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Abstract: The aim of this work is to investigate new approaches using methods based on 
statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring 
networks. The formulated and integrated methods were tested with the groundwater quality 
data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized 
using geo-statistical methods. Temporal optimization of the monitoring network was 
carried out using Sen’s method (1968). For geostatistical network optimization, a 
geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and  
2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, 
dimension, contaminant association, groundwater flow direction and aquifer homogeneity on 
statistical and geostatistical methods for monitoring network optimization were analysed. 
The integrated approach shows 37% and 28% redundancies in the monitoring network in 
Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also 
recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers 
respectively. In temporal optimization, an overall optimized sampling interval was 
recommended in terms of lower quartile (238 days), median quartile (317 days) and upper 
quartile (401 days) in the research area of Bitterfeld/Wolfen. Demonstrated methods for 
improving groundwater monitoring network can be used in real monitoring network 
optimization with due consideration given to influencing factors. 

Keywords: groundwater monitoring network optimization; factors influencing monitoring 
network optimization; quaternary and tertiary aquifers 
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1. Introduction 

In regions with frequent water stress and large aquifer systems, groundwater is often used as an 
additional water resource. If extensive groundwater abstraction exceeds natural groundwater recharge 
for longer times, overexploitation or persistent groundwater depletion occurs [1]. 

Population growth and groundwater depletion are two of the most significant dangers to global 
water stability. It is evident from the trending water scarcity and continual groundwater pollution 
throughout the world that the existing policies fail to protect this vital resource [2,3]. 

In almost all major water resource management programs, groundwater monitoring is required [4]. 
Ground water monitoring involves an array of sequential processes ranging from long term 
standardized measurement, observation, status and trend evaluation to the final reporting of processed 
data in order to meet the objectives of monitoring programmes [5,6]. 

Monitoring networks with sets of strategically located groundwater monitoring wells collecting 
prerequisite data [7] that, in turn, provide insights for strategic planning and decision making [8]. Since 
complex infrastructure is crucial for entire data analysis and processing activities, ground water 
monitoring acts as a significant burden at many ground water contamination sites [9,10]. 

The last three decades has achieved great improvement in groundwater monitoring strategies, the 
majority of which have strongly focused on statistical approach for monitoring locations and sample 
size [11–13]. However, relatively little work is in place with optimization considering multiple 
contaminants in multiple aquifers. 

For proper design of monitoring strategy as per management objectives, it is necessary that required 
information be extracted from measured variables [4,14]. Thereafter, the monitoring strategy can be 
derived based on optimization of the groundwater monitoring network and concurrent considerations 
of the uncertainty associated with spatial and temporal variability [15,16]. 

In the past, various studies have specified various methods for monitoring network optimization [17–22] 
but have failed to incorporate the primary factors that influence the methods for so. This study attempts 
to thoroughly analyze the influence of various factors on the optimization method, which can have a 
remarkable role in the decision about redundancy and necessity of new wells in the monitoring network. 

The aim of this research is to identify and investigate new approaches using statistical and 
geostatistical methods for groundwater monitoring network optimization in order to improve 
groundwater monitoring strategies. The factors influencing groundwater monitoring optimization 
methods will be analyzed and new and improved methods will be integrated by testing those with 
groundwater monitoring network optimization at contaminated sites. 

2. Study Area and Data Used 

2.1. Study Area 

In order to address the research questions and test the developed approaches and methods, 
Bitterfeld/Wolfen, located in the Federal State Saxony-Anhalt, Germany, was selected as a study area 
(Figure 1). Yet again, to make precise application of improved and developed methods in this study 
area, an area of about 100 km2 in urbanized zone of Bitterfeld/Wolfen (latitude 51°35′30″–51°41′30″ 
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and longitude 12°14′10″–12°20′0.5″) consisting of a long term monitoring network (LTM) of 357 
wells in the Tertiary and 462 wells in the Quaternary aquifer was selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of the study area in Bitterfeld, Federal State of Saxony-Anhalt, 
Germany (a) Saxony-Anhalt in eastern Germany, (b) Federal State of Saxony-Anhalt,  
(c) study area of 100 km2 used for monitoring network optimization in Bitterfeld/Wolfen 
showing location of groundwater monitoring wells). 

In terms of geography, the western part of the study area is covered by glacial outwash sediments, 
whereas the flood plain of the Mulde river constitutes the eastern part of research area [23]. The 
geological setting of the research area reveals the presence of pre-tertiary rocks (overlaid by Cenozoic 
sediments), separated hydro-geologically from one another by clay layer at the depth of 50–70 m [24]. 
An upper Quarternary aquifer system, lower Tertiary aquifer system and pre-tertiary basement 
constitutes a geological cross section in the research area as portrayed by the Bitterfeld/Wolfen model 
Stollberg, Gossel et al. [25]. 
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2.2. Nature and Availability of Data 

An available data set of physicochemical parameters (α-Hexachlorocyclohexane (α-HCH), 
Monochlorobenzene (MCB), temperature, pH-value, oxidation potential (Eh), sulphate (SO42−), 
sulphite (SO32−), nitrate (NO3−), ammonium (NH4+) and iron (Fe3+)) from the period 2003 to 2009 were 
used for LTM network optimization. Assessory information like name of the groundwater observation 
well, coordinates, elevation data of the monitoring well, screen depth, stratigraphic geological layer, 
stratigraphic horizon (Quaternary (Q), Tertiary (T) and Quaternary-Tertiary (Q-T)), the date and time 
of sampling and the name of the analysing laboratory (Table 1) were also available. In the table, the 
9th column gives the total number of wells and samples during the overall period 2003–2009. 

Table 1. Number of wells and samples from 30 September 2003 to 15 December 2009, 
showing number of wells monitored each year for physicochemical parameters. 

Year 2003 2004 2005 2006 2007 2008 2009 2003–2009 
No of well 477 579 496 663 682 521 38 827 

No of sample 796 749 729 847 711 519 38 4389 
pH 786 719 720 865 501 519 38 4148 
Eh 787 701 703 841 501 519 38 4090 

NO3
− 787 709 719 866 414 519 31 4045 

SO3
2− 796 703 700 864 424 519 31 4037 

SO4
2− 795 729 720 866 424 519 31 4084 

NH4
+ 717 729 720 866 420 519 31 4002 

Fe2+ 0 8 102 18 0 0 0 128 
Fe3+ 772 709 694 841 475 519 38 4048 

α-HCH 772 682 698 823 500 519 38 4032 
MCB 735 678 739 2156 1954 2307 2097 10,666 

3. Methods 

Design and improvement of monitoring strategies requires the description of its components. The 
components of groundwater monitoring strategy, analyzed for monitoring scenario in the study area, is 
represented in the logic diagram (Figure 2). 

Among the groundwater physicochemical properties and contaminants concentration data, 
representative contaminants were first identified and then prioritized for inclusion in the monitoring 
strategy. Their associated uncertainties along with spatial and temporal variance were incorporated. 

3.1. Selecting the Representative Variable 

Identification of monitoring components in the research area was done through Principal 
Component Analysis (PCA). PCA of the normalized variables was performed to extract significant PCs. 
The variables were standardized through z-scale transformation to avoid misclassification due to 
difference in data dimensionality [26,27]. PCA provides information about the principle variables 
responsible for spatial variation in groundwater quality [28]. 
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Figure 2. Logic diagram showing components of groundwater monitoring strategies as a 
circular continuous process. 

Measures of descriptive statistics in conjunction with statistical modelling of all available water 
quality and contaminant concentration data were used to identify the representative contaminants. 
World Health Organization (WHO) standards for drinking water and maximum contamination limit 
(MCL) of pollutants and contaminant concentration as well as associated human health risk were 
considered in the course of identification of the representative contaminants [29,30]. 

3.2. LTM Network Optimization 

Necessary information about contaminants, including their properties, hydro-geochemical 
properties of aquifers, and other related information, are the pre-requisites for optimization of LTM 
network. Representative contaminants in the study area were MCB, SO42 −and α-HCH, which was 
identified based on PCA that was used for monitoring network optimization. MCB and SO42− represent 
organic and inorganic contamination respectively in the research area [31,32]. α-HCH, which is an 
organochloride and one of the isomers of hexachlorocyclohexane (HCH), represents pesticides [33,34]. 

3.2.1. Spatial Optimization Methods 

Redundant wells were predicted using Geostatistical Temporal-Spatial algorithm (GTS) on a 
concrete basis that the remaining wells represent the same amount of statistical information about the 
underlying plume [35,36]. GTS concept considers a well or its group redundant if it plays insignificant 
contribution to the interpolated map of contaminant plumes. The investigation steps involved in 
locating essential and redundant wells are shown in Figure 3. 

An interpolated contaminant concentration plume was generated with input data of MCB, α-HCH 
and SO42− at specified locations of the well. The maximum concentration limit (MCL) for each 
contaminant i.e., 100 μg/L, 0.2 μg/L and 0.25 g/L respectively for MCB, α-HCH and SO42− [30] was 
given as input indicator limit to the statistical algorithm. The contaminant concentration was converted 
into an indicator value as 
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1. Grid width 
2. Dimension dependency
3. Contaminants association 1. Monitoring location

2. Sampling frequency

Analysis

Feedback to update

Monitoring network optimization

Factor influencing

1. Groundwater flow direction
2. Aquifer homogeneity

Dependency

 



Hydrology 2015, 2 153 
 

iC(t) = 1 if z(t) > C and 0 if z(t) ≤ C (1) 

where, iC(t) is the indictor value, z(t) is the concentration at time t, and C is the maximum 
contamination limit (MCL). 

 

Figure 3. Research steps to locate essential and redundant wells and to propose new wells in 
the existing monitoring network (Modified from Cameron and Philip M. Hunter (2010) [36]). 

Once again, to take into account the correlation based on distance and direction between pairs of 
sampling locations for each contaminant, the empirical variogram was modelled. The empirical spatial 
variogram, γ, as a function of lag distance can be expressed as: 
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where Δh is the targeted lag distance and may depend on direction; xi and xj are the ith and jth 
monitoring well locations; and N(Δh) is the number of indicator pairs contributing to the summation 
for lag Δh. 
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Numerical weight was given to the wells based on global kriging and a plume map was generated 
for the monitoring network. For this process, two intermediate computations were carried out: 

(i) the local kriging weights of sampled locations which were processed to generate a “global” 
interpolation weight for each well [37]; and (ii) the local kriging estimation variance which indicate the 
relative uncertainty of the local block estimates in comparison to the estimates at other blocks [36]. 

Spatial-temporal algorithm incorporates series of procedural steps to estimate global interpolation 
weight and the local kriging estimation variance. At first, the study area is divided into sets of  
non-overlapping blocks. The set of closest sampled locations is then located at each block with the 
help of simple search algorithm. Then, local kriging weights (λB) is computed for each well based on 
the spatial configuration of known indicator value within and surrounding the block as well as spatial 
correlation between average block location and each known indicator by using modelled spatial 
covariance function. 

A block indicator estimate is then generated with the combination of local weights and indicator 
values. A block indicator estimate consist of weighted average of the n(xB) indicators located within 
the search radius of the block (xB), which is estimated as [36]: 

∑
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for xi ϵ search radius of block xB. 
Global interpolation weights (λG) is generated by averaging the local kriging weights to the given 

well that can be used to estimate the well’s overall contribution to the interpolated map [36], and are 
given by: 
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where NB is the total estimated number of blocks and xi is the location of the ith sampled well. 
The global kriging weights provide relative rankings of well locations in terms of independent 

spatial information which gives a logical interpretation that the wells with the lowest global kriging 
weights are predominantly spatially redundant wells. If the temporary removal of the subsets of these 
wells does not significantly affect the nature of plume map, these wells were permanently removed. 
This process is repeated until the removal of a subset of wells change the plume map. Performing this 
process subsequently creates a situation where the removal of subsets significantly changes the plume. 
At this point in time, the subset is not removed from the network. In order to fix the limitation for such 
changes in plume map, a two-sided (upper and lower) confidence interval of 95% is assigned while 
limiting median plume concentration. 

Again, the relative spatial uncertainty for the installation of new monitoring wells in the existing 
LTM network based on the local kriging variance is given by the global kriging variance (kvG), 
defined as: 

∑
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where xB denotes the location of the Bth block and kvB (xB) is the local kriging variance of the Bth  
block [36]. 

The groundwater LTM network has been spatially optimized for MCB, α-HCH and SO42− in 2-D 
and 2.5-D of the groundwater aquifer. The inherent assumption in 2-D analysis is the existence of all 
well locations in flat 2-D which is most applicable with a single, fairly uniform and well-connected 
aquifer. In contrast, the 2.5-D analysis assumes multiple hydrogeological layers in the aquifers without 
hydraulic interconnection in which LTM is optimized for separate hydrogeological layers. The 
Quadratic Logistic Regression (QLR) mapping algorithm then uses the data (segregated into subsets 
representing one chemical of concern for each vertical zone and time slice triplet) from a given subset 
to map the layer and time frame represented by that given triplet. 

3.2.2. Temporal Optimization Method 

To optimize groundwater monitoring network temporally, Sen’s method [38] was applied which is 
based on iterative thinning. The algorithm consists of (i) estimating a trend using the entire time series; 
(ii) thinning the time series by a randomly selected fraction of the measurements; and then  
(iii) re-estimating the trend to determine if the slope estimate is still close to the original slope. The 
random removal is only retained if the measured slope is within the limits of the confidence interval on 
the slope using the full dataset [36]. To eliminate the effect of statistical assumptions inherent in 
standard linear regression methods, trend estimation is carried out using Sen’s method [38,39]. Sen’s 
procedure is non-parametric, readily adapted to non-detect measurements and irregular sampling 
frequencies [40]. Furthermore, this method precludes the calculation of slope for missing points and 
can predict the median slope even if the number of undetected measurements is less than (n − 1)/2. 

Sen’s estimate (Q) is simply the median value of the resulting list of slopes and is given by: 

Q =
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝑗𝑗 − 𝑖𝑖

 (6) 

Q is the slope between data points; xi and xj are concentrations measured at times i and j; Time j is 
after time i (j > i). 

Q = median slope = Q[(N + 1)/2] if N is odd = (Q[N/2] + Q[(N + 2)/2])/2 if N is even (7) 

where N is the number of calculated slopes 
A two side (M1, upper and M2, lower) confidence interval for the median slope is estimated using 

Zstatistic and Mann-Kendall statistic (VAR(S)). If there is a two-sided confidence interval of 95%, the  
Z(1−0.05/2) = Z0.975 = 1.96. Mann-Kendall statistic (VAR(S)) [41,42] is given by: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆) =
1

18
�𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) −�𝑡𝑡𝑝𝑝(𝑡𝑡𝑝𝑝 − 1)(2𝑡𝑡𝑝𝑝 + 5)

𝑞𝑞

𝑝𝑝−1

� (8) 

where n is number of sampling data points, tp is the number of ties for the pth value and q is the 
number of tied values. Equation (8) may be used for values between 10 and 40. The range of ranks for 
the specified confidence interval (Ci) [38] is given as shown below: 

𝐶𝐶𝑖𝑖 = 𝑍𝑍1−𝑖𝑖 2⁄ × �𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆) (9) 
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Taking the value of Equation (9), the ranks of the lower (M1) and upper (M2 + 1) confidence limits 
can be calculated using the following relation: 

𝑀𝑀1 =
𝑁𝑁 − 𝐶𝐶𝑖𝑖

2
 And 𝑀𝑀2 =

𝑁𝑁 + 𝐶𝐶𝑖𝑖
2

 (10) 

The values of lower (M1) and upper (M2 + 1) confidence limits were used to define lower and upper 
boundaries along the median slope. The temporal optimization of the existing groundwater monitoring 
network was carried out using α-HCH, MCB and SO42− concentration data set from 2003–2009 for 
each contaminant separately and together.  

3.3. Factors Influencing Monitoring Optimization Results 

3.3.1. Block Width and Dimension Dependency 

In the monitoring network optimization using geostatistical methods, a plume map of well location 
is created with the help of global kriging weight [8] computed by interpolation method which depends 
upon width and number of blocks. Hence, in the optimization process, a block width from 1000 m to  
1 m was demarcated in order to discover ambiguities in the method. 

The 2-D treatment ignores the sampling depth of monitoring well while in the 2.5-D case, the 
aquifer is assumed to have the number of hydrogeological layers and thus the sampling depth of the 
monitoring wells needs to be taken into account. For systematic study of the influence of dimension 
and block width on monitoring network optimization methods, the optimization process has considered 
block widths from 1000 m to 1 m in both 2 and 2.5 dimensions. 

3.3.2. Contaminants Association 

Based on PCA of hydro-geochemical data, contaminant concentration of three representative 
variables, α-HCH, MCB and SO42− are used individually to monitor network optimization. The likely 
influence of multiple variables on optimization process is examined using data sets in groups as well as 
all three variables together. In this case, co-kriging was used to compute co-kriging numerical weights 
from contaminant concentrations for each monitoring well which in turn were used to create a plume 
map of the monitoring network which is used for geostatistical optimization of monitoring network as 
explained in Section 3.2.1. 

3.4. Groundwater Flow Direction and Aquifer Homogeneity 

In addition to spatio-temporal optimization of ground water monitoring network, direction of  
ground-water flow and homogeneity of the aquifer was determined. Groundwater flow direction is 
known to play a prominent role in monitoring network optimization. The directional dependency was 
studied using directional variograms. Estimation of experimental variogram was carried out using 
Golden Surfer software [43]. 

Since variograms based on contaminant concentration data set were anisotropic in nature, valid 
variogram model incorporating directional dependence were constructed using standard models to 
model the data set. The best fitting model, considering range, sill, nugget effect and shape of the 
model, was selected. A variogram was built from a concentration data set of α-HCH, MCB and SO42− 
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for the years 2003–2009, according to seasons (summer: May–October; winter: November–April) and 
to hydrologic seasons (March–May: High groundwater level, September–November: Low 
groundwater level). The range and sill were estimated for various directional variogram models. 

A homogeneity index (RV index) which numerically estimates homogeneity of the aquifer was defined 
based on range, sill and variance of the variogram [44] based on the variogram model as given by: 

Homogeneity index =
range

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
2

 (11) 

3.5. Integrating Approaches and Improving Groundwater Monitoring Strategy 

New sets of methods were analyzed with new approaches based on integrated statistical and 
geostatistical methods, integrated in the light of various optimization objectives. However, basic 
framework and components of groundwater monitoring strategies were duly taken into consideration 
while subjecting these methods to integration. The new integrated methods, although based on different 
approaches, could be used as an impeccable tool for groundwater monitoring network optimization and 
feedback for updating groundwater monitoring strategies. While integrating these methods, the 
advantages and disadvantages of the methods being used have also been analysed. 

4. Results 

4.1. Representative Variable in the Research Area 

For the purpose of dimension reduction and analysis of major components loading the system, PCA 
was applied to a matrix of hydro-geochemical data. The first four principal components in this dataset 
with eigenvalues greater than one explain 66% of the cumulative variance. The significance of the 
parameters in four components was further depicted by the component matrix extracted with PCA and 
varimax with the Kaiser Normalization rotation method. At 75% significance level, SO42−, Fe, pH and 
Eh play a major role in the system whereas α-HCH and MCB are minor components. In the first 
component, SO42− and Fe have positive loading. In the second component, Eh has positive loading. 
However, pH is has negative loading because the acidic groundwater environment in the study area 
arises from a high SO42− concentration. SO42− and Fe have positive loading in the first component 
whereby Eh has positive loading in the second component. The negative loading of pH could be linked 
to the acidic groundwater environment in the study area from high SO42− concentration. 

4.2. Optimization of LTM Network 

4.2.1. Spatial Optimization of LTM Network 

Both types of aquifers were considered separately during the spatial optimization of LTM network  
in accordance with the methods described in Section 3.2. The optimized monitoring network suggests 
292 wells out of 462 wells in the Quaternary aquifer and 256 wells out of 357 wells in the Tertiary 
aquifer for monitoring needs at the suggested temporal interval. 
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The spatial uncertainties analysis, resulting from the global kriging variance (using Equation (5)) 
made recommendations for 22 and 41 new monitoring wells, respectively, in the Tertiary and 
Quaternary aquifers. The spatial distribution of redundant, essential, and proposed new wells in the 
Quaternary and Tertiary aquifer is depicted in Figure 4. Similar kriging weights in the original and 
optimized LTM network datasets points out that reduction in observation points does not compromise 
the quality or resolution of the collected samples as long as the distribution is logically and 
conveniently designed. 

 

Figure 4. Optimized LTM network map showing location of essential, redundant, and 
proposed new wells in the monitoring network. 

4.2.2. Temporal Optimization of LTM Network 

Monitoring network was temporally optimized through statistical approach using Sen’s method, 
with 95% confidence intervals around the slope estimates, as described in Section 3.2.2. The outputs 
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from temporal optimization are the sampling intervals at 3 quartiles (lower, median and upper) for 
individual monitoring well and each monitoring parameter (Table 2). The optimization results reveal 
that the optimization differs remarkably while considering pair and multiple contaminants. 

Table 2. Temporal optimization of monitoring network in Quaternary and Tertiary aquifer 
for monochlorobenzene (MCB), α-HCH and SO42−. 

V. Zone COC 
Present Sampling Interval (Days) Recommended Sampling Interval (Days) 

Lower 
Quartile 

Median 
Quartile 

Upper 
Quartile 

Lower 
Quartile 

Median 
Quartile 

Upper 
Quartile 

Q MCB 92 210 254 205 328 503 
Q α-HCH 138 181 224 298 327 418 
Q SO4

2− 179 217 268 325 506 704 
T MCB 143 221 280 282 443 810 
T α-HCH 224 224 224 342 398 553 
T SO4

2− 188 217 278 435 589 836 
Q all 138 210 254 298 328 503 
T all 188 221 278 342 443 810 

Both all 161 217 261 311 420 628 
Note: Q: Quaternary aquifer; T: Tertiary aquifer; COC: Chemical of Concern. 

In order to clearly visualize and precisely describe the temporal optimization results of three 
contaminants in combination, the recommended median quartile sampling frequency for the 
monitoring wells was divided into five classes: three months, six months, one year, two years and three 
years. Recommendations for specific number of monitoring wells with respect to each of the 
categorized temporal sampling interval are specified in Table 3. 

Table 3. Number of monitoring wells for each sampling interval. 

Sampling Interval 3 Months 6 Months 1 Year 2 Years 3 Years Total 
Quaternary 34 86 173 76 93 462 

Tertiary 16 69 114 84 74 357 
Total No. of wells 50 155 287 160 167 819 

Figure 5 shows the distribution of monitoring wells and their recommended sampling intervals. The 
highest number of sampling wells is recommended at the yearly sampling interval. 

In the study area, the overall temporally optimized sampling interval was recommended as 238 
days, 317 days and 401 days in terms of lower, median and upper quartiles respectively. 

4.3. Factor Influencing Monitoring Optimization Results 

4.3.1. Dimension and Block Width Dependency 

With an objective of incorporating dependency of dimension and block width on optimization 
process, the optimization was carried out for different interpolation block widths (from 1000 m to 1 m) 
for both aquifers in both 2 and 2.5 D dimensions as described in Section 3.3.1. 
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Figure 5. Statistically temporally optimized LTM network map showing recommended 
temporal frequency of the monitoring wells in the monitoring network. 

Optimization in 2-D Aquifer 

Considering the aquifer as a 2-D plain, groundwater monitoring network was spatially optimized for 
MCB, α-HCH and SO42. The result unveiled a significant change in number of suggested/essential 
wells as well as existing redundant wells with changing block width for interpolation (from 1000 m to 
1 m). The increase in the relative spatial uncertainties based on local kriging variance with decreasing 
block width eventually recommends installation of new monitoring wells. 

The overall analysis of optimization in 2-D plain unveils that the relative spatial uncertainty 
increases with decreasing block width from 200 m to 1 m in both aquifers (Figures 6 and 7), thus 
suggesting the need of installation of 63 and 36 new wells, respectively, in Quaternary and Tertiary 
aquifers at 1 m block width. 
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Figure 6. Block width dependency in the LTM network optimization in the Quaternary 
aquifer for MCB, α-HCH and SO42− in a 2-D plain. Essential, redundant and total number 
of wells is on left Y-axis and number of new wells is on right Y-axis. 

 

Figure 7. Block width dependency in the LTM network optimization in the Tertiary 
aquifer for MCB, α-HCH and SO42− in a 2-D plain. Essential, redundant and total number 
of wells are on left Y-axis and the number of new wells is on right Y-axis. 

Optimization in a 2.5-D Aquifer 

Spatial optimization for MCB, α-HCH and SO42− in groundwater LTM network has been conducted 
in combination in 2.5-D aquifer. The LTM network is optimized separately for each  
hydro-stratigraphic layer in the aquifer using data from that layer only. 

In the case when all three contaminants are considered together, the change in block width for 
interpolation (1000 m to 1 m) does not significantly change the number of suggested wells (Figures 8 
and 9). The increment of spatial relative uncertainty significantly with decreasing block width from  
20 m to 1 m suggests the installation of 58 and 38 new monitoring wells in Quaternary and Tertiary 
aquifers, respectively. 
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Figure 8. Block width dependency in the LTM network optimization in the Quaternary 
aquifer for MCB, α-HCH and SO42− considering 2-D and 2.5-D aquifers. Essential, 
redundant and total number of wells are on left Y-axis and number of new well is on right 
Y-axis. 

 

Figure 9. Block width dependency in the LTM network optimization in the Tertiary 
aquifer for MCB, α-HCH and SO42− in 2-D and 2.5-D aquifers. Essential, redundant and 
total number of wells are on the left Y-axis and the number of new wells is on the right  
Y-axis. 

4.3.2. Contaminants Association 

To account for the association between the contaminants, the LTM network was spatially optimized 
taking 7 m interpolation block width for the contaminants MCB, α-HCH and SO42− in pairs as well as 
all grouped together, considering the groundwater aquifer separately as 2-D plain and as 2.5-D aquifer. 
Dependency of contaminants association on network optimization is supported by result that the spatial 
optimizations of the LTM network for MCB and α-HCH individually show less redundancy and low 
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recommendations for new monitoring wells while that only for SO42− recommends higher number of 
redundant wells (70%). Such effect of incorporating greater number of contaminants is presented in 
Tables 4 and 5. For example, in the Quaternary aquifer considered as a 2-D plain, for α-HCH and 
SO42−, 73 wells are recommended, for MCB and SO42, 293 wells are recommended and for MCB and 
α-HCH, 335 wells are recommended. However, 244 wells are recommended when considering all 
three contaminants MCB, SO42− and α-HCH together (Table 4). Similarly, in the tertiary aquifer 
considered as a 2.5-D plain, 72, 267, 247 and 213 wells are recommended, respectively, for 
combination of α-HCH and SO42−; MCB and SO42−; MCB and α-HCH; and MCB, SO42− and α-HCH 
together (Table 5). 

Table 4. Number of essential, redundant and new well location recommendation from  
2-D groundwater monitoring network optimization for α-HCH and SO42; MCB and SO42−; 
MCB and α-HCH; and MCB, SO42− and α-HCH in Quaternary (462 wells) and Tertiary  
(357 wells) aquifers. 

Quaternary 
Aquifer/Contaminants 

α-HCH 
and SO4

2− 
MCB and 

SO4
2− 

MCB and 
α-HCH 

MCB, SO4
2− 

and α-HCH 
Essential well 73 293 335 244 

Redundant well 351 169 127 218 
New well location 14 7 14 14 
Tertiary Aquifer 

 
Essential wells 52 233 247 220 
Redundant well 302 124 110 137 

New well location 0 0 0 0 

Table 5. Number of essential, redundant and new well location recommendation from  
2.5-D groundwater monitoring network optimization for α-HCH and SO42; MCB and  
SO42− MCB and α-HCH; and MCB, SO42− and α-HCH in Quaternary (462 wells) and 
Tertiary (357 wells) aquifers. 

Quaternary 
Aquifer/Contaminants 

α-HCH 
and SO4

2− 
MCB and 

SO4
2− 

MCB and 
α-HCH 

MCB, SO4
2− 

and α-HCH 
Essential well 107 334 341 298 

Redundant well 317 127 140 164 
New well location 0 2 1 14 
Tertiary Aquifer 

 
Essential well 72 267 247 213 

Redundant well 282 90 148 144 
New well location 0 3 8 5 

In the optimization of LTM network for combination of three contaminants, the local kriging weight 
of each contaminant is averaged, which clearly depicts the dependence of relative spatial uncertainty 
with the spatial distribution of each contaminants. It has been observed that optimization for each type 
of aquifer considering individual contaminants and in groups gives recommendations for different 
numbers and locations of new wells (Tables 4 and 5). 
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4.4. Groundwater Contaminants Flow Direction and Aquifer Homogeneity 

Geostatistical and flow direction modeling methods have been used to predict the groundwater flow 
direction and integrate its effect into LTM network optimization. The spatial characterization of the 
groundwater contamination scenario (degree of spatial co-relation between contaminant concentration 
values) was observed using an experimental variogram exhibiting the contaminant concentration data 
of MCB, α-HCH and SO42−. 

The geometric anisotrophy as depicted by the experimental variogram was observed for each 30° of 
lag direction with reference to North direction. Again, the heterogeneity in the nature of geological 
formation was quantified by using a homogeneity index called RV Index (Equation (11)), which takes 
its base from spatial variability of contaminant concentration distribution. 

4.4.1. Contaminant Wise Variogram Modelling 

Based on the results from experimental variogram, geometrical anisotropy was observed in the data 
set of α-HCH, as range and sill differed in different directions. 

The experimental variogram (incorporating each 30° of lag direction) revealed the highest range in 
Northern direction (0°) which is also coherent with the results from RV index that was highest in the 
Northern direction for Quaternary aquifer (Table 6). Meanwhile, the variogram showed highest range 
and RV index at 30° from the Northern direction for the Tertiary aquifer (Table 6). These results 
specify that the overall conspicuous concentration of α-HCH flowed towards the North in both 
aquifers. In case of Tertiary aquifer, there was slight deviation in the flow towards east direction. 

Table 6. Directional variogram modelling α-HCH concentration in the long term 
monitoring network (LTM) network in Quaternary and Tertiary aquifers (January 2003 to 
February 2009). 

α-HCH for Quaternary Aquifer  
(2003–2009) 

α-HCH for Tertiary Aquifer  
(2003–2009) 

Model: Gaussian, Variance: 0.62 Model: Gaussian, Variance: 0.57 
Direction Range Sill RV Index Direction Range Sill RV Index 

Omni 404 0.64 641.27 Omni 1182 0.70 1862.88 
0 666 0.62 1074.19 0 960 0.79 1416.97 
30 464 0.64 736.51 30 1340 0.67 2161.29 
60 385 0.66 601.56 60 999 0.69 1591.91 
90 321 0.66 501.56 90 710 0.70 1118.11 

120 360 0.65 566.93 120 722 0.70 1137.01 
150 433 0.63 692.80 150 750 0.68 1200.00 
180 590 0.62 951.61 180 960 0.69 1529.76 

The relatively lower RV index in the Quaternary aquifer than in the Tertiary aquifer shows high 
heterogeneity in the Quaternary aquifer. 
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4.4.2. Season Wise Variogram Modelling for α-HCH Data 

Seasonal variability was embodied into optimization by using the data set of α-HCH for 
hydrological summer and winter seasons to model the experimental variogram. Periodic data from 
May to October (2003–2009) and November to April (2003–2009) were categorized as hydrological 
summer and winter seasons, respectively. Analysis of the experimental variogram, using α-HCH data 
for the hydrological summer season, again showed the highest range in the North direction as well as 
highest RV index in Northern direction for both Quaternary and Tertiary aquifers (Tables 7 and 8). 
These results show that preferential groundwater flow and α-HCH concentration movement occurred 
in the Northern direction. 

Table 7. Directional variogram modelling for α-HCH concentration in the LTM network in 
Quaternary aquifers for summer and winter seasons (May to October in 2003–2009). 

α-HCH for Quaternary Aquifer  
(May to October in 2003–2009) 

α-HCH for Quaternary Aquifer in Winter Seasons  
(Nov. to April from 2003–2009) 

Model: Gaussian, Variance: 0.70 Model: Gaussian, Variance: 0.68 
Direction Range Sill RV Index Direction Range Sill RV Index 

Omni 491 0.78 661.99 Omni 669 0.73 954.01 
0 491 0.70 701.43 0 398 0.74 562.54 
30 387 0.75 532.54 30 534 0.71 771.12 
60 340 0.77 461.52 60 543 0.68 801.48 
90 354 0.78 477.28 90 397 0.72 570.20 

120 364 0.79 488.59 120 411 0.73 585.47 
150 333 0.76 456.16 150 422 0.74 596.89 
180 390 0.65 577.78 180 513 0.73 729.21 

Table 8. Directional variogram modelling of α-HCH concentration in the LTM network in 
Quaternary and Tertiary aquifers for winter seasons (November to April from 2003–2009). 

α-HCH for Tertiary Aquifer  
(May to October in 2003–2009) 

α-HCH for Tertiary Aquifer in Winter Seasons  
(Nov. to April from 2003–2009) 

Model: Gaussian, Variance: 0.70 Model: Gaussian, Variance: 1.25 
Direction Range Sill RV Index Direction Range Sill RV Index 

Omni 1166 0.41 2854.69 Omni 585 1.41 439.85 
0 1258 0.47 2875.43 0 579 1.31 452.34 
30 1062 0.46 2455.49 30 550 1.25 440.00 
60 939 0.38 2392.36 60 600 1.33 465.12 
90 888 0.43 2122.12 90 850 1.26 677.29 

120 737 0.43 1761.26 120 1050 1.22 850.20 
150 793 0.42 1934.15 150 823 1.25 658.40 
180 882 0.44 2082.89 180 526 1.32 409.34 

In the next round, the experimental variogram was modelled using α-HCH data for the hydrological 
winter season (November to April, 2003–2009). The experimental variogram showed the highest range 
in the direction of 60° from North in the Quaternary aquifer (Table 8) whereas the range was highest in 
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the direction of 120° from North in Tertiary aquifer. Further, the RV index is lower in the Quaternary 
aquifer than the Tertiary aquifer, thus indicating high heterogeneity in Quaternary aquifer (Table 8). 

4.4.3. Year Wise Directional Variogram Modelling for α-HCH Data 

To acquaint with the geometrical anisotropy of the data set, variogram modelling was carried out 
for the monitoring data sets of the years 2005 and 2006. To understand the year wise alterations in the 
homogeneity of aquifer and flow direction, variogram modelling was carried out for the monitoring 
data sets of the years 2005 and 2006. The experimental variogram showed that the range was highest 
in the Northern direction, as shown in Tables 9 and 10. 

Again, the range was highest at 30° from North in the Tertiary aquifer. The RV index varied with 
different lag directions, showing no distinct pattern or peak. 

Table 9. Directional variogram modelling α-HCH concentration in the LTM Network in 
Quaternary and Tertiary aquifers for 2005. 

α-HCH for Quaternary Aquifer in 2005 α-HCH for Tertiary Aquifer in 2005 
Model: Gaussian, Variance: 0.89 Model: Gaussian, Variance: 1.05 

Direction Range Sill RV Index Direction Range Sill Index 
Omni 850 0.89 955.06 Omni 750 1.33 631.31 

0 500 0.93 550.96 0 937 1.30 797.45 
30 533 0.92 588.30 30 1125 1.35 937.50 
60 758 0.95 826.16 60 933 1.30 794.04 
90 856 0.93 939.63 90 750 1.30 638.30 

120 800 0.94 874.32 120 750 1.30 638.30 
150 533 0.95 580.93 150 562 1.32 474.26 
180 500 0.91 555.56 180 687 1.33 577.31 

Table 10. Directional variogram modelling α-HCH concentration in the LTM Network in 
Quaternary and Tertiary aquifers for 2006. 

α-HCH for Quaternary Aquifer in 2006 α-HCH for Tertiary Aquifer in 2006 
Model: Gaussian, Variance: 0.59 Model: Gaussian, Variance: 1.05 

Direction Range Sill RV Index Direction Range Sill RV Index 
Omni 375 0.65 605.23 Omni 1333 0.81 1904.29 

0 468 0.61 793.22 0 1684 0.72 2405.71 
30 437 0.68 740.68 30 1727 0.84 2467.14 
60 375 0.67 635.59 60 1333 0.86 1904.29 
90 375 0.67 635.59 90 1058 0.84 1511.43 

120 375 0.66 635.59 120 1058 0.84 1511.43 
150 375 0.66 635.59 150 1055 0.68 1507.14 
180 375 0.53 635.59 180 1277 0.69 1824.29 

4.5. Integrating Approaches for Improving Groundwater Monitoring 

As an important objective of this research, statistical and geostatistical methods were taken as a 
basis for integrating new approaches to illustrate several sets of methods for different optimization 

 



Hydrology 2015, 2 167 
 
objectives. Figure 10 depicts integration of statistical and geostatistical methods. Such integration was 
executed to fully understand, evaluate and optimize groundwater monitoring with reference to 
groundwater monitoring of a contaminated site. 

Multivariate and descriptive statistics were the primary element of groundwater monitoring 
framework used for analysis, classification, modelling and interpretation of large volume of available 
data set. The second element consisted of optimization of existing LTM networks based on target 
variables (MCB, α-HCH and SO42−) using a geostatistical spatial optimization algorithm (GTA). GTS 
itself accounted for dimension dependency, influence of block width for interpolation and the 
influence of multiple contaminants on the LTM network optimization, whereas variogram modelling 
estimated the groundwater flow direction and heterogeneity of aquifers. As third and fourth elements of 
the groundwater monitoring framework, the obtained results were analysed and interpreted incorporating 
the prominent effects of other influencing factors such as legal requirements and land use changes so 
that essential, redundant and new monitoring wells in the existing LTM network could  
be recommended. 

 

Figure 10. Research steps showing the integration of statistical and geostatistical methods 
for groundwater monitoring. 
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Strategic planning of monitoring network optimization is crucial to groundwater monitoring since it 
is an important component of monitoring strategies [45,46]. With an overall objective to improve the 
monitoring strategies, the developed and existing methods were applied to the observed and  
model-based data sets for the mega-contaminated site, Bitterfeld/Wolfen. 

The existing monitoring strategies can be improved by incorporating the optimization outcomes  
from integrated methods along with functionality consideration of expert knowledge pertaining to the 
study area. 

5. Discussion 

PCA technique is an effective technique for pattern recognition which attempts to explain the 
variance of a data set of intercorrelated variables with small set of independent variables [47]. 
Representative variables for groups of groundwater contaminants (SO42−, α-HCH and MCB) were 
selected for monitoring network optimization in the study area based on these PCA results. 

The optimization results from geostatistical methods suggests the need for monitoring for only 292  
out of 462 wells in the Quaternary aquifer and 256 out of 357 wells in the Tertiary aquifer (Figure 4). 
Furthermore, the spatial uncertainty analysis in terms of kriging variance recommends 22 and 41 new 
monitoring wells to be added to the existing network in the Tertiary and the Quaternary aquifers, 
respectively, when three representative contaminants (α-HCH, MCB and SO42−) are considered 
together. Given the presence of variety of highly mobile and persistent contaminants in the research 
area [48,49], monitoring network optimization with more number of available contaminants would 
result in better optimization (as presented in Sections 3.3.2. and 4.3.2). 

Temporal optimization was performed with due consideration of pairs of contaminants as well as 
three contaminants together; recording the intervals in terms of lower quartile, median quartile and 
upper quartile for each monitoring well for each parameter. The result shows that the optimization 
differs markedly for single and multiple contaminants (Table 2). 

Optimization in the 2-D plain considering three contaminants together shows the increase in relative 
spatial uncertainty with decreasing block width form 200 m to 1 m in both aquifers (Figures 6 and 7) 
suggesting installation of 63 and 36 new wells, respectively, in Quaternary and Tertiary aquifers at 1 m 
block width. Again, with the same consideration of contaminants in 2.5-D analysis, the change in 
block width for interpolation (1000 m to 1 m) has an insignificant effect on the number of suggested 
wells (Figures 8 and 9). In this case, the increment of spatial relative uncertainty significantly with 
decreasing block width from 20 m to 1 m suggests the installation of 58 and 38 new monitoring wells 
in Quaternary and Tertiary aquifers, respectively. A 2-D analysis treats all wells in a manner that they 
exist in a flat 2-D plane which should be more applicable in case of single, fairly uniform and  
well-connected aquifer [50]. On the other hand, a 2.5-D analysis treats the aquifer as comprising 
multiple Hydrogeological layers, each of which is considered separately during optimization within the 
GTS [36]. Again, the analysis reveals notable dependence of optimization of existing monitoring 
network on block width. With the gradual decrease in the block width, the recommendation of the 
number of new monitoring wells increase. The incorporation of the relatively influential role of block 
width for interpolation has not been documented in previous studies based on geostatistical  
methods [13,16]. Hence, this study has pioneered the incorporation of this factor in the monitoring 
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network optimization process. Previous studies have, however, addressed problems related to scale in 
hydrology such as the works of Bergström and Graham [51], Dooge [52], Gupta et al. [53], Sivapalan 
and Kalma [54] and Sivapalan et al. [55]. The results based on the present study gives 
recommendations of scale size of 100 m to 7 m for monitoring network optimization at local scale. 

The role of contaminants association was pronounced when three representative contaminants were 
considered in different pairs or all together (Tables 4 and 5). The optimization result in terms of the 
number of essential, redundant and new wells was found to be different. Spatial variograms for each 
contaminant was first estimated for the spatial covariance model, which was determined through a  
non-linear modelling program. This modelling utilized the Levenberg-Marquardt algorithm [56,57]. 
The fitting algorithm was set up to fit either a combination of up-to-three spherical, exponential and/or 
Gaussian components or a combination of up-to-three power model structures [36]. As the spatial 
variogram for each contaminant varies, the combination of two or more contaminants determines the 
covariance of the contaminants for the kriging interpolation. 

The analysis of flow direction (from January 2003 to February 2009) shows that α-HCH flows 
northwards in the Quaternary aquifer, whereas in the direction 30° from north in the Tertiary aquifer. 
This distinction in the flow direction with respect to aquifer type is the result of historic shift in flow 
direction from northwards to eastwards and then back to northwards. This represents source specific 
spreading direction of the α-HCH contaminant. The seasonal alterations in the groundwater flow 
system has also been documented in previous studies [58,59]. Seasonal influence was observed in both 
aquifers since the experimental variogram modelling using the α-HCH data shows north as the 
preferential flow direction in hydrological summer season (May to October in 2003–2009) while 
during hydrological winter season, the flow direction was 60° from north in the Quaternary aquifer and 
120° from north in the Tertiary aquifer (Table 8). Seasonal fluctuation in the water level in Mulde river 
and surrounding water bodies [60] and the location of contaminant source strongly control such 
seasonal variation in the flow direction. 

The geometric anisotropy in contaminant concentration data set using experimental variogram  
was the means of determining groundwater and contaminants flow direction (described in Section 3.4). 
Tables 6–9 show the prominent groundwater and contaminant flow direction that are revealed from the 
data sets of α-HCH, MCB and SO42− concentration. It has been shown that although the prominent 
groundwater and contaminant flow direction is northwards, various contaminants spread  
non-uniformly in varied time scale. The RV index points out the hydrogeological homogeneity in the 
aquifer in the direction where there is the highest range. The likely flow direction and homogeneity 
analysis in a year wise basis displayed the complete change in flow direction in 2006 which was 
towards east in Quaternary aquifer, but in the direction of 30° from north in the Tertiary aquifer during 
2005. The preferential flow direction was northwards in the Quaternary aquifer and 30° from north in 
the Tertiary aquifer. 

Groundwater monitoring network optimization methods are greatly challenged by other factors 
besides the problems associated with nature and availability of data. Given the existence of a wide 
range of methods for LTM network optimization, most of them fail to implicate the factors that 
influence the optimization methods [7]. New and improved approaches based on integrated statistical 
and geostatistical methods for optimization of monitoring network along with their possible 
implications are dealt with in this study. In addition, a range of deterministic factors and their influence 
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on application of these methods in the research area are analyzed. Existing monitoring strategies can 
be re-shaped by removing the existing redundancy as well as adding requisite newer monitoring wells. 
A new approach has been devised in this study by integrating statistical and geostatistical methods for 
spatio-temporal optimization of the LTM network which has been tested in the study area. The 
outcomes of this research can be taken as a basis for improving the strategies to make the long term 
monitoring program more efficient and equally effective. However, expert knowledge and site-specific 
peculiarities are important to take into consideration in order to implement this approach. 

6. Conclusions and Recommendation 

The results have verified that the geostatistical method, based on the kriging interpolation weight, 
shows realistic optimization results in terms of recommended essential, redundant and new monitoring 
wells. For the time being, several factors influencing optimization results such as block width, multiple 
contaminants association, and contaminant spreading direction were analyzed. The results obtained 
from such analysis revealed their significant role in the monitoring optimization process. Meanwhile, 
the network was temporally optimized using a statistical approach with the help of Sen’s method.  
Spatio-temporal optimization reduces the number of samples and optimizes the monitoring frequency, 
which could make the monitoring program more effective in terms of resource requirement. The 
flexibility inherent in both statistical and geostatistical approaches allow them to be operated at various 
confidence level limit set by user. Furthermore, these methods could be applied to field based real 
groundwater quality data set. 

Since various methods have strengths and weaknesses, the strength of these methods can be 
integrated on the basis of optimization objectives of groundwater monitoring strategies. For example, in 
a monitoring network where there is a low density of monitoring wells, statistical and geostatistical 
methods can be integrated. An understanding of the distribution of contaminants, component analysis 
can be gained, as well as temporal optimization can be done with the help of statistical methods, 
whereas spatial optimization of the monitoring network can be done by using geostatistical methods. 
Temporal optimization of the monitoring network can be carried out using statistical methods. In this 
manner, these methods can be systematically integrated in monitoring network optimization according 
to the prime objective of the groundwater monitoring strategies. 

Thus, the study has demonstrated that the existing monitoring network could be agreeably 
optimized using the presented statistical and geostatistical methods without the obvious fear of losing 
essential information from the current monitoring network. In order to accomplish sound groundwater 
resource management practices, necessary improvements in groundwater monitoring strategies is the 
basic key. As such, the efforts to optimize and evaluate the monitoring network will enhance the 
performance of the water management system. The methods presented in this research are convenient 
both in the case of inadequate networks, which need new monitoring wells as well as for dense 
monitoring networks, with redundant wells. The method can be conveniently used to find redundancy 
in the existing monitoring network as well as to locate necessary new monitoring wells in developing 
countries, whereas it is convenient to thin out the dense monitoring network (without losing valuable 
information) in developed countries. The integrated statistical and geostatistical method can be 
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integrated with expert knowledge and field attributes to improve existing monitoring strategies by 
adding or removing existing monitoring wells in the monitoring network. 
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