016. CRU datasets are accessible from https://crudata.
uea.ac.uk/cru/data/hrg/ (accessed on 10 February 2024).

2.3. Rainfall-Runoff Modeling

R-R modeling can be conducted with both data-driven and conceptual models.
Using conceptual models requires a large amount of input information, and this is rarely
suitable for developing countries. Therefore, in this study, the Multilayer Perceptron
Neural Network (MLPNN), a data-driven model that many studies have proved effective
(e.g., refs. [62,63]), was employed. The MLPNN with three layers can be a universal
approximator [64]. The choice of the MLPNN as the rainfall-runoff (R-R) model in this
study, particularly for handling incomplete discharge data, is grounded in its capability
to approximate complex functions and adapt to diverse datasets. MLPNNs are distin-
guished by their ability to learn from input data and adapt to new, unseen data. This is
especially beneficial in regions where the application of conceptual models is hindered
by the scarcity of detailed input information. The inherent adaptability of MLPNNs ren-
ders them universal approximators, capable of modeling intricate relationships between
inputs and outputs as commonly encountered in hydrological systems. However, the
effectiveness of MLPNNs in such applications extends beyond their learning and adapt-
ability traits. These models undergo a rigorous process that encompasses training, where
the model learns the underlying patterns from a subset of the data; calibration, which

http://www.chikyu.ac.jp/precip/
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
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involves adjusting the model parameters to align predictions closely with real-world
observations; and testing, a critical phase where the model’s performance is evaluated
on a separate dataset not used during the training. This testing phase is essential for
assessing the model’s generalization capability, ensuring it can accurately predict out-
comes in varied and unseen scenarios. Together, these steps ensure that MLPNNs can
be effectively applied in R-R modeling, offering reliable predictions even in the face
of incomplete discharge data and complex hydrological dynamics. The MLPNN was
trained using a supervised learning algorithm based on the LM algorithm. The learning
process was designed to minimize the following function [65]:

E =
1
L

L

∑
l=1

(yl − ŷl)
2 (1)

where L is the number of data, yl is the lth observational output, and is the lth forecasted
output. To calculate the ŷ in a three-layer network with m neurons in the hidden layer and
n independent variables (number of inputs), Equation (2) was used:

ŷ = f

[
m

∑
j=1

wj.g(
n

∑
i=1

wjixi + bj0) + bo

]
(2)

where wj is the weight that connects the jth neuron in the hidden layer and the neuron of
output layer, wji is the weight related to the relation between the ith input variable and jth
neuron in the hidden layer, xi is the ith independent variable, bj0 is the bias of the jth neuron
of hidden layer, b0 is the bias related to the output neuron, g is the activation function for
neuron of hidden layer, and f is the activation function for the output layer.

LM is a fast and powerful algorithm, but it is possible to become stuck in the local
optimum in this approach [66,67]. Thus, many researchers have employed evolutionary
algorithms (EAs) as an alternative to the LM algorithm (e.g., refs. [68,69]). Although EAs
are safe from becoming stuck in the local optimum, they are prone to overfitting due to
considering each item in the training information singly. For this reason, some researchers
have employed an objective function of optimization algorithms as a weighted combination
for training and validating neural network data (e.g., ref. [70]). However, determining
the appropriate weights for training and validation is another challenge. In this study,
the NSGA-II was used to train the ANN precisely and appropriately. The NSGA-II can
consider training and validation data at the same time to determine the weights and biases
of the neural network. As such, the resulting network will be safe from overfitting while
being trapped in the local optimum.

In this study, two scenarios were considered for R-R modeling. In the first scenario,
R-R modeling was calibrated based on in situ data, and gridded precipitation datasets
were used in the testing phase. The distribution of the 14 rain gauge stations, which
are predominantly located in high and mid–high elevations within the Karkheh basin,
inherently aids in delineating the heterogeneity of precipitation areal distribution in these
elevational bands. In the second phase, model calibration and testing were performed
separately for each dataset. Before entering information into the MLPNN, PCA and SVD
were performed as pre-processing measures to reduce the size of the data. Figure 3 shows
a flowchart of the different R-R models. Altogether, eight models were developed, which
are marked with colored rectangles. Therefore, eight different time series of discharge
were simulated.
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2.4. Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

The NSGA-II is an evolutionary optimization algorithm that is used in multi-objective
problems. This algorithm starts by generating a set of random solutions; the objective
function value is then calculated for each solution, and the process of refining the solutions
begins. At this step, the solutions are selected for crossover using the binary tournament
operator based on two criteria: non-dominated sorting and crowding distance. The al-
gorithm can be kept from becoming stuck in the local optimum by applying a mutation
operator. The objective function values are calculated once again after the refining solutions
are determined. This process is repeated until one of the stopping criteria is satisfied. In
each generation, non-dominated solutions in objective space constitute a pareto front; any
point on this front can be an optimal solution of the problem. (More information about the
NSGA-II is available in [71]). In this research, the mean squared error (MSE) of the training
and validation of the MLPNN were considered as two objective functions to determine the
optimum values of the neural network weights and biases as follows:

Minimize =


MSEtrain : f1(w, b) = 1

C

C
∑

c=1
( f

[
m
∑

j=1
wj.g(

n
∑

i=1
wjixi + bj0) + bo

]
c

− yc)

2

MSEvalidation : f2(w, b) = 1
D

D
∑

d=1
( f

[
m
∑

j=1
wj.g(

n
∑

i=1
wjixi + bj0) + bo

]
d

− yd)

2 (3)

where w and b are the weight and bias of the neural network (decision variables of
optimization problem), and C and D are the number of training and validation data
points, respectively.
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2.5. Data Pre-Processing

Since precipitation data from 14 stations were considered as the model input and a
two-step delay was applied for the precipitation data, there were a total of 42 inputs into the
R-R model, making it time consuming to run. Therefore, PCA and SVD were employed to
reduce the data dimensions. Hence, three principal components (PCs) of these approaches
were used as the model input to explain over 80% of the data variance. Since the rest of
the PCs did not add significant information (all 39 components came to less than 20%), we
only selected three PCs. These two methods are described below.

2.5.1. Principal Component Analysis

PCA is a data pre-processing method that aims to reduce the dimension of the problem.
By using PCA, large numbers of correlated variables can be replaced with a limited number
of new linearly uncorrelated variables called principal components (PCs). In mathematical
terms, PCA is an orthogonal linear transformation that rotates the coordinate system so that
the largest data variance is placed on the first coordinate axis, the second largest variance
on the second axis, etc. Therefore, it can preserve initial information with a lower number of
variables and finer accuracy. If the equation is a random vector with a certain non-negative
covariance matrix and are eigenvalues of ∑. a1, a2, . . ., aH are corresponding eigenvectors
of λ1, λ2, . . . , λH . Defined PC1, PC2, . . ., PCH variables called PC listed below:

PC1 = a11X1 + a21X2 + . . . + aH1XH
PC2 = a12X1 + a22X2 + . . . + aH2XH
PC3 = a13X1 + a23X2 + . . . + aH3XH
...
PCH = a1HX1 + a2HX2 + . . . + aHHXH

(4)

PCH is called the Hth principal component. PCs are calculated in a way that PC1
justifies the maxi-mum variance and PC2 possesses the maximum variance that was not
considered by PC1; this process continues until the last component is reached.

2.5.2. Singular Value Decomposition

SVD considers not only the dependent variables but the independent ones as well in
determining significant components. Therefore, SVD has to be applied on a covariance
matrix obtained from multiplying independent variables by dependent variables. The SVD
procedure converts the rectangular matrix into three matrices: orthogonal (U), diagonal
(S), and transpose of an orthogonal matrix (V), which can be expressed mathematically as
follows [72]:

Ake = UkkSkeVT
ee (5)

where U and V are orthogonal matrices, UTU = I and VTV = I, and S is a pseudo-diagonal
matrix with zero values as its entries. The columns of U and V are orthonormal eigenvectors
of AAT and ATA, respectively [2]. In this study, SVD was applied to an R-R covariance
matrix. For this purpose, the following covariance matrix was used:

CovP&Q =
1

nm
×

 P1,1 · · · P1,nm
...

. . .
...

Ps,1 · · · Ps,nm

×

 Q1
...
Qnm

 (6)

where CovP&Q is the R-R covariance matrix, nm is the number of months of study, P is the
precipitation, and Q is the discharge. The main component of precipitation was calculated
as follows:

P(z) =

 P1,1 · · · P1,nm
...

. . .
...

Ps,1 · · · Ps,nm

× U(:, z) (7)
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where z ranges from one to the number of significant modes in the maximum situation [73].
It should be mentioned that the above operation is performed on a set of calibration data
and after the extraction of matrix U, the matrix can be used to test the model. It is possible
to update matrix U by adding new discharge data gradually.

2.6. Evaluation Criteria

Three efficiency criteria were considered for judging the performance of precipitation
databases and different models. The first criterion was correlation coefficients (CCs) with
values between −1 and 1, where a value close to 1 represents direct correlation between
two compared time series. The second criterion was root mean square error (RMSE), which
is calculated from investigated data; its values range from 0 to positive infinity, with lower
values indicating better performance. The last criterion is Bias, which is expressed as a
percentage and represents the ratio of the model outputs to real values. Equations of these
criteria are listed below [74,75]:

CC =

L
∑

l=1
(yl − y)(ŷl − ŷ)√

L
∑

l=1
(yl − y)2 L

∑
l=1

(ŷl − ŷ)2
(8)

RMSE =

√√√√√ L
∑

l=1
(yl − ŷl)

2

L
(9)

Bias =

L
∑

l=1
ŷl −

L
∑

l=1
yl

L
∑

l=1
yi

× 100 (10)

In the above equations, y and ŷ are the observational data and the output data from
the model, respectively.

3. Results and Discussion
3.1. Evaluation of Precipitation Data

Although the main purpose of this study is to evaluate dataset information for R-R
simulations, the performance of the model depends on the accuracy of the data input into
the R-R model. Therefore, this section describes the brief assessment of the precipitation
dataset. Figure 4 shows the observational precipitation regime alongside the precipitation
regime from the datasets in the Karkheh basin. The APHRODITE data are closely aligned
with the observational data. The GPCC data overestimate the observational precipitation by
19, 28, and 28 percent in January, March, and April, respectively. The CRU data overestimate
the precipitation amount in most months; the biggest difference is in April, with a difference
of 14 mm. These comparisons show that the datasets have distinguished the regimes of
precipitation properly but possess bias in most months.

Table 2 shows each dataset’s statistical indicators and evaluation criteria in comparison
with the observational data. On an annual scale, the APHRODITE data are close to the
observational data, estimating annual mean precipitation with a 6.5 mm (−1.5%) disagree-
ment. Other statistical properties, such as the standard deviation (SD) and coefficient of
variation (CV), were close to the observational data as well. In terms of statistical indicators,
the CRU data performed, on average, better than the GPCC data. These two databases
overestimated the mean precipitation by approximately 44 and 53 mm, respectively, but
GPCC performed better in terms of SD and CV. SD values from GPCC and CRU differed
from the observational data by 21% and 29%, and the CV values varied by 2% and 5%,
respectively. According to the efficiency criteria, CRU displayed better RMSE and Bias than
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GPCC, but GPCC gave a more satisfactory CC. Thus, in this basin, the APHRODITE dataset
showed the best performance in terms of the efficiency criteria and statistical indicators for
mean annual precipitation. The CRU and GPCC datasets performed almost identically; the
minor differences between them can be seen in Table 2.
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Figure 4. Spatial average of monthly mean precipitation depth in the Karkheh Basin (1967–2000)
based on observed and gridded precipitation datasets.

Table 2. Comparison criteria of precipitation datasets with observed precipitation.

Dataset
Annual Time Series Monthly Time Series †

Mean (mm) SD (mm) CV (%) CC RMSE (mm) Bias (%)

Observed 429.17 76.63 17.86
APHRODITE 422.66 84.42 19.97 0.81 22.13 −1.52
GPCC 482.64 97.08 20.12 0.80 26.23 11.08
CRU 466.80 107.58 23.05 0.78 24.23 8.77

† Compared with the observed precipitation.

Average annual rainfall was examined based on a box-plot of the 14 investigated
stations. According to Figure 5, APHRODITE was close to the observed values in terms
of precipitation variation in the investigated stations; GPCC gave results higher than the
observed data by almost the same amount. Meanwhile, the CRU chart included more
differences than the other two, and out of range data were observed in this database.
Although the databases have almost similar behaviors in respect of their standard devi-
ations and coefficients of variation, all the databases are diverse from the observed data.
The mean annual rainfall standard deviation in the 14 observational stations is 35 mm,
and for APHRODITE, GPCC, and CRU it is 96, 114, and 116 mm, respectively. Likewise,
the APHRODITE, GPCC, and CRU means of annual rainfall coefficients of variation are
different from observed values by 15, 16, and 17 percent, respectively.
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Because the output discharge simulation was based on the monthly scale in the
Karkheh basin, this study assessed each dataset’s performance for each month separately.
As shown in Table 3, in most cases, the statistical indicators and evaluation criteria were
favorable for the datasets in months with higher amounts of rainfall. In contrast, they
did not provide acceptable evaluation criteria values in low-rainfall months. In practical
hydrological applications, the accuracy of these criteria reveals significant limitations. For
instance, during August, the observed correlation between rainfall data and the values
from the GPCC, APHRODITE, and CRU datasets was recorded to be 0.26, 0.33, and 0.24,
respectively. Additionally, the Bias percentages for these datasets were notably high, with
figures standing at 494%, 765%, and 7065%, indicating a substantial deviation from the
observed values. These results illustrate an underperformance of the datasets, whereas the
difference between the observed precipitation data and the three gridded datasets are only
0.30, 0.46, and 4.25 mm, respectively. Therefore, relying only on statistical indicators can
lead to a better evaluation of the results, which are better during dry months, i.e., June to
September. The best performances among the datasets are shown in Table 3 in terms of
evaluation criteria and statistical indicators. Overall, APHRODITE fulfilled the objectives
better than the two other databases.

Table 3. Monthly comparison criteria of precipitation datasets with observed precipitation.

Dataset Mean
(mm)

SD
(mm)

CV
(%) CC RMSE

(mm)
Bias
(%)

Mean
(mm)

SD
(mm)

CV
(%) CC RMSE

(mm)
Bias
(%)

Observed Jan. 63.83 15.62 24.47 Jul. 0.16 0.44 273.98
APHRODITE 65.06 26.51 40.75 0.79 16.87 1.92 0.82 1.55 187.96 0.79 1.38 416.15
GPCC 75.68 31.59 41.75 0.79 24.24 18.56 1.14 1.51 131.63 0.74 1.55 617.51
CRU 64.10 28.72 44.81 0.83 17.85 0.43 3.82 7.62 199.14 0.32 8.24 2299.73

Observed Feb. 69.35 17.31 24.95 Aug. 0.06 0.11 189.66
APHRODITE 61.67 22.65 36.72 0.67 18.36 −11.07 0.36 0.68 190.58 0.26 0.72 493.77
GPCC 68.35 25.52 37.34 0.67 18.71 −1.44 0.52 1.00 191.43 0.33 1.06 764.65
CRU 59.99 26.42 44.05 0.74 19.94 −13.50 4.32 8.87 205.46 0.24 9.69 7064.96

Observed Mar. 69.83 20.93 29.97 Sep. 5.50 4.33 78.76
APHRODITE 78.76 35.44 45.00 0.76 25.06 12.80 0.73 1.14 155.50 0.24 6.31 −86.64
GPCC 89.10 39.38 44.20 0.75 33.19 27.59 1.25 2.87 228.76 0.04 6.58 −77.19
CRU 82.51 37.08 44.94 0.78 27.18 18.16 2.74 5.54 202.20 0.30 6.44 −50.16

Observed Apr. 49.23 19.45 39.50 Oct. 26.75 17.14 64.09
APHRODITE 54.75 29.11 53.17 0.88 15.86 11.23 20.04 22.99 114.70 −0.01 29.17 −25.06
GPCC 62.77 32.80 52.25 0.89 22.21 27.50 20.16 25.09 124.46 −0.01 30.78 −24.62
CRU 63.43 36.63 57.75 0.88 25.54 28.85 23.24 27.67 119.06 −0.01 32.44 −13.11

Observed May. 25.40 17.31 68.12 Nov. 52.20 22.12 42.38
APHRODITE 25.90 19.79 76.40 0.80 11.77 1.95 51.49 44.71 86.83 0.06 47.89 −1.36
GPCC 27.24 22.73 83.46 0.75 14.82 7.21 62.64 51.32 81.92 0.05 55.05 20.00
CRU 36.52 28.98 79.35 0.80 21.33 43.76 51.06 40.13 78.60 −0.02 45.59 −2.19

Observed Jun. 3.12 2.78 89.03 Dec. 63.74 15.31 24.02
APHRODITE 1.46 2.12 145.34 0.49 3.00 −53.21 61.61 29.85 48.45 0.06 32.28 −3.35
GPCC 2.13 3.03 142.65 0.52 2.98 −31.88 71.68 36.12 50.39 0.08 38.36 12.45
CRU 7.41 10.58 142.77 0.42 10.52 137.45 67.66 29.69 43.87 0.07 32.20 6.15

3.2. Rainfall-Runoff Modeling

After assessing dataset precipitation, R-R modeling was implemented using the inves-
tigated datasets. As mentioned before, two scenarios, two pre-processing methods, and two
training algorithms for the MLPNN were considered to conduct the R-R modeling. One of
the key elements affecting the performance of the MLPNN was the number of hidden-layer
neurons, which were calculated by trial and error. With each number of neurons in the
range of 5 to 20, five runs were carried out from the MLPNN, and the average model
performance was used as a benchmark to determine the appropriate number of neurons.
After determining the optimal number of neurons, the MLPNN was run 50 times based
on the LM training algorithms (under different scenarios and pre-processing methods);
the best MLPNN performance was determined to be MLPNN-LM. The MLPNN training
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was also conducted using the NSGA-II. After optimizing the biases and weights of the
various MLPNNs (under different scenarios and pre-processing methods), the NSGA-II
algorithm was considered with 5000 generations and a population of 500 based on uniform
mutation and a two-point crossover operator at the rates of 0.03–0.10 and 0.6–0.8, respec-
tively. The ideal point from pareto was chosen such that the sum of the MSE distance of
the training and validation values from the ideal value (which is equal to zero) became the
minimum. In other words, a point in the pareto front was considered as the solution such

that
√

MSE2
train + MSE2

Validation was minimal; the weights and biases of the MLPNN were
determined based on this solution.

Table 4 gives the results of the R-R modeling under different conditions. In total,
16 different models were trained; 4 models related to the first scenario and 12 models to
the second scenario. The contributions of each pre-processing method (PCA and SVD)
and training algorithm (LM and the NSGA-II) were used to train six models. The results
indicated that all three precipitation databases in the second scenario performed better
than in the first scenario. This superiority was more evident in the case of GPCC and CRU.
According to the reviewed results in the assessment of precipitation, it was expected that
APHRODITE would perform better than GPCC and CRU in the first scenario due to the
proximity of this dataset information to the observed data. In the second scenario, the
various databases showed some disagreement with the observed precipitation. These dif-
ferences, which often appear in Bias, may be troublesome in meteorology studies and need
to be corrected; however, in R-R modeling using the MLPNN, Bias can be automatically
corrected by establishing the relation between runoff and rainfall. This could be the reason
for the better performance in the second scenario compared to the first one. Therefore, the
use of datasets in the calibration phase is recommended. Additionally, it should be men-
tioned that a period was chosen for calibration in which no major anthropogenic changes
took place. This selection was critical to ensuring the integrity of the model calibration,
allowing for a more accurate representation of the natural rainfall-runoff processes devoid
of significant human-induced alterations.

In Table 4, the column headed “superiority count” represents the summation of the
superiority times of a pre-processing method (PCA or SVD), a training algorithm (LM
or the NSGA-II), or a combination of them based on the three evaluation criteria of CC,
RMSE, and Bias. Although in some cases the differences are very minor, in order to provide
a quantitative criterion for assessing the models, the criteria were compared up to two
decimal digits’ precision. In Table 4, the green cells show the best values for efficiency
criteria in R-R modeling using the different datasets. For instance, in all cases the CC
is equal to 0.90 based on the observed data in the training phase of the first scenarios,
so all of them are marked in green. The RMSE of the first-scenario training phase has
a minimum value of (88.02 × 106 m3) using PCA pre-processing and the NSGA-II (S1-
PCA-NSGA-II); thus, this value is highlighted in green as well. Accordingly, in comparing
pre-processing methods, PCA and SVD performed 20- and 33-times better (considering all
different scenarios), respectively. Therefore, it can be concluded that the SVD operation is
superior to PCA in data pre-processing. In assessing the algorithms training, the NSGA-II
had the best performance at 33-times better than the LM algorithm, compared to 20-times
better for the LM algorithm. Combining SVD and the NSGA-II, with a superiority count of
24, yielded the highest number of advantages, followed by the combination of PCA and
LM, which performed 11 times better and stands in the second rank.
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Table 4. Criteria for evaluating the comparison between observed and simulated discharge using datasets and various methodologies. Cells highlighted in yellow
indicate the best performance according to each criterion.
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Train Validation Test PCA SVD LM NSGA-II PCA SVD PCA SVD

CC RMSE Bias CC RMSE Bias CC RMSE Bias LM LM NSGA-II NSGA-II

Sc
en

ar
io

1

O
bs

er
ve

d PCA LM 0.90 90.73 2.73 0.86 65.21 −5.03 0.82 104.03 −3.44 6 4 2 4 2
PCA NSGA-II 0.90 88.02 −1.68 0.83 72.38 −7.25 0.80 110.27 −1.40
SVD LM 0.90 89.77 5.20 0.84 70.47 −4.96 0.81 104.10 −5.44 7 2 5 2 5
SVD NSGA-II 0.90 89.52 1.24 0.82 71.02 −10.09 0.82 100.07 0.29

A
PH

RO
D

IT
E PCA LM 0.67 153.54 −4.93 0 0 0 0 0

PCA NSGA-II 0.65 166.40 −2.87

SVD LM 0.64 173.57 12.15 3 0 3 0 3
SVD NSGA-II 0.68 137.33 2.38

G
PC

C

PCA LM 0.66 166.60 −0.58 1 1 0 1 0
PCA NSGA-II 0.65 179.90 5.16

SVD LM 0.64 193.70 22.16 2 0 2 0 2
SVD NSGA-II 0.67 148.82 7.19

C
R

U

PCA LM 0.63 152.64 −13.60 1 1 0 1 0
PCA NSGA-II 0.61 165.95 −9.71

SVD LM 0.60 167.72 5.38 2 0 2 0 2
SVD NSGA-II 0.61 149.20 −1.32

Sc
en

ar
io

2 A
PH

RO
D

IT
E

PCA LM 0.89 90.84 −4.49 0.78 85.45 −6.95 0.71 136.66 −0.15 7 3 4 3 4
PCA NSGA-II 0.90 89.59 −0.03 0.77 92.50 0.76 0.72 124.59 1.29
SVD LM 0.88 95.16 −2.17 0.77 83.57 −0.90 0.73 126.82 1.20 3 1 2 1 2
SVD NSGA-II 0.89 92.07 1.00 0.72 92.00 1.45 0.74 124.53 7.03

G
PC

C

PCA LM 0.90 86.83 2.13 0.76 87.84 −5.09 0.71 139.34 2.54 3 1 2 1 2
PCA NSGA-II 0.92 81.51 2.25 0.75 94.08 −1.69 0.72 125.74 −2.41
SVD LM 0.90 88.96 0.14 0.76 83.32 3.09 0.71 124.63 1.77 8 3 5 3 5
SVD NSGA-II 0.92 80.18 1.43 0.77 84.71 −2.31 0.72 129.44 −1.36

C
R

U

PCA LM 0.84 108.59 1.04 0.71 92.95 1.48 0.69 128.30 −6.30 2 1 1 1 1
PCA NSGA-II 0.85 107.43 −2.74 0.72 93.98 −4.00 0.71 125.88 −8.52
SVD LM 0.86 104.71 −1.28 0.72 92.10 −2.01 0.72 124.60 −7.49 8 3 5 3 5
SVD NSGA-II 0.87 99.97 −2.73 0.70 93.91 −0.41 0.71 124.56 −0.73

SUM 20 33 20 33 11 9 9 24
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Based on the results presented in Table 4, in most cases, the RMSE of the LM algorithm
in the validation phase gave better results than the NSGA-II because the LM algorithm
determines the best weights and biases of the MLPNN based on the MSE of validation.
Since this optimization algorithm is mono-purpose, it cannot consider both training and
validation together. Although the NSGA-II was slightly weaker than LM in RMSE, which
was related to validation, it gave a better balance between validation and training. Overall,
in these two aspects of the efficiency criteria it performed better than LM. Although it is
possible to choose points with primary attention to validation or training data in the pareto
front, the best situation is one in which a point is considered as the balance that satisfies both

aspects. In this study, the point with the lowest value of
√

MSE2
train + MSE2

Validation was
considered to be ideal. According to the results, all the datasets performed better in the
second scenario than in the first. In this regard, the APHRODITE database based on the
S2-PCA-NSGA-II model, and also GPCC and CRU databases based on S2-SVD-NSGA-II
for a total of three training steps, validation, and testing, gave the best results. R-R
simulation with the observed precipitation data worked the best based on SVD-NSGA-II
as well.

The distributions of the observed and simulated discharge related to the testing
aspects of the various mentioned models are shown in Figure 6. Low-flow values were
more accurately estimated than high-flow values. In the analysis of the first scenario
within Figure 6, it is noted that there is a larger number of points above the line y
= x compared to the second scenario. This observation is critical as it suggests an
overestimation of runoff in the first scenario. The line y = x serves as a benchmark for
perfect model performance, where the observed and simulated discharges match exactly.
Therefore, points above this line indicate instances where the model predicted more
runoff than was actually observed, highlighting potential areas for model adjustment or
reevaluation. Conversely, the second scenario demonstrates a more balanced approach
to runoff simulation, as evidenced by a more even distribution of points on both sides of
the line y = x. This balance suggests that the models used in the second scenario provide
a more accurate representation of runoff, possibly due to the utilization of various
datasets that enhance model precision. Notably, the models S1-SVD-LM and S2-SVD-
LM, when employing GPCC data, exhibited significant improvements in performance.
This improvement indicates the value of selecting appropriate datasets for enhancing
model accuracy, especially in complex hydrological simulations. Figure 7 represents
the empirical cumulative distribution function (eCDf) of the observational discharge
data alongside the simulated discharge according to the best results of each dataset
for each month. This chart was drawn based on the calibration and testing data. The
months with a high rate of discharge demonstrated proper functioning for the datasets
as a whole. These performances are acceptable in the first five months and last month of
year, which are of the greatest hydrological importance for the Karkheh basin. However,
inconsistencies were present in the months with low discharge rates; the most significant
conflict can be observed from June to September. Comparing the simulated discharge
using dataset precipitation with that using observational precipitation data may be fairer
rather than comparing it to the observed discharge. In this regard, few months can
be found in Figure 7 in which the observed precipitation information has significant
superiority to the results using the datasets in the discharge simulation. None of the
datasets are absolutely paramount over entire months.
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Figure 6. Scatter plot of observed vs. simulated discharge under different scenarios, pre-processing
methods, and training algorithms for the testing phase (black line is y = x, red, green, blue, and
orange points are simulated discharge using observed, APHRODITE, GPCC, and CRU precipitation
vs. observed discharge).
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4. Conclusions

(1) This study attempted to find an operational approach to simulate discharge or fill in
the gaps that existed in discharge data over a poorly gauged basin. To this end, three
gridded precipitation datasets (APHRODITE, GPCC, and CRU) were evaluated = on
their accuracy in depicting hydrological behavior in the Karkheh basin in Iran during
1967–2000. The results can be presented in two parts.

(2) The first one is the comparison between in situ precipitation and girded datasets, and
the second part is the assessment of R-R modeling results. The comparison of the
precipitation datasets showed that APHRODITE outperformed the other datasets. For
instance, on an annual scale, the average difference between APHRODITE precipi-
tation and in situ data is 6.5 mm, while the values of this difference for the GPCC
and CRU data are approximately equal to 53 and 44 mm, respectively. The findings
align closely with those reported in references [56] and [45]. The analysis reveals
that although the datasets accurately identify different patterns in precipitation, they
exhibit biases in most months, and they possess bias in the majority of months.

(3) After comparing the precipitation data, the development of an R-R model was investi-
gated to simulate the outflow of the Karkheh basin. The MLPNN was used in the R-R
modeling. Due to the fact that the number of inputs of the R-R model was equal to 42,
PCA and SVD were employed to reduce the dimensions of the datasets. In the next
step, to train the model, with regard to being stuck in the local optimum of the LM
algorithm, the NSGA-II was employed to determine network weights and biases, and
its results were compared with LM. Two scenarios were chosen for model calibration:
in the first scenario, the MLPNN was calibrated based on the observed precipitation,
and it was examined based on observed and gridded precipitation; in the second
scenario, the calibrating and testing of the model were performed separately for
each dataset.

(4) The R-R modeling results showed that the models were more efficient, and all three
databases demonstrated appropriate performances in the second scenario. Because
the main error in the gridded precipitation dataset is the bias error, it will disappear
automatically when the model is calibrated using gridded precipitation datasets. The
results were better for wet months than for dry months. Overall, the comparison
between pre-processing methods indicated that SVD gave superior results to PCA.
These results match well with the findings of [2]. Again, the NSGA-II operated better
than LM in model training. To sum up, APHRODITE, based on the S2-PCA-NSGA-II
model, and GPCC and CRU, based on the S2-SVD-NSGA-II model, had the best
performances, and can be considered as alternatives for hydrological studies.

(5) It should be indicated that the spatial resolution of APHRODITE is half that of the
other two datasets, which can improve the accuracy of the modelling. Nevertheless,
temporal resolutions of the datasets in this study are not important because all of
the modeling process was performed at monthly scale. It is worth mentioning that
GPCC and CRU have a reasonable lag time to updating their data while APHRODITE
data are updated with a significant delay. This deficiency can be considered a weak-
ness for APHRODITE data. So, before practical application, it is suggested that
spatial–temporal resolution and the lag time of updating data should be considered
in addition to the accuracy of the given datasets. Also, a combination of different
datasets may improve R-R modeling performance. Hence, hybrid dataset develop-
ment is suggested for future studies. Based on the results in poorly gauged basins,
it is recommended that the same dataset be used to calibrate and test the model in
order to perform R-R modeling. Thus, applying an existing model for discharge
reconstruction or to fill the gap based on gridded precipitation may not achieve good
accuracy. According to the results of this study, a well-trained ANN is very prac-
tical in hydrological applications and, therefore, the model’s calibration should be
completed attentively. Future research should aim to overcome the limitations noted,
particularly the variable performance of models in periods of low discharge rates. Rec-
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ognizing these difficulties will steer further studies to enhance simulation precision in
comparable hydrological scenarios, fostering a deeper insight into and utilization of
discharge modeling methodologies. In conclusion, this study’s findings illuminate
the path forward for hydrological modeling in data-scarce regions, advocating for
a nuanced approach to dataset selection, model calibration, and optimization. By
leveraging advanced computational techniques and a thorough understanding of
dataset characteristics and limitations, researchers and practitioners can enhance the
precision and reliability of hydrological models, thereby improving water resource
management and planning outcomes in similar contexts worldwide.
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