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Abstract: Flood pulses occur annually along the Tonle Sap River (TSR) due to the large volume of
water flowing from Tonle Sap Lake (TSL), its tributaries, and the Mekong River (MR). This study
describes the seasonal changes in inundation area and water volume in the floodplain along
the TSR over three years. The method employed time series remote sensing images of Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data, the digital elevation model (DEM)
of the Shuttle Radar Topography Mission (SRTM), bathymetric data, and observed water level data.
Adding normalized difference vegetation index (NDVI) as a “third band” in the maximum likelihood
classification (MLC) provided higher accuracy compared to thresholding NDVI and pure MLC
(two bands) only. The results showed that the inundation area ranged from 123.8 to 3251.2 km2

(mean: 1028.5 km2) with overall accuracy of 96.9%. The estimated water volume ranged from 418.3 to
2223.9 million m3 (mean: 917.3 million m3) from the dry to wet season, respectively. Seasonally,
the TSR floodplain accounted for up to 5.3% and 3.2% of the mean annual inflow and outflow of the
TSR, respectively. In addition to the TSL water reservoir, the TSR and its floodplain exchanged and
stabilized the flow of the MR and its downstream delta, respectively. Overall, the obtained results
have enhanced our understanding of the TSR, supporting further studies on river connectivity and
reversal flow in this study area.
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1. Introduction

Flooding is an important cyclic episode in floodplain ecosystems, actively bringing in and
exchanging water, sediments, and nutrients [1–3]. In Cambodia, the Tonle Sap River (TSR) plays
a unique hydrological role by actively exchanging water and materials between Tonle Sap Lake (TSL)
and the Mekong River (MR) through reversal flow [4]. During the wet season, the TSR receives
a large amount of water, filling up the TSL and its floodplains, and increasing the inundation area
six-fold compared to the dry season. During the dry season, the TSL releases water to MR via the
TSR, ensuring a sustainable flow to the Mekong Delta. This immutable connectivity of TSL and TSR
is crucial for maintaining productivity and biodiversity [4–8]. The annual reversal flow of the TSR is
essential for perpetuating ecosystem functions. For example, fish migration from the MR to TSL and its
floodplains [9]. A recent study suggested that the TSL ecosystem is relatively healthy, having achieved
a certain stage of maturity until at least 2010, albeit with a vulnerable food web structure [10].
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The characteristics of the flood pulse in the TSR, including the timing and duration of the
different phases, are fundamentally described by the water volume and water levels of MR and TSL.
Approximately 53% of the water in TSL originates from MR either through TSR (50%) or overland
flow (3%), whereas tributaries account for around 34% and precipitation contributes 13%. The average
annual outflow of water from the lake is 81.9 km3, of which around 87% flows to the MR through the
TSR (84%) and overland flow (3%), while 13% evaporates directly from the lake [11]. Due to the flat
topography of the floodplain along the TSR, the extent of inundation is directly controlled by the water
level of the MR [11].

Climate change and water-related infrastructure development, including the construction of
hydropower plants upstream on the MR, have had a significant hydrological impact on TSL through
alteration of the natural flow [6,12–18]. As a result, the water level of TSL may peculiarly increase
and decrease during the dry and wet season, respectively [6]. A reduction of 23% and 11% in water
rising and falling rates, respectively, at Prek Kdam provides evidence of a diminished Tonle Sap
flood pulse post 1991 [15]. Simulated average and maximum water levels predicted an increase
over 2010–2049 as a result of predicted climate change [18]. In addition, a study on flooding in TSL
found an increase in the area of open water from 18% to 21% and 2%–21% owing to water-related
development and climate change, respectively [6]. These findings clearly show that the flood pulse in
the TSR is experiencing disturbances.

As defined by Reid, et al. [19], hydrodynamic connectivity is influenced by three principal
mechanisms: hydrological connection (flux), provision of resources (water, sediment, and nutrients),
and hydraulics. Disturbance of these mechanisms most likely modifies geomorphology, size and shape,
and water depth of the connecting river. Because the TSR serves as the natural medium for reversal
flow to TSL and its floodplain, it is an important segment in hydrodynamic connectivity in this area.
However, hydrological information on the TSR, such as total water volume storage of the river itself
and its floodplain in different seasons, remain scarce. In this context, the TSR should be studied further
in order to formulate measures and policies aimed at preserving and managing these precious water
resources in a sustainable manner.

An understanding of the hydrology and monitoring of the water resources in this region,
especially of the highly dynamic nature of the floodplain along the TSR, is needed if access to and the
use of this resource is to be optimized, while minimizing the impact on people and the environment in
the region. The vast inaccessible nature of the TSR makes it difficult to carry out in situ observations.
However, remote sensing is a powerful and cost-effective method that can help overcome this problem.
Remote sensing technology has so far been used to determine the extent of flooding over the TSL
area [6,20–24]. Nevertheless, apart from mapping flooding, the results cannot be used to quantify the
water volume fully along the TSR because underwater elevation was not considered, even though
a digital elevation model (DEM) was used. The lack of underwater elevation information could lead
to underestimates in water volume, particularly during the dry season. Although, the water volume
in the dry season is relatively small compared with that in the wet season, it cannot be ignored in
studies of seasonal change and drought. Combining DEM with bathymetric data can be used to reflect
the underwater elevation of TSR fully. Thus, in this study, we use a simple method to extract the
inundation area and estimate the volume of water in the floodplain along the TSR in different seasons
over three years to determine the seasonal changes. Moderate Resolution Imaging Spectroradiometer
(MODIS) and Shuttle Radar Topography Mission (SRTM)-DEM were combined with bathymetric data
and water level observations. The results will help support studies of river connectivity in the TSR
region in terms of water resources and flood management. They can be used to calibrate and validate
hydrodynamic simulations of inundation.

2. Study Area

The study area included the TSR and its vast peripheral wetland floodplain, as derived from
maps of the major flood extent and river catchment area [25] (Figure 1). The defined area covered
approximately 4789.2 km2, 30.2% of the total surface area of its catchment (Figure 1). The TSR is



Hydrology 2016, 3, 33 3 of 12

approximately 120 km in length and joins the MR near Phnom Penh City. The climate in the study area
is characterized by the long rainy season of the southwest monsoon, which lasts from May to October,
followed by the dry season of the northeast monsoon from November to April. Average annual
precipitation ranges from 1300 to 1500 mm. The flood pulse is an annual event driven by the southwest
monsoon, which brings 65% of the total annual precipitation in the MR basin [26,27]. The characteristics
of the flood pulse vary annually depending on the volume and water level of the TSR [4,28,29].
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3. Materials and Methods

The study consisted of two sequential parts: inundation area mapping and estimation of water
volume (Figure 2). The inundation area was extracted from composite satellite images acquired from
MODIS Terra product MOD09Q1 followed by an accuracy assessment based on visual interpretation.
Water volume was then estimated by using the extracted inundation area and water level over the DEM.
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3.1. Inundation Mapping

The inundation area was extracted using a parametric classification method known as supervised
classification. The method was based on images obtained using MODIS, a multispectral instrument
carried on two polar-orbiting satellites, Terra and Aqua, launched as part of National Aeronautics
and Space Administration (NASA)’s Earth Observation Sensor mission. MOD09Q1 is a surface
reflectance product of MODIS/Terra. MOD09Q1 provides bands 1 (red) and 2 (near infrared) at
250 m resolution as an eight-day gridded level-3 product in a sinusoidal projection. Each MOD09Q1
pixel contains the best possible higher-order gridded level-2 (L2G) observation during an eight-day
period, selected on the basis of high observation coverage, low viewing angle, the absence of clouds or
cloud shadow, and aerosol loading. A detailed description of MOD09Q1 can be found in the MODIS
algorithm theoretical basis document (ATBD) version 4 [30]. To avoid and minimize cloud cover,
MOD09Q1 images were selected and acquired from cloud free days as much as possible in each month
from 2003 to 2005.

Inundation area extraction was based on the distinct characteristics of band 2 and the
normalized difference vegetation index (NDVI). Solar irradiance band 2 (841–876 nm) in MOD09Q1
is highly absorbed by water bodies, making it a useful concept in classifying water and non-water
(including cloud) cover. Similarly, although used to assess vegetation, NDVI can also be used to assess
water cover, whereas temporal anomalies are efficient in detecting inundation [31]. NDVI uses the
near-infrared band to determine water cover, which can then be computed using red and near-infrared
band as shown in Equation (1) [32].

NDVI =
ρNIR − ρred
ρNIR + ρred

(1)

here, ρNIR is the reflectance in the near-infrared band and ρred is the reflectance in the red band.
NDIV values range from −1 to 1, with values close to 1 indicating dense vegetation, values around 0
indicating bare soil and rock, and values close to −1 indicating water.

Given the characteristics of MODIS band 2 and NDVI that are sensitive to the presence of water,
maximum likelihood classification (MLC) was then applied to distinguish the water and non-water
cover. MLC used a combination of three bands consisting of bands 1 and 2 of MOD09Q1 and the
computed NDVI. At least 20 regions-of-interest of water and non-water cover were selected based on
visual observation for training the MLC.

The satellite images being analyzed were obtained much earlier (2003–2005). As such, ground truth
data could no longer be obtained. Ground truth is the basis for computing the user’s accuracy, hence the
user’s accuracy which comprises the second part of the overall accuracy could not be determined.
Confining the assessment to the producer's accuracy is acceptable in such cases where the subject of
study is sometime in the past. In some texts, producer's accuracy is even referred to as “accuracy”
(See [33] and [34]). Since there were only two classes (water and non-water), it is implicit that belonging
in one class does not lead to another unless there are pixels that were “unclassified”, and in this study
there was no pixel left unclassified by MLC. Thus, the water pixels visually presented in MOD09Q1
image were used as reference for the accuracy assessment. Each MOD09Q1 image was visualized and
displayed using band 2, 2, 1 as the red, green, and blue (RGB) color composite. In this color composite,
water cover appears as light to dark blue depending on depth from shallow to deep. In total, 360 pixels
(10 water pixel points for each image) were selected from water pixels as reference points covering
deep and shallow water bodies. Accuracy was defined and assessed as the proportion of correctly
classified water pixels to the total number of reference points and omission error (equal to 1 minus
the accuracy) was used to measure the error of misclassified water pixels as non-water pixels [34].
This accuracy assessment was used and applied to other classification methods, thresholding NDVI
(<−0.1) and pure MLC (two bands) for comparison.
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3.2. Estimation of Water Volume

Coupled with the inundation map from MODIS classification, SRTM-DEM with 90 m
resolution [35] was used to estimate inundation volume. As a pre-processing step, the void cells
were removed and filled using the average of the neighboring cells. To be consistent, the resolution of
SRTM-DEM was resampled from 90 m to conform to MOD09Q1 250 m. The dataset of hydrographic
maps containing bathymetric data was obtained from the Mekong River Commission [36].
Bathymetric data of the TSR was digitized and interpolated based on the hydrographic maps surveyed
in 1999. The coordinate system of SRTM-DEM was transformed from WGS84 to Indian 1954 projection
and datum to provide a coordinate system consistent with the bathymetric data.

The extracted flood inundation area (AM) consisting of multiple polygons was overlaid on the
DEM to estimate the inundation water volume. The maximum elevation along the perimeter of each
polygon was considered to be the elevation of the inundation water level in each individual polygon,
in which values of all water pixels were set at this water level by assuming a flat water surface.
The difference between the water level and DEM was assumed to be the water depth of each water
pixel. Volume (VM) was then estimated by summing the products of water depth and the DEM cell
size of each water pixel (Equation (2)).

VM = ∑ (water depth DEM cell size) (2)

To evaluate the estimated volume results, VM was also compared with the mean water volume
(VWL) derived from the water level observations at Kampong Luong (upstream), Prek Kdam
(middle stream), and Phnom Penh Port (downstream), respectively. The observed water level of
each station was used to mask and generate the inundation area (AWL) from the DEM for the same
acquisition date as the MOD09Q1 images, assuming that the water surface is uniformly flat in the TSR
and its floodplain. Thus, AWL contained pixels of the DEM that have the same as or smaller values than
the observed water level. The water volume was then estimated as described above using Equation (2),
and the mean VWL estimated from each water level station was compared with VM.

4. Results and Discussion

Section 4.1 discusses the seasonal changes in the inundated area and Section 4.2 provides the
inundation results in terms of water volume. The results showing the seasonal changes in inundation
area and water volume of the flood pulse on the floodplain along the TSR are then presented.
The implications of these results are then discussed.

4.1. Inundation Area

The spatiotemporal AM revealed the flood cycle and pattern for the years 2003–2005 (Figures 3–5).
AM ranged from 123.8 to 3251.2 km2 (mean: 1028.5 km2) from the dry to wet season, respectively.
Compared to the reference points, AM achieved an overall accuracy of 96.9% with the omission error
of 3.1% (Table 1). This result showed that the addition of NDVI as a “third band” in MLC provided
higher accuracy compared to NDVI and pure MLC (two bands) only. According to the processed
time series images, the water area of the floodplain increased from June to September. Flooding then
extended from September to November with a peak in September, indicating three or four months
of flood residence time. The water area gradually shrank from December to February, then dried
up almost completely between March to May. This flood regime was the same as that reported by
Arias et al. (2013) [26], with four distinct seasons: the rising season (June–August), the wet season
(September–November), the receding season (December–February), and the dry season (March–May).
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Table 1. Comparison the performance of classification methods. MLC, maximum likelihood
classification.

Classification Methods NDVI MLC (Two Bands) MLC (Two Bands + NDVI)

Accuracies (%) 89.4 93.3 96.9
Omission errors (%) 10.6 6.7 3.1
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Figure 3. Monthly changes in inundated area (AM) in the TSR floodplain extracted from MOD09Q1
in 2003.

Although AM revealed the overall trend of the flood regime, this method was unable to correctly
depict some segments of the TSR during the rising and dry seasons. In the dry season (March–May,
Figures 3–5) there were discontinuities in river shape derived from MOD09Q1 in some parts, which may
not have been the real case existing along the TSR. One possible reason for this is the coarse resolution
of the MOD09Q1. Some parts of the TSR are narrower than the MOD09Q1 resolution (<250 m),
and thus, such areas cannot be properly described, giving a disconnected shape of inundation in
the resulting images. Another possible reason is the presence of vegetation and bare-soil/suspended
sediment along the river. When such factors are dominant within a region, they mix with the water
body within a single pixel of the MOD09Q1 images. These mixed pixels make it difficult for supervised
classification to classify the pixel correctly as water. The maximum suspended sediment concentration
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reached 571 mg/L in August 2008, and the mean was 225 mg/L during a study conducted from
2008 to 2010 [37]. Thus, a high concentration of suspended sediment may alter the surface water
sufficiently leading to its misclassification in the MOD09Q1 images [38]. Both reasons could result in
the underestimation of AM in the dry season compared with the wet season. Therefore, the method
performs better when the sections of the water body are larger than 250 m, which is usually observed
during the wet season. In the wet season, AM was progressively identified as the water level of the TSR
increased (Figures 3–5) because the area of the water body gradually increases as the water level rises,
leading to an increase in the area ratio of water to non-water cover. Although the overall accuracy was
high, a more independent accuracy assessment using higher resolution imagery with greater number
of spectral bands, such as images within the Landsat 7 ETM+ data set, would be useful in improving
the interpretation of the reference points. In addition, cloud cover (mostly found from April to October)
and floodplain vegetation in the area surrounding the TSR possibly contributed to the underestimation
of AM [6,21,22]. These results might be improved by using a combination of remotely sensed products
and algorithms [39,40].

Hydrology 2016, 3, 33 7 of 13 

 

conducted from 2008 to 2010 [37]. Thus, a high concentration of suspended sediment may alter the 
surface water sufficiently leading to its misclassification in the MOD09Q1 images [38]. Both reasons 
could result in the underestimation of ܣெ in the dry season compared with the wet season. Therefore, 
the method performs better when the sections of the water body are larger than 250 m, which is 
usually observed during the wet season. In the wet season, ܣெ was progressively identified as the 
water level of the TSR increased (Figures 3–5) because the area of the water body gradually increases 
as the water level rises, leading to an increase in the area ratio of water to non-water cover. Although 
the overall accuracy was high, a more independent accuracy assessment using higher resolution 
imagery with greater number of spectral bands, such as images within the Landsat 7 ETM+ data set, 
would be useful in improving the interpretation of the reference points. In addition, cloud cover 
(mostly found from April to October) and floodplain vegetation in the area surrounding the TSR 
possibly contributed to the underestimation of ܣெ [6,21,22]. These results might be improved by 
using a combination of remotely sensed products and algorithms [39,40].  

 

Figure 4. Monthly changes of inundated area (ܣெ) in the TSR floodplain extracted from MOD09Q1 in 2004. Figure 4. Monthly changes of inundated area (AM) in the TSR floodplain extracted from MOD09Q1
in 2004.



Hydrology 2016, 3, 33 8 of 12Hydrology 2016, 3, 33 8 of 13 

 

 

Figure 5. Monthly changes of inundated area (ܣெ) in the TSR floodplain extracted from MOD09Q1 in 2005. 

4.2. Water Volume in the Floodplain 

Similar to the seasonal changes in water inundation area, the temporal MOD09Q1-based 
inundation volume, ெܸ, ranged from 418.3 to 2223.9 million m3 (mean: 917.3 million m3), while the 
water level-based volume, mean ௐܸ௅, ranged from 409.6 to 1703.6 million m3 (mean: 800.4 million 
m3). In general, ெܸ increased or decreased with respect to season and the trend in rising and receding 
water level. ெܸ	fell within the standard deviation range of ௐܸ௅, except in the peak flood period in 
September (Figure 6). The estimated volumes of ெܸ and ௐܸ௅ were consistent (R = 0.91), whereas the 
RMSE was estimated to be 176.7 million m3 (Figure 7).  

Figure 5. Monthly changes of inundated area (AM) in the TSR floodplain extracted from MOD09Q1
in 2005.

4.2. Water Volume in the Floodplain

Similar to the seasonal changes in water inundation area, the temporal MOD09Q1-based
inundation volume, VM, ranged from 418.3 to 2223.9 million m3 (mean: 917.3 million m3), while the
water level-based volume, mean VWL, ranged from 409.6 to 1703.6 million m3 (mean: 800.4 million m3).
In general, VM increased or decreased with respect to season and the trend in rising and receding
water level. VM fell within the standard deviation range of VWL, except in the peak flood period in
September (Figure 6). The estimated volumes of VM and VWL were consistent (R = 0.91), whereas the
RMSE was estimated to be 176.7 million m3 (Figure 7).

There was a major difference (volume > 1300 million m3) during the peak flood in September
and a minor difference (volume < 1300 million m3) in the estimated volumes during rising,
receding, and dry seasons, respectively (Figure 6). One possible cause of the major difference was
an underestimation of AWL. The estimated AWL depends on the DEM values, whether they are
smaller or equal to the observed water level. During the peak flood (September), the observed water
level reached 7.75–8.76 m at all stations from 2003–2005, respectively, while according to the DEM,
the floodplain elevation in certain regions was higher than 7.75 m. AWL did not fully cover the actual
inundated area seen in MOD09Q1, and thus, AWL and VWL were lower than AM and VM, respectively,
in September. As stated above, the difference between the estimated volumes during rising, receding,
and dry seasons could be due to differences in the spatial resolution of MOD09Q1 and DEM and
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errors in DEM. As mentioned in the methods, the resolution of DEM was 90 m, and this was then
resampled using the resolution of MOD09Q1 (250 m). This resampling may have caused an error in the
estimated area as reported previously [41,42]. As a result, the spatial error accumulates, resulting in
a discrepancy in the volume estimation. In addition, the estimated 90% vertical errors of SRTM-DEM
in the Eurasia region were previously found to be 6.2 m [35], and furthermore, the elevation in DEM is
in the integer format metric units. Thus, any analysis associated with SRTM-DEM will have an error
of at least 1 m [41,42]. It should be noted that SRTM was launched in February 2000, which was
one of the wettest records in TSL [43] and in this study; SRTM-DEM is considered dry floodplain
ground. The above-mentioned limitations probably caused errors in the estimation of water volume
during receding, dry, and rising seasons (November 2003 to August 2004). The correlation coefficient
during each season (excluding September) showed better consistency with the overall water volume
estimations (R = 0.95), reducing the RMSE to 118.6 million m3 (Figure 7). Further improvements can
also be expected using either the digital terrain model (DTM) derived from the topographic map or
with the release of the 1 arc-second (approximately 30 m) version of global SRTM-DEM in the future.
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Without bathymetric data incorporated with SRTM-DEM, the volume estimation would have
been underestimated, where most of the points lie over the perfect line (Figure 7). During the dry
season (April), the estimated volume determined with and without bathymetric data was 418.2 and
8.7 million m3, respectively; a difference of 409.6 million m3 (98%). During the peak flood (September),
the estimated volumes with and without bathymetric data were 2223.9 and 1814.3 million m3,
respectively, with a difference of 409.6 million m3 (18.4%). As a result, the water volume determined
without bathymetric data may have been underestimated by 18.4%–98% from the wet to dry season,
respectively. Thus, the method using bathymetric data highlighted in this study provides substantially
improved water volume estimations of floodplains than those determined without bathymetric data.

The TSR receives an inflow of 41,800 million m3 from and releases an outflow of 68,800 million
m3 to the MR annually [11]. Based on the estimated maximum, VM, in September 2004, the TSR and its
floodplain accounted for 5.3% and 3.2% of this mean annual inflow and outflow of TSR, respectively.
This implies that the floodplain of the TSR functions as an important water reservoir for the MR basin
as well as TSL, behaving as a natural channel. This active exchange flow stabilizes the flow of the MR,
increasing it (20%–50% of the MR flow) during the dry season [11,21]. Thus, the TSR and its floodplain
play an important role in storing 5.3% of the mean annual inflow from the MR, thereby reducing
flooding from other areas during the wet season, and by providing additional flow to the MR delta
during the dry season.

These positive results in water inundation and volume estimation enhance our understanding
of the TSR. Satellite-based inundation maps and water volume estimates can be used to validate
hydrodynamic modeling of flow reversal. This study also demonstrated the use of remote sensing
data as a cost effective and important data source for assessment and monitoring of the TSR where the
number of gauge stations could be a limitation. A forthcoming paper is being prepared that describes
the subsequent phase of the research, which was to perform hydrologic-hydrodynamic modelling.
The results of the satellite-based inundation mapping can then be related and analyzed.

5. Conclusions

This study demonstrated the use of a simple and straightforward method applied to MODIS
satellite composite product and SRTM-DEM combined with bathymetric data for estimating inundation
and volume in the TSR and its floodplain in different seasons over three years. Although the estimated
inundation areas showed marginal errors, the accuracy achieved was 96.9% with the omission error
of 3.1%. Adding NDVI as “third band” in MLC provided higher accuracy compared to thresholding
NDVI and pure MLC (two bands) only. The estimated inundation areas also adequately described the
seasonal pattern and flood cycle in the TSR. The method using bathymetric data highlighted in this
study provides substantially better water volume estimations of floodplains than those determined
without, leading to improvements in estimates by 18.4%–98% in the wet and dry seasons, respectively.
This method could therefore lead to an improvement of at least 18.4% in water volume estimations in
other seasonal change studies in which the DEM is not combined with bathymetric data. In addition,
the finding suggests that the TSR floodplain functions as an important water reservoir, accounting for
5.3% of the mean annual inflow from the MR basin and TSL. Overall, the results increased our
knowledge of hydrological processes governing this region, thereby enhancing our understanding of
the TSR and supporting further hydrodynamic modeling of reversal flow and connectivity for flood
and water resource management in the area.
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