
hydrology

Case Report

Infilling Monthly Rain Gauge Data Gaps with
Satellite Estimates for ASAL of Kenya

William Githungo *, Silvery Otengi, Jacob Wakhungu and Edward Masibayi

Department of Disaster Management & Sustainable Development, Masinde Muliro University of Science and
Technology, P.O. Box 190, Kakamega 50100, Kenya; sotengi@mmust.ac.ke (S.O.);
jwanambacha@yahoo.com (J.W.); masibayi@yahoo.com (E.M.)
* Correspondence: william_ndegwa@yahoo.com; Tel.: +25-472-232-4161

Academic Editor: Luca Brocca
Received: 24 April 2016; Accepted: 24 October 2016; Published: 22 November 2016

Abstract: Design and operation of water resources management systems in sub-Saharan Africa suffer
from inadequate observation data. Long running uninterrupted time series of data are often not
available for water resource planning. Incomplete datasets with missing gaps is a challenge for
users of the data. Inadequate data compromise results of analyses leading to wrong inference and
conclusions of scientific assessments and research. Infilling of missing sections of data is necessary
prior to the practical use of hydrometeorological time series. This paper proposes the use of Tropical
Rainfall Measuring Mission satellite data as a viable alternate source of infill for missing rain gauge
records. The least square regression method, using satellite-based estimates of rainfall was tested to
fill in the missing data for 153 data points at nine rain gauge stations in Machakos, Makueni and the
Kitui region of Kenya. Results suggest that the satellite rainfall estimates can be used as an alternative
data source for rainfall series where the missing data gaps are large. The infilled data series were used
in the development of monitoring, forecasting and drought early warning for Arid and Semi-Arid
Lands (ASAL) in Kenya.
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1. Introduction

As in other Arid and Semi-Arid Lands (ASAL) of Kenya, climatic variations have been experienced
over the years in the south eastern lowlands of Kitui, Machakos and Makueni counties. The typical
approach to gaining understanding of climate variability starts with the acquisition of historical
data. For rainfall, historical data provide necessary information about accumulated amounts in both
time and space and form the basis for fitting and testing stochastic data-based distribution models.
When historical data is unavailable in a region, or available data is inaccurate or incomplete in a spatial
or temporal sense, geophysical models can be used to ‘fill in’ the missing values [1]. According to
Collischonn et al., [1], areal rainfall estimated by rain gauges exhibits a great deal of uncertainty where
the rain gauge network is sparse. This problem is related to the differences in distribution of rain
gauges around the region. This situation also affects the quality of data. This paper suggests a method
of improving rain gauge-based rainfall measurement datasets through infilling missing gaps using
remotely sensed rainfall estimates.

Generally, in operation and model validation of meteorological data, surface observations are
considered to be “the truth” [2]. Analysis of climatic systems require availability of data forming
a complete and homogeneous series to enable generalised deduction and inference from results [3].
This is especially important for those approaches that use statistical techniques based on the estimation
of covariance matrices, e.g., the principal component, cluster, or discriminant analysis, the canonical
correlation method, and the method of multiple linear regressions [4]. In Africa in general and Kenya
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in particular, incomplete datasets of climatic variables are frequent with the ensuing appearance of
gaps in the measurement series [5]. The existence of missing values in the data series affects the
variable estimation from the series [6], and the output of multivariate analysis techniques [7].

Hydrometeorological data analysis such as drought assessment and forecast benefit from
a complete dataset [8]. A possible way of minimizing the influence of missing data is to rebuild
the series, filling in the gaps with estimated values. Various methods for the estimation of missing
values in climatological series exist. Bareither et al., [2], evaluated the influence of replacing missing
meteorological data with estimates on hydrologic predictions for a water balance model in a semiarid
climate. According to Bareither et al., [2], surrogate data technique yields modest predictions of annual
water percolation that are statistically similar to percolation predicted using actual data. Aly et al., [9],
evaluated deterministic and stochastic interpolation methods to fill gaps in daily precipitation records.

The simplest and more direct methods of data extension take into account the data of the series
that is being filled. The arithmetic mean method substitutes missing values by the series mean value of
the series. Thus, although the average value of the series is not altered, its variance is reduced and thus
the method rendered inefficient to address highly variable climatic quantities, such as precipitation [10].
Other methods include the linear interpolation method and the first differences method both of which
are particularly appropriate for small temporal scales and variables with high autocorrelation [10].

Methodologies which use information from different sites other than the station with missing
data (target station) have also been developed. These methods take into account the spatial variability
of the measured variable, ignoring the temporal information in long-time series [11]. Such methods
include the closest station method [12], the simple arithmetic averaging method; the inverse distance
method, the single best estimator method, and the normal ratio method. These methods generally
under and/or overestimate the high and low extremes, respectively [13].

Another important set of approaches for gap filling in climatological series is regression methods.
These methods are based on relationship techniques of the temporal series of the variable under
consideration [14]. They take into account the station’s ‘history’ and its climatic characteristics without
consideration of spatial dependence of the variables. Uncertainty in climate parameters however
originate from its stochastic nature [15], and its magnitude depends on other environmental factors,
intrinsic on the recorded value [16]. Spatial characteristics of the uncertainty enters the records through
the procedure for stations selection [17] when stations other than the target station are considered.
The procedures followed for the selection of neighbour stations in the regressive methods utilizes
relative weighting, enabling differentiation of analysis from one station to another. The regression
methods have the advantage of robustness when dealing with extreme events or local effects [18].
This paper utilizes the least square regression method for the estimation of missing data in a monthly
precipitation dataset taking into account the measurement uncertainty. The paper addresses the
question of whether remote sensing rainfall estimates over a region can be used for infilling missing
data in the time series of rain gauge-based data. The Tropical Rainfall Measuring Mission (TRMM)
satellite datasets was selected on the basis of its good prior performance in estimating rainfall in East
Africa [19,20] in particular and in many parts of the tropics [21] in general.

Errors occurring due to rain gauge measurements are fairly well understood [22], and so, except
for their limited coverage, they are ideal for checking satellite estimates [22]. The use of satellite
estimates to fill rain gauge measurements on the other hand however raises errors due to the space-time
differences of the two measurement methods. While rain gauge measurements are point (tens of
centimetres in diameter) estimates, satellite measurements are a good attempt to measure rain amounts
over areas many kilometres in diameter around a point (rain gauge position). Bell and Kundu [22]
investigated the “noisiness” in the comparisons of satellite and rain gauge estimates given the very
different observational characteristics of the two. Bell and Kundu [22] observed that the satellite
measurements catches glimpses of large areas at infrequent intervals, whereas rain gauges record what
happens in small areas continuously. Panet et al., [23] alluded that the presence of non-negligible
errors in satellite rainfall estimation presents a hurdle to fully implement the product for wide ranges
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of hydrologic applications. Gebregiorgis and Hossain [24], however, indicated that the quantitative
picture of satellite precipitation error over ungauged regions can be effectively discerned. The paper
makes consideration of the space–time scale difference of rainfall estimates based on the point rain
gauge measurements and satellite-based estimates.

Rain gauge data series in Machakos, Makueni and Kitui counties of Kenya for the period 2001–2011
has long running data gaps of over two years. These data gaps however form less than 5% of the
total length of existing the data for most of the rain gauge stations in the region. The data series
are therefore worth consideration for infilling in view of their importance to connect the historical
rainfall analysis and the current rainfall situation [25]. The purpose of this paper is to proposes the
use of TRMM data as a viable alternate source of infill for missing rain gauge records. The method
of infill utilizes linear regression relationships and make use the records of a reference station which
cover the period of interest. The paper demonstrates the use of satellite rainfall estimate data for
extending rain gauge records by infilling missing gaps in a rainfall data series. The method adapts the
MOVE.2 approach [26] in a variation of linear regression equations [27], which ensure preservation of
characteristics of the statistical parameters (mean, variance and extreme value statistics), of the infilled
data series. The Gamma distribution with shape parameter α and scale parameter β is often assumed
to be suitable for distributions of precipitation events [28]. This distribution has been proven to be
effective for the analysis of precipitation data in previous studies [29]. The gamma distribution was
used in this study to confirm that the infilled data did not alter the parameters of the original series.

In this study, an attempt was made to infill missing monthly rainfall data for 153 missing data
points for 9 rain gauge stations in Machakos, Makueni and Kitui counties of Kenya. This paper
is organized as follows; first, this introduction giving the background, the problem, the objectives
and rationale of the study. The materials and methods used to address the research question and
related formulation of proposed solution, and technical details, such as approaches for estimation of
infilling model, are detailed in Section 2. The results of the infilling process and evaluation of model
achievements in infilling datasets and related statistical test are discussed in Section 3 followed by
summary and concluding remarks in Section 4.

2. Materials and Methods

This study was carried out in Machakos Makueni and Kitui Counties of Kenya. The study area is
located in the arid and semi-arid regions of the country. The area lies between Latitude 00◦03′ and
3◦00′ and Longitudes 36◦45′ degrees 39◦12′ (Figure 1). The area receives rains twice a year, with the
main rains season occurring in October to December and the lesser rains season occurring in March to
May. The annual rainfall ranges from 500 mm in the low moorland areas to 1500 mm in the sub-humid
hilltops. The seasonal rainfall is highly variable, erratic and unreliable.
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Figure 1. Map of Machakos, Makueni and Kitui Counties inset in a Map of Kenya and Africa source: 
in [30], republished with permission with the Masinde Muliro University of Science & Technology  

2.1. DATA 

The data used in this study is of secondary nature comprising of rainfall elements measured on 
rain gauge instruments in the study area and satellite based rainfall estimates. The rain gauge data 
series comprised of monthly records for the period 1961–2011 for the different stations. Only rain 
gauges with missing data gaps were considered in this study. The rain gauge data series used 
comprised of records for the period 1961–2011 for the different stations. Table 1 below shows the 
length of the rain gauge data series used in the study. TRMM is a joint mission of the U.S. National 
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency 
(JAXA), designed to monitor and study tropical rainfall [31]. TRMM has a data coverage area, ranging 
from latitudes 50° S to 50° N, and a spatial resolution (0.25° × 0.25°). The TRMM rainfall estimates 
have more reliable data than those obtained from other satellites [32]. The TRMM data series used in 
this study comprised of records for the period 1998–2011. 

2.2. Data Analysis Approach 

Two types or techniques of data analysis were considered to achieve the objectives of this study; 
correlation analysis and the least squares regression method. Data from closest TRMM grid point 
were compared against each respective rain gauge. 

TRMM data from the chosen grid point was used to compare with the corresponding observed 
rain gauge data. Correlation analysis was used for comparison of the rain gauge and TRMM data 
fields to confirm relationship of the two data series. 

Table 1 shows the locations of the rain gauges matched with the corresponding grid point at 
which monthly TRMM data was extracted, the estimated distance between rain gauge location and 
grid point data, the number of data points of missing record and the period of missing rain gauge 
data. The datasets of the rain gauges had large continuous gaps of missing data for period 2008–2011. 

The least square regression method was used to translate estimates of rainfall values donated by 
the TRMM data series into rainfall values for infilling into the rain gauge series. The viability of the 
TRMM rainfall data to infill rain gauge missing data gaps was first evaluated through comparison 
with rain gauge data for the periods in which the rain gauge datasets were complete. Descriptive 
statistics of station rainfall was calculated for all the TRMM cells and corresponding rain gauge 
stations, and compared in monthly intervals. Scatter plots of the rain gauge data and TRMM were 
plotted to confirm the versatility of TRMM data to infill the rain gauge data. 

Figure 1. Map of Machakos, Makueni and Kitui Counties inset in a Map of Kenya and Africa source:
in [30], republished with permission with the Masinde Muliro University of Science & Technology.

2.1. DATA

The data used in this study is of secondary nature comprising of rainfall elements measured on
rain gauge instruments in the study area and satellite based rainfall estimates. The rain gauge data
series comprised of monthly records for the period 1961–2011 for the different stations. Only rain
gauges with missing data gaps were considered in this study. The rain gauge data series used
comprised of records for the period 1961–2011 for the different stations. Table 1 below shows the
length of the rain gauge data series used in the study. TRMM is a joint mission of the U.S. National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA),
designed to monitor and study tropical rainfall [31]. TRMM has a data coverage area, ranging from
latitudes 50◦ S to 50◦ N, and a spatial resolution (0.25◦ × 0.25◦). The TRMM rainfall estimates have
more reliable data than those obtained from other satellites [32]. The TRMM data series used in this
study comprised of records for the period 1998–2011.

2.2. Data Analysis Approach

Two types or techniques of data analysis were considered to achieve the objectives of this study;
correlation analysis and the least squares regression method. Data from closest TRMM grid point were
compared against each respective rain gauge.

TRMM data from the chosen grid point was used to compare with the corresponding observed
rain gauge data. Correlation analysis was used for comparison of the rain gauge and TRMM data
fields to confirm relationship of the two data series.

Table 1 shows the locations of the rain gauges matched with the corresponding grid point at
which monthly TRMM data was extracted, the estimated distance between rain gauge location and
grid point data, the number of data points of missing record and the period of missing rain gauge data.
The datasets of the rain gauges had large continuous gaps of missing data for period 2008–2011.

The least square regression method was used to translate estimates of rainfall values donated by
the TRMM data series into rainfall values for infilling into the rain gauge series. The viability of the
TRMM rainfall data to infill rain gauge missing data gaps was first evaluated through comparison with
rain gauge data for the periods in which the rain gauge datasets were complete. Descriptive statistics
of station rainfall was calculated for all the TRMM cells and corresponding rain gauge stations, and
compared in monthly intervals. Scatter plots of the rain gauge data and TRMM were plotted to confirm
the versatility of TRMM data to infill the rain gauge data.
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Table 1. Locations of the rain gauges, corresponding grid point for Tropical Rainfall Measuring Mission (TRMM) data extraction, distance between rain gauge location
and grid point data, the number and Proportion of data points of missing record and the period of missing data.

Station Name
Station

Identifier
Number

Station Location Location of for TRMM
Pixel Centre Distance (km) between

Rain Gauge and TRMM
Grid Point

Number of Missing
Data Points
(1961–2011)

Percentage (%) of
Missing Data of
Total Data-Set

(1961–2011)

Period of Missing
Data PointsLatitude

(Degrees)
Longitude
(Degrees)

Latitude
(Degrees)

Longitude
(Degrees)

Kambi ya Mawe 9137075 −1.85 37.6667 −1.75 37.75 0.520 12 1.96 Jan 2011–Dec 2011
Mutonguni 9137094 −1.28 37.9833 −1.0 38 0.75 24 3.92 Jan 2010–Dec 2011

Kitui 9137095 −1.22 37.59 −1.25 38 0.23 24 3.92 Jan 2009–Dec 2010
Mutomo 9138001 −1.85 38.2 −1.75 38.25 0.45 12 1.96 Jul–Nov 2010

Kisasi 9138037 −1.5333 38.0167 −1.5 38 0.15 30 4.9 Jul 2008–Dec 2009
and Jan–Dec 2011

Lukenya 9137046 −1.5333 37.6167 −1.5 37.5 0.49 29 4.73 Jan 2010–May 2011
Matungulu 9137040 −1.2667 37.35 −1.25 37.25 0.41 29 4.73 Jan–Dec 2011

Matiliku 9137028 −1.95 37.533 −2.0 37.5 0.20 19 3.10 Jan–Jul 2009
Mutito Forest 9138040 −1.13 38.11 −1.0 38.25 0.65 26 4.24 Nov 2010–Dec 2011
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2.3. Methods of Infilling Rain-Gauge Data

A variation of the linear regression method as employed by Krug et al. [33] was used in this study.
The method considers that if records for a normal climatological period of 30-years are incomplete for
a desired station, then the records are extended by correlation with a nearby station using Equation (1).

Y1 = ys + (b)(x1 − xs) (1)

where

y1 = the estimated value for the missing gap rain gauge data for the respective month.
ys = the mean value for the respective month for TRMM dataset for the period of record 14 years
(1998–2011).
b = the slope of the regression line between the concurrent (1998–2011), mean value at the rain gauge
station and TRMM.
x1 = the 30-year (climatological standard 1971–2000) mean value for the monthly rain gauge data.
xs = the mean value for the rain gauge station for the concurrent period with the TRMM.

TRMM datasets were used to estimate monthly values of rain gauge records to fill the gaps.
The TRMM data at respective grid point was used as reference for corresponding rain gauge as
indicated in Table 1. In this approach, the least squares regression was used in an extension method
following a linear form (y = bx + c), but that the coefficient “b” and constant “c” were set not to
minimize squared errors, but rather to maintain the sample mean and the variance according to
Hirsch [26]. Two such linear equations that preserve the sample mean and variance are given in
Hirsch [26]. These equations are labelled: “Maintenance of Variance Extension, Type I” (MOVE.1) and
“Type 2” (MOVE.2).

Hirsch [34] evaluated MOVE.1 for streamflow data extension methods and Parrett and
Johnson [35] utilized MOVE.1 for extending streamflow gaging data in eastern Montana over a fifty year
period of record. Alley and Burns [36] and Hirsch [26] evaluated MOVE.1, and MOVE.2, for streamflow
data extension using least squares linear regression and linear regression plus white-noise based on
criteria of sample mean and variance maintenance. These works from the literature suggest that
MOVE.2 is the most effective infilling method in preserving the mean, variance, and extreme order
statistics of a baseline data. As such MOVE.2 was used in this study to extend the rain gauge data
using TRMM monthly rainfall data.

2.3.1. MOVE.2 Method

Missing rain gauge data were infilled using related TRMM data following the MOVE.2 model.
The TRMM values are denoted as “X(I)” where “I” is an index of time (month). The rain gauge data
values were denoted as “Y(I)”. The events for the two sequences are represented as:

X(1), .........., X(N1), X(N1 + 1),............................., X(N1 + N2)
Y(1),.........................,Y(N1)

where “N1” represents the number of rain gauge/TRMM data values used to make the regression
equation. When “N1” is less than 10, there is not enough known TRMM data to build a regression
relationship (since TRMM data records commences at 1998). “N2” represents the number of
missing data gaps in the series. When “N2” is equal to 1, there is only one missing data gap.
“N1 + N2”represents the total number of values in the data set. The following notations identify
the different parts of the two series.

X = x(1),..................., X(N1), x(N1 + 1),........................., X(N1 + N2) (2)

X1 = x(1),.............., X(N1) (3)
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X2 = x(N1 + 1),................, X(N1 + N2) (4)

Y1 = y(1),..............................., Y(N1) (5)

It is not necessary for the two sequences to begin or end simultaneously, nor for the observations
be consecutive [26]. The MOVE.2 infilling equation yielding an estimate for the missing rain gauge
data, denoted as “[yN(I)]”, is given by the relationships in Equations (6)–(9) as derived by Hirsch [26].

y′ (i) = m′ (y1) +
S′ (y)
S (x)

[x (i)−m (x)] (6)

m′ (y) = m (y1) +
N2

N1 + N2
r

S (y1)
S (x2)

[m (x2)−m (x1)] (7)

S′ (y) = 1
N1+N2−1 [(N1− 1)]S2(y1) + [(N2− 1)]r2 S2(y1)

S2(x1)
S2 (x2)

+(N2− 1)à(1− r2)S2 (y1) + N1N2
N1+N2 r2 S2(y1)

S2(x1)
[(m (x2)−m (x1))2]

(8)

à =
N2 (N1− 4) (N1− 1)

(N2− 1) (N1− 3) (N1− 2)
(9)

where “m()” and “s2()” represent the mean and variance of the series in the parentheses respectively;
“r” represents the product moment correlation coefficient of “x1” and “y1”.

Thus, in the MOVE.2 method, the mean and variance estimates for “x” are based on all “N1 + N2”
observations, and the mean and variance estimates for “y” (i.e., “mN(y)” and “SN2(y)” respectively)
are based on the historical values of “y” and on information transferred from the “x” sequence of data.
à is a coefficient.

2.3.2. Evaluation of Infilled Data Series

Evaluation was done to examine the extent to which the MOVE.2 method would yield correct
values of estimated rain gauge data to infill gaps on repeated trials. Given that the MOVE.2 approach
was used in the study to infill long running data gaps, it was necessary to create long running gaps for
purpose of the evaluation of the method. The procedure involved removing 12 successive points from
the rain gauge data series to create running gaps in the rain gauge series. The gaps were created for
each station for the respective years commencing 2007–2011. The months which data was removed
was the months which did not have a gap in the original unfilled rain gauge series. If one month had
gaps in the original rain gauge data series, this month was not included in this part of analysis.

For each of the months with removed data, a value was computed following the MOVE.2 approach
and the same was used to fill the created gap. The months whose data was removed were then replaced
with MOVE.2 data series and the series was used in test of reliability. The procedure to remove the
data for the respective months was done in steps so that not any more than one year (12 months), were
removed at the same time, but each year was removed with successive replacement of the same data
to be used in computing MOVE.2 values of next removed year.

2.3.3. Jacknife Sampling Approach

A jackknifing sampling approach was used to evaluate the effectiveness of the MOVE.2 approach
to infill rain gauge data gaps. In this simulation, the actual rain gauge data was compared with
corresponding TRMM-MOVE.2 values for the respective periods. Thus, in this approach, it was
easy to compare performance of imputation methods. The following notation was used in a sums of
squares equation:

Yijk = is the rainfall value measured on a rain gauge for the ith month, jth year and kth station,
and is an element in the rain gauge dataset of the station within the period 1998–2011. For purpose of
evaluation, Yijk was removed from the dataset and replaced with an estimated value Zijk.
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Therefore,

Y =
1

N1

n

∑
1

Yijk (10)

is the average of the rainfall value measured on a rain gauge for the ith month, jth year and kth
station and

Y.j. =
1

N1

n

∑
k=1

Y.jk (11)

tracks the average change across all the data years as the MOVE.2 model is simulated to estimate the
values of removed rainfall values of the respective rain gauge with subsequent replacement.

Zijk is the MOVE.2 estimated value of rainfall for the ith month, jth year and kth station which
was used to infill the data gap created by removing Yijk, Zijk is thus an element in the TRMM-MOVE.2
imputed rainfall series.

Likewise,

Z =
1

N1

n

∑
1

Zijk (12)

is the average value of the MOVE.2 estimated rainfall for the ith month, jth year and kth station which
was used to infill the data gap created by removing Yijk, and

Z.j. =
1

N1

n

∑
k=1

Z.jk (13)

tracks the average change across all the data years as the MOVE.2 values are simulated and added to
the series of the removed rainfall values of the respective rain gauge with subsequent replacement.

2.3.4. Evaluation of Errors in the MOVE.2 Estimates

An evaluation of the suitability of the MOVE.2 values for infilling the rain gauge data gaps was
done. The evaluation compared samples of the original rain gauge values with MOVE.2 values for
the respective sample areas. The evaluation followed 3 steps as follows: first a visual inspection
and comparison of non-parametric characteristics of the infilled series against original series was
done. The non-parametric comparison considered the descriptive statistics such as median, skewness,
kurtosis, minimum and maximum values with due consideration of the influence of the statistics in
the distribution of the data sets.

The second step in the evaluation considered the effect of random errors in the computation of the
MOVE.2 values. Systematic error inherent in the measurement of rainfall whether in the rain gauge or
in the TRMM data series were not considered. An analysis of errors was used to indicate the difference
between the computed MOVE.2 values with the original data. The error analysis considered two types
of error, the Mean Absolute Percent Error (MAPE), regression residuals. The errors were computed for
the samples generated following the jacknife sampling approach in Section 2.3.3.

MAPE is the average of the absolute differences between the estimated values of MOVE.2 and
actual rain gauge values, expressed as a percent of actual values.

The SEM was estimated by the sample estimate of the population standard deviation. The SEM
assumes statistical independence of the values in the sample and was computed by Equation (14).

SEM =
∂√
n

(14)

where ∂ is the sample standard deviation.
And n is the sample size.
For each of the data series with data replaced with MOVE.2, values, regression analysis and

test of equality of means and variance of the series was done. The regression analysis was done to
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examine how close the replaced data was to the original rain gauge data. Using regression analysis, the
capability of the MOVE.2 approach to infill the rain gauge data gaps was tested further. The regression
residual was used to estimate the difference between the rain gauge value of the samples (dependent
variable) (y) and the predicted MOVE.2 values (ŷ). For each of the samples used in the jacknife
resampling, each data point was estimated by the computed MOVE.2 value and the regression resultant
regression residual were considered for the difference with rain gauge values. In the regression analysis,
the residuals were computed following Equation (15):

Residual = Observed − Predicted (15)

Analysis of the residuals was done to determine the difference between the MOVE.2 values and
the rain gauge values.

2.3.5. Test of Preservation of Mean and Variance

The method of moments was used to estimate the mean and variance. Parameter estimation was
done for the 2-parameter gamma distribution as:

E(x) = αβ and (16)

Var(x) = αβ2 (17)

where E(x) denotes the expected value of the variable and Var(x) denotes the variance.
This approach was used since probability distribution function extension data are known to

have the same value distribution as the measurement, but on average have no autocorrelations [37].
The Student t-test and the F-test were used to compare the means and variance of the original datasets
and the extended datasets. Statistical significance of the hypotheses test was determined by p-value at
5% level.

2.3.6. Test of Goodness of Fit

A “goodness-of-fit” test is a procedure for determining whether a sample of n observations,
x1, . . . , xn, can be considered as a sample from a given specified distribution. The Pearson correlation
coefficient and the coefficient of determination were used to test the closeness of the estimated
TRMM-MOVE.2 series and the original rain gauge data series.

2.3.7. Stationarity of Extended Time Series

Given that most of the missing gaps in the data series to be infilled occur consecutively in tine
sequences, it was necessary to confirm that the time series generated upon infilling of datasets remain
stationary. A key assumption in regression is that the error terms are independent of each other. It is
therefore necessary to confirm that there is no autocorrelation in the series. The Durbin-Watson test was
used to test for autocorrelation. The Durbin-Watson statistic was computed following Equation (18).

d =
∑n

i (ei−ei−1)
2

∑n
i=1 e2

i
(18)

where the ei = yi – ŷi are the observed and predicted values of the response variable for individual i
and n = the number of elements in the sample.
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3. Results and Discussion

3.1. Comparison of Rainfall Records TRMM vs. Rain Gauge

A comparison of rainfall data from the rain gauge and TRMM data was done using data for
periods of the TRMM data 1998–2011 which were found not have gaps in the respective rain gauge
datasets. Figure 2 shows time series plots comparison of the monthly values of the TRMM and rain
gauge datasets for Kampi ya Mawe station.
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Figure 2. Linear Plot Comparison of Rain gauge and TRMM datasets for Kampi ya Mawe Station.

From Figure 2 it is observed that the TRMM datasets fit well with the rain gauge datasets for Kampi
ya Mawe station. The close association of the rain gauge and TRMM datasets were further confirmed
with the scatter plots of respective stations. Figures 3–6 show the scatter plots for Mutonguini, Kambi
ya Mawe, Kitui and Mutomo. The scatter plots were done for the month of rain gauge and TRMM
data for selected years in the period 1998–2000.
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Figure 3. Mutonguini rain gauge data plotted against respective TRMM data set for the period
November 2001–December 2002.
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Figure 4. Mutomo rain gauge data plotted against respective TRMM data set for the period October
2004–October 2005.
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Figure 5. Kambi ya Mawe rain gauge data plotted against respective TRMM data set for the period
January 1998–May 1999.
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Figure 6. Kitui rain gauge data plotted against respective TRMM data set for the period November
2001–March 2003.

The scatter plots indicate that strong positive association exist between the TRMM rainfall
estimates and rain gauge-based rainfall observations. From the foregoing comparison of TRMM and
rain gauge datasets, it is observed that TRMM rainfall datasets fit closely with rain gauge data series
for Machakos, Makueni and Kitui County. As such it is inferred that TRMM rainfall estimates are
a viable dataset for use in infilling missing rain gauge data gaps.

3.2. Infilling Missing Values of Rain Gauge Data

Missing data gaps in rain gauge datasets were infilled following the MOVE.2 approach.
The MOVE.2 infilling model required stepwise approach to be able to account for special discontinuities.
The rain gauge and TRMM datasets were arranged into annular sequences of monthly data series
such that each month of the year had its own time series of rainfall data. Therefore, for each rain
gauge and corresponding TRMM there was 12 series of annular sequence of month data time series
(that is the sequence of all January data points for the period of interest for each respective station).
In this arrangement for the station with the long missing data gaps (for example Mutonguini with
24 consecutive missing gaps), the missing gaps were reduced at most to two missing data gaps for
infilling at the furthest point of estimation.

Following the MOVE.2 approach, stations whose missing gaps occurred earlier than January 2007,
had only less than 10 data points of TRMM to be used in the regression. This was so because TRMM
rainfall estimates commence in January 1998. As such, the infilling method discussed here applied only
for missing gaps occurring at January 2008 onwards. Separate MOVE.2 regression relationships were
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developed for the stations Kambi ya Mawe, Mutonguni, Kitui, Mutomo, Kisasi, Lukenya, Matungulu,
Matiliku and Mutito Forest.

For example, the estimated infilled value for Kitui station for the month of January 2009 followed
the Equation (19).

Y′ (i) = Mi (y) (Jan) +
S′ (y) (Jan)

Var (TRMM) (Jan)
[TRMM (Jan)−Mean f or TRMM (Jan)] (19)

This equation was used to estimate the value of infilled rain gauge missing gaps for January 2009
in Kitui station. The subsequent gaps occurring in the months of February 2009–December 2009, were
filled by using the appropriate TRMM value for the respective months as in Equation (19). Tables 2
and 3 show the MOVE.2 parameters used to compute the infilled values following equation 16 for
Kitui and Mutonguini station (Kambi ya Mawe, Mutomo, Kisasi, Lukenya, Matungulu, Matiliku and
Mutit forest). Similar parameters were computed to infill gaps in other stations. One hundred and
forty-five data gaps for nine stations infilled in this method.

For the first month of long running data gap, the value of the coefficient à changes with the value
of N1 and N2. This change affects the computed value of S’(y) which is estimated variance of the
infilled series. The value of N1 changes due to overlap of the months for the preceding year. However,
the equation of the infill remains the same for the subsequent year because of the effect of the change
in N1 to N1 + 1 and N2 (1st gap for the year) form intrinsic part of S’(y).

The equation was developed with MOVE.2 approach with the intention to preserve mean and
variance. Subsequent infilling of other data gaps followed the MOVE.2 process. The MOVE.2 equation
was only applied at N1 and N1 + 1 depending on the number of data gaps for each month at each
station. For each station, the regression equation was applied to estimate the respective value of the
data gap. In this method, each month at which data was estimated was considered independent of
the previous estimate. Table 4 shows the number of data gaps infilled for the respective months for
the stations.

Table 2. MOVE.2 parameters used in computation of infilled values for Kitui Station.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m’(y) 56.51 62.86 137.91 158.59 67.92 9.98 3.435 6.84 11.531 58.28 274.44 108.90
S’(y) 1727.02 15776.68 1959.56 795.49 1174.06 12.37 7.166 23.74 206.21 6013.48 2924.27 18701.36
M(x) 75.53 26.35 107.83 152.71 69.06 8.93 7.11 12.60 12.03 32.302 187.36 88.02
M(y) 54.4 59.2 127.9 162.2 69.8 10.1 4.3 8.0 15.1 62.5 246.3 94.1

à 4.4 −8.8 −13.2 −8.8 −7.33333 −6.6 −6.16 −5.86667 −5.65714 −5.5 −5.37778 −5.28
y’(2007) 57.8 97.77 144.13 157.71 66.20 9.97 2.96 5.67 5.47 35.24 275.17 137.03
y’(2008) 55.2 27.96 131.70 159.48 69.65 10.01 3.91 8.02 17.61 81.33 273.72 80.77

X2 91.9 74.3 219.4 386.1 159.1 17.1 15.6 25.9 43.7 193.3 437.7 66.4
X1 2.8 9.2 52.8 215.5 113.3 10.8 15.3 20.6 38.7 143.5 239.4 29.5

M(X1) 51.47 8.55 89.36 165.27 66.47 8.32 3.85 10.97 10.57 32.67 209.65 111.17
M(X2) 56.82 20.88 183.22 116.06 46.70 4.91 9.78 13.30 12.02 30.69 201.02 72.30

Table 3. MOVE.2 parameters used in computation of infilled values for Mutonguini Station.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

m’(y) 71.61 27.15 115.70 155.69 72.205 9.34 6.61 9.25 11.74 31.88 200.2 93.56
S’(y) 6265.06 852.11 1579.48 574.96 3281.37 14.26 7.39 157.19 12.60 55.51 6776.38 17067.16
M(x) 68.05 20.18 89.82 169.99 63.73 7.28 5.51 10.98 11.31 52.86 235.46 91.14
M(y) 54.1 68.8 137.9 161.4 53.9 9.3 1.5 7.7 22.1 84.2 291.6 117.1

à 4.4 −8.8 −13.2 −8.8 −7.3 −6.6 −6.16 −5.8 −5.6 −5.5 −5.3 −5.2
y’(2007) 67.5 27.75 119.17 156.29 75.94 9.45 6.41 4.18 11.70 31.8 217.5 112.4
y’(2008) 75.69 26.55 112.22 155.09 68.46 9.23 6.81 22.69 11.80 31.91 183.06 74.71

X2 150.28 59.89 140.34 299.01 117.68 9.14 13.23 46.73 41.86 96.18 411.8 281.66
X1 131.82 14.67 30.55 124.005 44.36 6.57 10.65 32.39 15.50 44.51 71.41 38.31

M(X1) 37.21 6.40 82.83 187.81 58.85 6.45 3.72 9.38 10.01 40.45 227.02 133.44
M(X2) 50.11 7.60 140.87 157.18 45.79 5.10 6.63 11.05 11.44 65.8 263.05 55.06



Hydrology 2016, 3, 40 13 of 36

Table 4. Distribution of number of data points infilled with MOVE.2 estimated values for
respective stations.

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mutomo 1 1 1 1 1
KYM 1 1 1 1 1 1 1 1 1 1 1 1

Mutonguni 2 2 2 2 2 2 2 2 2 2 2 2
Kitui 2 2 2 2 2 2 2 2 2 2 2 2
Kisasi 2 2 2 2 2 2 3 3 3 3 3 3

Lukenya 2 2 2 2 2 1 1 1 1 1 1 1
Matungulu 1 1 1 1 1 1 1 1 1 1 1 1

Matiliku 1 1 1 1 1 1 1
Mutito
Forest 1 1 1 1 1 1 1 1 1 1 2 2

3.3. Evaluation of Infilled Data Series

MOVE.2 values were evaluated for precision and accuracy in estimating the rain gauge values.
The evaluation involved comparison sampled series of rain gauge data which were removed from the
series and replaced with estimated values following a jacknife approach of replacement. Following
the approach described in Section 2.3.3, MOVE.2 values were computed for gaps which were created
by removing some rain gauge data. Figures 7 and 8, show plots of infilled data plotted against the
rain gauge data in the removed areas for Kambi ya Mawe and Kisasi stations respectively. From the
figures it is observed that the MOVE.2 infilled values follow the rain gauge data closely, but they are
not a one-on-one match.
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Figure 7. Plot of Kambi ya Mawe rain gauge (Actual) vs. MOVE.2 (Predicted).
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Figure 8. Plot of Kisasi rain gauge (Actual) vs. MOVE.2 (Predicted).
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3.3.1. Comparison of Descriptive Statistics

Statistical parameters Mean, Median, standard deviation (Std. Dev), standard error of the
mean (Std. Err. Mean), Minimum, Maximum, Skewness and Kurtosis were used to compare the
MOVE.2 values infilled in the gaps where rain gauge data had been removed. In this analysis,
the difference between the respective summary statistics of the rain gauge values and the MOVE.2
estimates were evaluated. Altman and Bland [38], recommended the use of the difference approach
for comparison of summary statistics. The evaluation was done based on a non-parametric approach
considering only the arithmetic difference of the statistics. For each station, the arithmetic difference
in the summary statistics (Median, Standard Deviation, Standard Error of the Mean, Maximum and
Minimum, Skewness and Kurtosis), of the samples originating from the samples of monthly values
of rain gauge and MOVE.2 values were evaluated. Table 5 shows the computed differences of the
summary statistics.

Table 5. Differences in Descriptive Statistics of rain gauge values and MOVE.2 estimates.

Mean
(mm)

Median
(mm)

Std. Dev
(mm)

Std. Err.
Mean (mm)

Minimum
(mm)

Maximum
(mm) Skewness Kurtosis

Kambi ya
Mawe

2007 8.965 9.191 −1.925 −0.556 2.763 10.115 −0.069 0.318
2008 −19.541 19.85 −59.335 −17.129 −0.1 −173.3 −0.598 −0.924
2009 16.085 29.75 −5.392 −1.557 9.363 0.7 −0.655 0.59
2010 16.425 19.6 1.881 0.542 9.8 23.9 0.213 0.824

Lukenya
2007 12.858 10.1 10.953 3.162 5.1 43.5 0.262 0.94
2008 0.091 12.15 −6.604 −1.906 3 4.9 0.398 0.626
2010 12.641 17.65 7.717 2.228 4 43.5 0.286 0.398

Mutomo

2007 9.317 30.55 −36.1 −10.422 8.2 −121.5 −0.185 −0.02
2008 6.992 1.95 0.084 0.025 2.1 5.7 −0.039 −0.061
2009 8.3 15.3 9.366 2.703 2.1 44.2 0.334 0.995
2011 9.691 8.55 9.596 2.77 2.1 28.8 −0.295 −0.881

Matiliku

2007 −2.533 6.15 −13.159 −3.798 5.4 −21.8 0.041 0.278
2008 −0.925 −2.2 −3.101 −0.895 1.9 −16.7 −0.135 −0.834
2010 −0.759 −0.6 2.681 0.774 −5 −10.3 −0.471 −0.801
2011 52.5 −0.45 117.609 33.951 −1.4 408.8 0.15 0.756

Mutitu
2007 −3.85 14.95 −25.843 −7.46 3 −41.2 0.423 0.983
2008 −1.942 10.5 −11.219 −3.238 3.5 −31.1 −0.092 −0.234
2009 6.241 2.6 −6.774 −1.956 3.9 17.6 0.371 0.213

Matungulu

2007 7.458 34.15 −24.599 −7.101 −2.3 −125 −0.152 −0.372
2008 10.425 33.25 −7.593 −2.192 −3.4 −15 −0.496 −0.386
2009 −17.267 −36.85 −15.965 −4.609 5.8 −51 0.275 −0.414
2010 12.584 34.67 −7.166 −2.069 8.6 13.3 0.335 0.288

Kisasi
2007 −11.579 6.2 −42.752 −12.342 7.1 −138.3 −0.473 −0.107
2010 −42.725 −16.35 −84.65 −24.437 2.1 −273.3 −0.163 −0.026

Kitui
2007 −17.667 4.5 −32.676 −9.433 0.9 −90 0.02 0.507
2008 −3.192 −1.85 −3.975 −1.147 4.3 −3.5 −0.078 −0.278
2011 58.192 14.35 66.058 19.07 −1.8 129.3 −0.553 −3.166

Mutonguini
2007 −13.058 15.5 −31.919 −9.214 1.9 −31 0.805 4.868
2008 −15.041 0.55 −18.554 −5.356 −1.7 −48.3 0.385 2.043
2009 50.75 15.05 73.712 21.279 −0.6 189.7 −0.394 −2.096

Difference in the Standard Error of the Mean

The standard error of the mean (SE of the mean) estimates the variability between sample means
that were obtained when multiple samples from the same population. In this study, the difference
between the standard error of the mean of the samples of rain gauge values and standard error of
the mean of the samples of the MOVE.2 estimates, were used to compare the difference in variability
of the mean of the rain gauge values and the values of computed MOVE.2 estimates placed at gaps
previously created by removing the rain-gauge values against the true rain-gauge values at those
respective positions. Reading from Table 5, lower values (less than 2 standard deviations), of the
difference of the standard error of the mean indicate closeness to precision of the MOVE.2 estimates to
the rain gauge values.



Hydrology 2016, 3, 40 15 of 36

In this way, the difference in the standard error of the mean as indicated in Table 4 is an indication
of the deviation of the MOVE.2 estimates from the actual values of variability of the mean. The units of
the standard error of the mean are rainfall units (millimetres—mm). The standard error of the mean is
a good indicator of the precision of the estimated MOVE.2 values to infill respective rain-gauge values.
This analysis is in line with inference made by Altman and Bland [38], that 95% of observations fall
within 2 standard deviations. The difference in the standard error of the mean summary statistics
viewed in this manner therefore indicates close proximity for all the samples of MOVE.2 values and
rain gauge values analysed.

Thus, in this analysis the arithmetic difference between the standard error of the mean of the
MOVE.2 infilled values and standard error of the mean of the rain gauge values indicates closeness
of the estimated (MOVE.2 values) to the actual data (rain gauge values) for each of the removed
data gaps.

Difference in the Median

The median is a measure of location which is useful, particularly when a distribution is skewed,
and the end-values are not known, or when it is required that reduced importance be attached to
outliers. This consideration is necessary for the purpose of measurement of errors. Given that the
median is the 2nd quartile, 5th decile, and 50th percentile, the median values in this study were used
alongside the minimum and maximum values of rain gauge data to determine the central location of
the data series and compared the same with that of the MOVE.2 infilled series.

From Table 5, it is observed that the difference in the skewness and kurtosis of the two samples
data sets is small (less than 1). The low difference analysed imply that the skewness and kurtosis
of the samples of the rain gauge data series and the MOVE.2 values are in close proximity. This is
an indication that the infilled datasets do not significantly affect the skewness nor the kurtosis of the
data series. This is inferred due to the fact that the distribution of the differences in skewness and
kurtosis was always symmetrical about zero, and of magnitude less than one, in the respective periods
for all the stations.

It is also worth noting that the differences analysed in the minimum values was always low
(less than 10 mm of rainfall). The minimum rainfall occurs during the non-seasonal months of January,
February, June, July, August and September. On the other hand, systematic errors for TRMM estimates
have been observed to be more during the non-rain months, since aggregation of hourly TRMM
always gives values more than zero [39]. The difference in the maximum value is affected by large
outliers associated with the influence of rainfall by topography. TRMM measurements have also been
associated with low skill on highly variable topographic regions [39]. Reading from Table 5, the infilled
data series was observed to maintain the location of the median value as exhibited by the rain gauge
series without affecting the skewness nor the kurtosis of the distribution of the infilled series for all
the stations.

The Wilcoxon signed test is a non-parametric statistical hypothesis test used when comparing
two related samples, matched samples, or repeated measurements on a single sample to assess whether
their population mean ranks differ (i.e., it is a paired difference test). Given that the median is a measure
of the central location in a data series. The Wixcon test was used to evaluate the closeness of the
median to the position of the mean.

The requirements for the Wilcoxon Signed-Rank Tests for Paired Samples where zi = yi – xi for all
i = 1, . . . , n, are as follows:

The zi are independent;
xi are differences data;
The distribution of the zi is symmetric (or at least not very skewed).
The null hypothesis was thus stated as follows:
H0: the distribution of difference between paired values of the median of the samples of rain

gauge data and the corresponding MOVE.2 values is symmetric about zero. (That is, any differences
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are due to chance). The test was done at values of α = 0.05 and n = 14 (i.e., the number of values of
the TRMM period of rainfall data). From the statistical table we find that Tcrit = 21 (two-tail test).
Since Tcritical = 21 < 35.5 = T. The decision to reject or accept the null hypothesis was done at α = 0.05
(i.e., p ≥ 0.05). Table 6 below shows the decision (1) to accept and (0) to reject the null hypothesis,
of the Wixcon test and so conclude there is no significant difference between the two data series.

From Table 6, it is observed that a mix of both acceptance and rejection of the null hypothesis
is analysed for the different samples at different stations. Notable in this analysis is the scenario
in the months of April, October, November and December where all the stations accepted the null
hypothesis indicating therefore that the median was close to the mean in these months. The months of
February, June, July, August and September exhibited rejection of the null hypothesis, thus indicating
that the median location was not close to the mean. It is worth noting that the months of April,
October, November and December are the months with the highest seasonal rainfall exhibiting the
high rainfall amounts in the study area. Mahmud et al., [40], analysed similar characteristics between
TRMM estimates and rainfall in Peninsular Malaysia and noted that correlation between TRMM and
monthly rainfall was good during the wettest months in all local climate regions. Thus, borrowing
from Mahmud et al., [40] it may be inferred that the difference indicated in the median probably
originate from the TRMM data rather than induced from the MOVE.2 analysis approach.

Table 6. Results of Wixcon Test Comparing the Difference between the mean of the Median of the
samples of MOVE.2 Estimates and the Rain gauge Values.

Month of
the Year KYM Mutomo Lukenya Matiliku Mutito Matungulu Kisasi Kitui Mutonguini

Jan 1 0 1 1 1 0 0 0 0
Feb 0 0 0 0 0 0 0 0 0

March 0 1 0 1 0 0 1 0 0
April 1 1 1 1 1 1 1 1 1
May 0 0 0 1 0 1 1 0 0
June 0 0 0 0 0 0 0 0 0
July 0 0 0 0 0 0 0 0 0

August 0 0 0 0 0 0 0 0 0
September 0 0 0 0 1 1 0 0 0

October 1 1 1 1 1 1 1 1 1
November 1 1 1 1 1 1 1 1 1
December 0 1 1 1 1 1 1 1 0

3.3.2. Parametric Evaluation of Infilled Data Series

An error of measurement is the difference between an obtained value and its theoretical true
score counterpart. Two types of errors were used to evaluate the accuracy and precision of the
estimated MOVE.2 data series, including Mean Absolute Percent Error (MAPE), and analysis of
regression residuals.

Mean Absolute Percent Error (MAPE)

MAPE was used as a measure of accuracy of the infilled data series of the sampled MOVE.2
data to estimate the respective rain gauge rainfall values, Hyndman and Koehler [41]; Wilson [42]
recommended that MAPE be used for evaluation of cross-sectional estimates such as the MOVE.2
estimates of rain gauge rainfall. MAPE expresses the accuracy of the MOVE.2 infilled data series as
a percentage of the rain gauge data series. Figure 9, shows the distribution of MAPE for the nine
stations in the study.
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Figure 9. Distribution of Mean Absolute Percentage Error of Samples of the Rain gauge Values and the
MOVE.2 Estimates.

From Figure 9, it is observed that low values (less than 100%), of MAPE are analysed for the
months of January, March, April, May, October, November and December. These months are the
period of seasonal rainfall for the study area. However, a drastic increase and extremely high values of
MAPE are analysed for the months of February, June, July, August and September, which also happen
to be months of low rainfall amounts.

Given that the MAPE is a relative measure which expresses errors as a percentage of the actual
data, it provides in this analysis an easy and intuitive indication of the distribution of errors in the
infilled series of estimated rain gauge values. It also gives a way of judging the extent, or importance of
errors, such that in this case an error of 10% when the actual value is 100 (making a 10% error) is more
worrying than an error of 10 when the actual value is 500 (making a 2% error). This aspect is clearly
indicated with the low values of error for the months of high seasonal rainfall and the high values
of error during the months of low seasonal rainfall. Thus, the distribution of the MAPE indicated
in Figure 9 is an indication of relatively acceptable distribution of errors for the infilled MOVE.2
derived estimates.

Error in the Regression Analysis

Figure 10 shows regression results of the samples of Kisasi station for the year 2011. The plot
shows the MOVE.2 values for the year 2011 against rain gauge values for the same year for the station.
In this plot each point plotted on the figure indicates where the MOVE.2 values are plotted on the
x-axis, and the accuracy of the observations are on the y-axis. The distance from the solid line (perfect
agreement) indicates the magnitude of the error (residual) on the prediction of the value. Values above
the solid line mean the prediction was too low, and values below the solid line mean the prediction
was too high. In this regression analysis, it is observed that the computed MOVE.2 values are close
to the rain gauge values with relative small margins of errors. This analysis was repeated for all the
stations and similar results were observed.
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Figure 10. Results Regression Analysis of the samples of Kisasi station for the year 2011.

Figures 11–19 shows plots of the mean of regression residuals for each station. The mean of
regression residuals was computed for the number of years which were sampled for each of the
stations. From the plots of mean regression residuals, it is observed that the mean residuals are not
evenly distributed vertically, such that there are positive and negative residuals. It is also observed
that the residual exhibit high variability but certain patterns are easily discerned from the plots.
For example, it is notable that the during the months of October, November and December which also
are the main rainfall season of the study area, the residuals exhibit low values (less than 30 mm) for
all the stations. The months of March and April exhibit high variability of the regression residuals
across the stations. This is despite the two months being months of seasonal rainfall in the study area.
The high variability of regression residuals during the March–April–May season may be related to the
high unreliability of rainfall during the period [43]. Glover et al., [44], estimated the unreliability of
rainfall in the April to May season in the South Eastern parts of Kenya within which this study was
conducted at 40%. The 40% unreliability of seasonal rainfall depicts a situation of erratic characteristics
of rainfall with high variability.
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Figure 11. Mean of Regression Residuals for Kambi ya Mawe Station.
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Figure 12. Mean of Regression Residuals for Mutomo Station.
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Figure 13. Mean of Regression Residuals for Lukenya Station.
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Figure 14. Mean of Regression Residuals for Matiliku Station.
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Figure 15. Mean of Regression Residuals for Mutito Station.
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Figure 17. Mean of Regression Residuals for Kisasi Station.
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Figure 18. Mean of Regression Residuals for Kitui Station.
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Figure 19. Mean of Regression Residuals for Mutonguini Station.

Figure 20 shows the normal probability plot of the residuals. In Figure 20, the pattern of the
residuals curve is approximately linear indicate that the residuals are normally distributed hold.
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Figure 20. Normal Quantile Plot for Kisasi_Samples for 2011.
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3.4. Test of Equality of the Mean and Variance

The statistical tests t-test and F-test were based on two approaches, first the data of the series
generated with the jacknife sampling was arranged in the order of running calendar months (a series
for each station for the sample period) containing data of the generated MOVE.2 values, and the
dataset of respective rain gauge values arranged in a similar manner and the mean/variance of the
two series were compared for equality in a t-test and F-test respectively.

The data of the series generated with the jacknife sampling was arranged along the annular month
(a series of data of the order of annular modes representing year to year variability), month-month
values beginning 1998 up to and including the year of which there was replacement with the MOVE.2
value). The sequence of the annular series was such as that the sequence of values was, for example:
Jan 1998, Jan 1999, Jan 2000, ..., Jan 2011). A similar sequence for each of the 12 calendar months were
developed. Two annular months series, one with the surrogate data and the other of rain gauge data
within the sections without gaps were developed. The mean and variance of the two series were
compared for equality in a t-test and F-test respectively. This approach applied only for the years
preceding the gaps in the respective stations. The years within the gaps area as indicated in Table 1
and the years after the appearance of gaps were not included in the analysis.

3.4.1. Two-Sample t-Test for Equal Means

The two-sample t-test [45] was used to determine if the means of the rain gauge data series
and the MOVE.2 estimated series are equal. The test, was used to determine whether a significant
difference exists or does not exist between two data sets. The t-test was also used to determine whether
the two sample means of two independent samples come from the same population. In the t-test,
the formula for calculating “t” is given in equation [46].

The null and alternative hypotheses were stated as follows:

H0: µ1 = µ2; the means are equal

H1: µ1 6= µ2; the means are different

This is a two tailed test because the Null Hypothesis does not specify a direction, only the
condition of equality.

The t-test indicates that there is not enough evidence to reject the null hypothesis that the
two means are equal at the 0.05 significance level. The t-test therefore concluded that the two datasets
rain gauge datasets and MOVE.2 infilled datasets have the same means at the 0.05 significance level
and that the two datasets may be considered to come from the same population.

3.4.2. F-Test for Equality of Two Variances

An F-test is a statistical test in which the test statistic has an F-distribution under the null
hypothesis. An F-test [47] was used to test if the variances of two populations are equal. The F-test
used is a two-tailed test. The null hypothesis was stated as:

H0: σ1 = σ2

H1: σ1 6= σ2

The F Statistic was computed as:
F = s1/s2

where s1 and s2 are the sample variances. The more this ratio deviates from 1, the stronger the evidence
for unequal population variances. The variances are significantly different if F is greater than the
appropriate value in the F table. The degrees of freedom for the numerator are (n1 − 1), where n1 is the
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sample size for the group with higher variance. Degrees of freedom for the denominator are (n2 − 1),
where n2 is the sample size for the denominator group. This is a two-tailed test.

The F-test indicated mixed analysis with many favouring acceptance of the null hypothesis and
two stations favouring rejection of the null hypothesis. The stations of Kisasi, Kitui, Mutonguini,
Mutitu, and Lukenya the null hypothesis was accepted for all the samples. The station of Kisasi
indicated rejection of the null hypotheses for two samples 2007–2008 and 2011 while Matiliku indicated
rejection of the null hypotheses for one sample 2010–2011 The F test indicates that there is enough
evidence to reject the null hypothesis that the two variances are not equal at the 0.05 significance level.

Notable in this analysis is that those months which had incidents favouring the acceptance of
the null hypothesis were mainly the months of high rainfall including high seasonal rainfall such
including March, April, May, October, November and December indicating that the variance of the
two samples MOVE.2 generated surrogates and the rain gauge dataset are equal. The months of low
rainfall including January, February, June, July, August and September indicated rejection of the null
hypothesis indicating that the variance of the two samples MOVE.2 generated surrogates and the rain
gauge dataset are not equal. Details of the computation of the t-test and the F-test may be found in the
Appendix of this paper.

3.5. Confirmation of Preservation of Mean and Variance

A Gamma probability density function (PDF) was used to confirm the preservation of mean
and variance of the infilled data series of rain gauge data following Theiler et al., [48]. The data
sets of the extended MOVE.2 were fitted into a gamma distribution function and statistical tests of
equality of mean and variance was done. Figures 21–24 show the Gamma cumulative distribution
function for Mutomo station comparing the plots of original data and that of the infilled data for the
month of January. It is observed that the cumulative function of the extended dataset fit well with
the distribution of the original data. Given that the gamma function fits well, it is an indication that
the plots have similar parameters α and β for the two plots further confirming the assumption of
preservation of mean and variance of the MOVE.2 approach.
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3.6. Autocorrelation Test

Given that the infilled values were translated from different datasets, it is prudent to test for
autocorrelation among the adjacent variables. If they are correlated, then this implies that the
least-squares regression underestimated the standard error of the coefficients and predictors can
seem to be significant when they may not [49]. The Durbin-Watson statistic was used to test for
autocorrelation within adjacent values in the new series after infilling of the data. Table 7 shows the
values of Durbin-Watson statistic computed for each data series.

Table 7. Durbin-Watson Statistic Matching the size of infilled datasets and Highest Number of Points
infilled per month (n).

Size of Infilled
Dataset Value of n Upper

Bound Value
Lower

Bound Value
Durbin-Watson

Statistic

Kambi ya Mawe 12 1 2 1 2.1
Mutonguni 24 2 2 1 2.32

Kitui 24 2 2 1 2.49
Mutomo 12 1 2 1 2.89

Kisasi 30 4 2 1 2.32
Lukenya 29 4 2 1 2.89

Matungulu 29 4 2 1 2.22
Matiliku 19 2 2 1 2.38

Mutito Forest 26 3 2 1 2.15

For autocorrelation test the critical limits are 2 − DL and 2 − DU. The hypotheses were stated
as follows:

H0: ρ = 0 (no serial correlation);
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H1: ρ < 0 (negative serial correlation)

If d < 2 − DU do not reject H0, if d > 2 − DL reject H0.
Since all the values of Durbin-Watson statistic are greater than 2, H0 is not rejected and the

conclusion is that there is no serial correlation in the infilled data series. The analysis of lack of
serial correlation in the infilled data series serves to confirm the stationarity assumption of the
extended series.

3.7. Goodness of Fit

Table 8 shows the computed values of correlation coefficient and the coefficient of determination
for the years 2007–2011 for the respective stations. Medium and high values of correlation coefficient
and the coefficient of determination were analysed between the original rain gauge data series and the
MOVE.2 surrogate series for the different years at all the stations.

Table 8. Correlation coefficient and the coefficient of determination for the years 2007–2011 for the
respective stations.

2007 2008 2009 2010 2011

Corr.
Coef. R2 Corr.

Coef. R2 Corr.
Coef. R2 Corr.

Coef. R2 Corr.
Coef. R2

KYM 0.92 085 0.57 0.6 0.52 0.65 0.89 0.79 - -
Matiliku 0.96 092 0.99 0.99 - - 0.98 0.96 0.55 0.52
Lukenya 0.42 018 0.807 0.65 0.69 0.48 - - - -
Mutomo 0.88 0.77 0728 0.89 - 0.86 - - 0.92 0.85

Kisasi 0.94 088 - - - - - - 0.83 0.69
Mutitu 0.94 0.87 0.95 0.91 0.84 0.71 - - - -

Matungulu 0.60 0.36 0.90 0.81 0.69 0.65 0.94 0.82 - -
Kitui 0.90 0.80 0.94 0.89 - - - - 0.63 0.59

Mutonguini 0.98 0.96 0.97 0.95 0.84 0.71 - - - -

3.8. Discussion

The intent of infilling missing data is to produce a time series which is relatively long that possesses
statistical characteristics believed to be like those of the actual record for the station [50]. The reason
for producing such a record is for use in simulation and optimizations related to potential water
management decisions. This study demonstrated the extension of rain gauge records donated from
TRMM rainfall estimates following a least square regression MOVE.2 approach. In this methodology,
the study transferred the characteristics of distribution shape, serial correlation, and seasonality from
the TRMM dataset to the rain gauge station record [51]. The analytical derivations, based on linear
regression alone cannot be expected to provide records with the appropriate variability [52], and TRMM
data series cannot be expected to provide records with the appropriate distribution shape or serial
correlation as the rain gauge data series. This is so because the TRMM data series and rain gauge data
series have substantial differences in terms of distribution shapes, serial correlation, or seasonality.

3.8.1. Viability of Infilled Data Series

The jacknife sampling approach used in this study for evaluating the infilled series involved
removing one value from the annual month series of rain gauge data to enable estimation of the
same following the MOVE.2 approach. The remove-1 jacknife, approach, however is known to give
inconsistent variance estimators for non-smooth estimators such as the sample quantiles including the
median [53]. This deficiency was overcome in this study by increasing the number of values removed,
following a smoothness measure of the point estimator as recommended by Shao and Wu, [53]. In the
analysis, there were 12 values removed on the running series of monthly rain gauge data sets in one
jacknife sample of one annual month. Thus, it followed that for each annual month removed, there
were a total of 12 running month series of values removed thereby achieving the required values for
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smoothness of estimator. The sampling methodology used in this study also follows very closely with
the suggestions of Guo Hua et al., [54].

In estimating the median using a jacknife sampling approach, Guo Hua et al., [54] observed a
lack of smoothness which seemingly was caused by the jacknife inconsistent estimate of the standard
error. In this concern, Guo Hua et al., [54], suggested that instead of removing one value at a time
in the jacknife, a number of values, equivalent to (d), be removed where n = r.d for some integer r.
Guo Hua et al., [54], actually suggested removing out more than d =

√
n when estimating the median,

but fewer than n values to achieve consistency for jacknife estimate of standard error. These suggestions
made by Guo Hua et al., [54], are similar to recommendation of Shao and Wu [53]. Therefore, since in
the jacknife approach (used as explained in Section 2.3.3), considered the requirement for consistency
as suggested by Guo Hua et al., [54] and Shao and Wu, [53], it is expected that the MOVE.2 values as
evaluated in this study give a true picture of the capability of estimation of the rain gauge values.

The use of the MOVE.2 method produced infilled series with statistical characteristics (mean,
variance and extreme values) of the rain gauge series. The MOVE.2 methodology has desirable
properties that enable appropriate preservation of the parameters. The MOVE.2 methods also
considered the two distributions as separate and distinct distributions with different parameters
yet combining into one distribution with the same parameters. A probability density function (PDF)
approach was used to confirm the preservation of mean and variance of the infilled data series of rain
gauge data following Theiler et al., [48]. Sen and Eljadid, [55] indicated that the gamma distribution
has appropriate probability distribution for describing monthly rainfall for arid and semi regions.
The month data series of the infilled data sets were fitted into a gamma distribution function and
statistical tests of preservation of mean and variance was done. It was observed that the cumulative
function of the extended dataset fit well with the distribution of the original data. Given that the gamma
function fits well, this is an indication that the plots have similar parameters α and β, confirming the
assumption of preservation of mean and variance of the MOVE.2 approach.

No physical quantity can be measured with perfect certainty; there are always errors in any
measurement. This means that the measurement of MOVE.2 estimates of rain gauge rainfall values, on
a repeated basis as more gaps are infilled, certainly will contain errors [56]. The error analysis is an
attempt to quantify the uncertainty resulting from the infilled values. The understanding of the errors
also contributes to emphasizing the need for care in the measurement and application of refinement
of the method for the purpose of reducing the errors. We can thereby gain greater confidence that
the computed MOVE.2 values closely approximate the true value [57]. Error analysis in this study
therefore expresses the uncertainties inherent in the estimated values of rainfall computed by the
MOVE.2 approach for infilling in the rain gauge data gaps. As such it is inferred that the results of the
error analysis are an indicator of the high quality of the extended data series. It is thus inferred that
MOVE.2 approach enables maintenance of high quality rainfall data series even after the infilling of
the extended datasets.

A mean-preserving spread is a change from one probability distribution (donor series) to another
probability distribution (recipient series), which is formed by spreading out one or more portions of
the donor probability density function while leaving the mean of the recipient series unchanged [58].
As such, in this study, TRMM data series have proven to be good at preserving the mean and variance
contraction of rain gauge data series following Gentzkow and Kamenica [58].

A statistical test confirmed the significance of the similarity of the statistical parameters’ mean
and variance of the infilled dataset for all the stations. In this study, therefore, it is inferred that the
use of TRMM data series to infill rain gauge data following the MOVE.2 approach is the mean and
variance preservation method. The approach agrees with Khalema [59], who showed that one can mix
a baseline distribution with a Gamma distribution and obtain a mixture distribution which has mean
and variance preservation capability.
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3.8.2. Reliability and Validity of Infilled Data Series

Harvey et al., [50] identified three factors likely to influence reliability of data infilling, the nature
of the donor station (TRMM in this case), the location of the station and duration of the gap and the
infilling procedure. In this study, TRMM rainfall estimates were confirmed as a good fit of the rain
gauge data. The MOVE.2 regression relationships were developed for rain gauge series and TRMM
series data for each month of the 12 calendar months. In this approach the number of missing data
gaps was reduced to a maximum of two data points for each month for the longest running series of
missing data (24 months). Other stations had at most only one missing data point for the respective
month. Giustarini [60] observed that best performances for infilling missing data was obtained when
the gaps were comparatively short. In this study, the MOVE.2 approach used along the sequential
annual months series reduced the long-running missing gaps to short gaps for the respective months
series. As such, this study recommends the use of MOVE.2 in a sequential annual months approach
for infilling rainfall data from TRMM estimates for effectiveness. It is also observed that the reduced
number of missing gaps for infilling reduces the regression errors, thereby enhancing the reliability
of results. This method also agrees with Henn et al., [61] that shorter missing gaps are easy to fill
for all methods. Generally, in ordinary regression methods of data infilling, it follows that the RMSE
increases with an increase in the proportion of missing values (gap size). Furthermore, the MOVE.2
approach demonstrated in this analysis, suggests reducing the gap size, thereby reducing the RMSE.
Thus, the MOVE.2 approach, utilizing sequential annual months, enables the infilling to attain high
accuracy even with long gaps of missing data.

4. Summary

This study tested a methodology for infilling missing gaps in rain gauge observed data series
following the least squares regression. The study presented a methodology for infilling the rain gauge
data series from a satellite based rainfall estimates. The satellite estimates were extracted from grid
points nearest to the respective station. These satellite estimates were used as donor stations.

The study tested the use of the MOVE.2 approach using TRMM satellite data as a donor station.
The study therefore addressed an imperative challenge for hydro-meteorological science, of long
consecutive missing data gaps among the rain gauge observed data series. This is particularly true for
the ASAL of Kenya and Africa whose data gaps are rampant in the hydro-meteorological data series,
and also other parts of the tropics where TRMM data observations are available.

In the MOVE.2 approach, the coefficient of linear regression was interpreted as being of marginal
effect. This marginal effect corresponds to how the dependent variable (rain gauge data) changes
when the independent variable (TRMM data) changes by an additional unit holding all other variables
in the equation constant. Based on the data used in this regression, adding one additional month of
rain gauge record, corresponded to an increase in monthly rainfall. The sequential annual month
arrangement of rain gauge rainfall records helped to operationalise the capability of MOVE.2 approach.
With this approach the methodology enabled the preservation of the mean, variance and extreme
value statistic for the infilled data series. As such the infilled rain gauge series maintained the same
distribution as the observed series. It is, however, worth mentioning that the preservation of the
variance was not always upheld, particularly for months of low seasonal rainfall. This observation
was also noted for the median.

5. Conclusions

The results reported in this study provide researchers with a methodological framework that can
be readily applied for infilling missing values of rainfall in rain gauge data series using TRMM satellite
estimates as donor station. The approach has demonstrated capability of extending monthly rainfall
values which remain similar to those observed by way of preserving the statistical parameters such as
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mean, variance and extreme statistics. The infilled values of rainfall have characteristics like those of
the actual records they are intended to represent.

The methodology therefore serves a need as expressed by researchers, for development of generic
data infilling methodologies which ensure consistency, auditability and effectiveness in the infilled series.

Infilling of missing rainfall data in the data series using the least square regression in MOVE.2
approach as used in this study promises robustness of methodology even in situations of large and
extensive data gaps with a high proportion of missing values. The approach proposes a way of
shortening long and running missing gaps into very short and manageable missing gaps. The infilling
of short missing gaps as proposed here, promises quality of infilled data and hence quality of
predictions for models which utilise the infilled data series. The method offers a viable alternative to
traditional infilling approaches.

The results suggest that MOVE.2 utilizing TRMM data is effective for infilling rainfall data series
in Machakos, Makueni and Kitui counties of Kenya. The TRMM rainfall products coupled with MOVE.2
approaches could therefore be considered as viable alternative data source for large-scale distributed
rainfall analysis for development of hydro-meteorological models such drought early warning, monitoring
and forecasting. The approach ensures a consistent and auditable approach towards infilling, which
could find application in the ASAL of Kenya and for the tropical regions in general.
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Appendix A

The t-test and the F-test were conducted to test for similarity of the mean and variance of the
generated data and the rain gauge datasets. The t-test and the F-test were conducted following two
approaches. First the data of the series generated with the jacknife sampling was arranged in the order
of running calendar months (a series for each station for the sample period) containing data of the
generated MOVE.2 values, and the dataset of respective rain gauge values arranged in a similar manner
and the mean/variance of the two series was compared for equality in a t-test and F-test respectively.

Second, the data of the series generated with the jacknife sampling was arranged along the
annular month (a series of data of the order of annular modes representing year to year variability as
described by Thompson and Li, [62], month-month values beginning 1998 up to and including the
year of which there was replacement with the MOVE.2 value). The sequence of the annular series
was such as shown in the example; (an example sequence of values was: Jan 1998, Jan 1999, Jan 2000,
..., Jan 2011). A similar sequence for each of the 12 calendar months was developed. Two annular
months series, one with the surrogate data and the other of rain gauge data within the sections without
gaps were developed. The mean and variance of the two series were compared for equality in a t-test
and F-test respectively. This approach applied only for the years preceding the gaps in the respective
stations. The years within the gaps area as indicated in Table 1 and the years after the appearance of
gaps were not included in the analysis.

Appendix A.1. t-Test and F-Test following the Arrangement of Sample Datasets in Annular Months

The two-sample t-test [45] was used to determine if the means of the rain gauge data series and
the MOVE.2 estimated series are equal. The test was used to determine whether a significant difference
exists or does not exist between two data sets. The t-test was also used to determine whether the
two sample means of two independent samples come from the same population. In the t-test, the
formula for calculating “t” is given in equation [46].
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The null and alternative hypotheses were stated as follows:

H0: µ1 = µ2; the means are equal (20)

H1: µ1 6= µ2; the means are different (21)

This is a two tailed test because the Null Hypothesis does not specify a direction, only the
condition of equality.

For a two-sided t-test, the null hypothesis was rejected if the absolute value of the test statistic
was greater than the value of t1-α/2,ν in the t-table. The mean of the series was computed along the
annular month. This meant that the degrees of freedom changed for each removal of rain gauge values
and subsequent replacement following the jacknife approach. For the year 2007, 18 degrees of freedom
was used, in 2008 20 degrees of freedom, and up to 22 degrees of freedom for the year 2009. The result
is significant if t is greater than the appropriate value in the t-table. The computed values of t for each
month alongside the critical values of the t-test for the respective degrees of freedom are shown in the
table below. If the t value calculated from the data is equal to or larger than the critical value, the Null
hypothesis of H0: µ1 = µ2 was rejected otherwise the null hypothesis was accepted. The test was done
for the means of all the twelve calendar months for the subsequent data removal and replacement as
described in the jacknife approach. Incidentally, all the means computed favoured an acceptance of the
null hypothesis, thereby upholding the hypothesis that µ1 = µ2.

Therefore, the t-test indicates that there is not enough evidence to reject the null hypothesis that
the two means of the annular month series of surrogate datasets and rain gauge datasets are equal at
the 0.05 significance level. The t-test therefore concluded that the two datasets rain gauge datasets and
MOVE.2 infilled datasets have the same means at the 0.05 significance level and that the two datasets
may be considered to come from the same population.

An F-test is a statistical test in which the test statistic has an F-distribution under the null
hypothesis. An F-test [47] was used to test if the variances of two populations are equal. The F-test
used is a two-tailed test. The null hypothesis was stated as:

H0: σ1 6= σ2

H1: σ1 = σ2

The F Statistic was computed as:
F = s1/s2

where s1 and s2 are the sample variances. The more this ratio deviates from 1, the stronger the evidence
for unequal population variances. The degrees of freedom for the numerator are (n1 − 1), where n1

is the sample size for the group with higher variance. Degrees of freedom for the denominator are
(n2 − 1), where n2 is the sample size for the denominator group. The two variances were considered
significantly different if ratio F is greater than the appropriate value in the F-table.

In this approach, the F-test indicated mixed analysis with many favouring rejection of the null
hypothesis and another few favouring acceptance of the null hypothesis. For the stations of Kisasi,
Kitui, Mutonguini, Mutitu, Matiliku and Lukenya, the null hypothesis was rejected for all the samples.
The station of Matungulu 6 months indicated acceptance of the null hypotheses (4 in the month of
June and 2 in the month of July), Mutomo indicated 12 months 4 in January, 2 in February, 2 in June
and 4 in September. Kambi ya Mawe indicated four occasions of acceptance of the null hypothesis 2
in February and 2 in September. The F test indicates that there is enough evidence to reject the null
hypothesis that the two variances are not equal at the 0.05 significance level.

Notable in this analysis is that those months which had incidents favouring the rejection of the
null hypothesis were mainly the months of high rainfall including high seasonal rainfall such including
March, April, May, October, November and December indicated rejection of the null hypotheses for all
the stations in all the resampled data series. The months of low rainfall including January, February,
June, July, August and September indicated acceptance of the null hypothesis.

Tables A1 and A2 shows the computed t-values and F-values of the samples.
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Table A1. Computed t-values of samples.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Degrees of
Freedom

Critical
Values

KYM
2007 −0.014 −0.002 0.008 −0.027 −0.038 −0.353 −0.032 −0.537 −0.004 0.016 0.004 −0.017 18 1.812
2008 0.010 0.068 0.014 −0.016 −0.014 0.103 0.071 −0.154 0.020 0.014 0.007 −0.010 20 1.796
2009 0.014 0.052 0.010 0.000 −0.008 −0.034 −0.241 −0.036 0.007 0.014 0.012 0.004 22 1.782

Mutomo
2007 −0.001 −0.011 −0.001 −0.008 −0.071 −0.156 −1.252 −0.060 −0.014 0.003 0.000 −0.007 18 1.812
2008 −0.001 −0.001 0.049 −0.004 0.052 −0.098 −0.314 −0.009 0.022 0.021 0.006 −0.003 20 1.796
2009 0.000 0.001 0.014 0.005 −0.480 −0.091 −0.262 −0.012 0.020 0.031 0.000 0.005 22 1.782

Lukenya
2007 0.000 −0.004 0.000 0.000 0.018 −0.054 0.119 −0.042 0.007 0.000 0.000 0.000 18 1.812
2008 −0.001 −0.019 0.000 0.000 0.001 0.076 0.018 −0.047 0.017 0.000 0.000 0.000 20 1.796
2009 0.013 0.040 0.024 −0.014 −0.003 0.065 0.030 −0.017 −0.055 −0.008 0.001 −0.005 22 1.782

Matiliku
2007 −0.005 −0.009 0.098 −0.023 −0.157 −0.204 0.057 −0.036 0.009 0.029 0.006 −0.010 18 1.812
2008 0.016 0.022 0.095 −0.003 −0.129 0.227 0.051 0.277 0.008 0.014 0.003 −0.009 20 1.796

Mutito
2007 0.008 −0.012 0.016 0.030 0.034 −0.389 0.285 −0.034 −0.013 0.006 0.009 −0.009 18 1.812
2008 −0.003 −0.009 0.019 0.028 0.041 −0.026 0.214 −0.015 −0.017 0.012 0.006 −0.005 20 1.796
2009 −0.015 −0.007 0.014 0.006 0.024 −0.106 0.228 −0.007 −0.015 0.014 0.006 −0.003 22 1.782

Matungulu

2007 −0.007 −0.011 −0.002 −0.017 −0.014 0.057 0.041 0.023 0.023 0.017 0.002 −0.004 18 1.812
2008 0.005 0.022 −0.003 −0.002 −0.001 0.056 0.011 0.013 0.007 0.001 0.004 −0.003 20 1.796
2009 0.004 0.015 −0.007 0.001 −0.004 0.045 0.000 0.007 −0.001 −0.006 0.008 0.010 22 1.782
2010 0.004 0.015 −0.005 −0.002 −0.007 −0.016 −0.021 −0.030 −0.012 −0.010 0.009 0.011 24 1.771

Kisasi
2007 −0.020 0.017 0.017 0.023 0.065 0.073 5.097 −0.278 0.061 0.010 0.016 0.001 18 1.812
2008 −0.020 0.027 0.019 0.034 0.117 0.227 −2.863 0.198 0.162 0.013 0.016 0.002 20 1.796

Kitui
2007 0.019 0.025 0.025 0.032 0.079 0.048 0.244 0.073 0.047 0.004 0.009 0.011 18 1.812
2008 0.000 −0.002 0.000 0.000 0.000 −0.068 −0.032 −0.003 0.007 0.000 0.000 −0.001 20 1.796

Mutonguini
2007 0.005 0.031 0.016 0.024 0.140 −0.001 −0.139 0.006 0.082 0.023 0.019 0.009 18 1.812
2008 0.015 0.025 0.018 0.029 0.125 0.097 0.195 0.283 0.057 0.014 0.015 0.019 20 1.796
2009 0.015 0.052 0.029 0.026 0.132 0.095 0.517 0.189 0.035 0.002 0.012 0.022 22 1.782
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Table A2. Computed F-values of samples.

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Degrees of
Freedom F-Critical

KYM

N
2007 10 0.810 1.219 2.336 1.354 0.946 0.777 2.206 0.231 2.251 13.576 1.887 0.949 9 3.1789
2008 11 1.251 4.012 2.331 1.031 0.993 2.627 2.030 0.885 4.318 16.457 1.855 0.880 10 2.913
2009 12 1.299 2.786 0.986 1.182 1.115 1.635 1.078 0.997 1.243 15.841 2.147 0.685 11 2.8536

Mutomo
2007 10 16.055 14.295 0.681 4.459 0.942 13.589 0.456 1.796 29.731 5.039 2.491 2.141 9 3.1789
2008 11 14.902 11.810 0.737 11.731 0.776 11.695 0.386 1.339 23.692 3.318 1.976 1.754 10 2.913
2009 12 2.956 2.488 0.633 16.561 0.085 0.720 0.431 1.214 32.105 3.382 2.507 2.895 12 2.6866

Lukenya
2007 10 0.007 0.032 0.002 0.003 0.025 1.044 2.948 1.006 0.046 0.002 0.000 0.002 9 3.1789
2008 11 0.007 0.031 0.002 0.003 0.025 0.972 2.872 0.992 0.045 0.002 0.000 0.002 10 2.913
2009 12 0.234 0.407 0.972 0.431 13.402 2.115 15.701 1.816 0.180 8.068 0.412 0.314 11 2.8536

Matiliku
2007 10 0.792 0.816 2.278 1.024 0.770 0.746 2.111 0.835 1.318 4.365 2.198 1.052 9 3.1789
2008 11 0.792 0.816 0.975 0.959 0.813 0.746 2.111 0.835 1.318 4.365 2.199 0.958 10 2.913

Mutito
2007 10 1.264 0.926 1.671 8.853 6.253 0.890 1.889 0.938 1.129 1.571 2.004 0.834 9 3.1789
2008 11 1.225 0.928 1.669 9.479 68.962 0.896 1.669 0.860 1.137 1.503 2.195 0.818 10 2.913

Matungulu

2007 10 0.826 0.812 1.248 0.823 0.879 5.151 1.724 1.571 1.812 1.085 3.013 0.884 9 3.1789
2008 11 0.846 0.834 1.298 0.984 0.832 7.015 5.755 1.545 2.509 1.871 4.277 0.938 10 2.913
2009 12 0.833 0.809 1.415 0.775 0.967 6.808 5.252 1.539 2.231 1.842 4.238 0.933 11 2.8536
2010 13 0.824 0.820 1.169 0.823 0.879 5.238 1.961 1.513 2.855 1.123 2.888 0.936 12 2.6866

Kisasi
2007 10 1.449 1.125 1.254 1.317 0.770 1.409 0.046 0.345 1.820 1.428 1.323 0.852 9 3.1789
2008 11 1.253 1.169 1.073 1.350 0.907 1.270 0.140 0.915 1.077 1.323 1.281 0.893 10 2.913

Kitui
2007 10 1.465 1.241 1.163 1.315 0.889 1.316 1.657 1.154 1.492 0.945 0.851 0.892 9 3.1789
2008 11 0.000 0.008 0.002 0.001 0.000 0.048 0.004 0.001 0.009 0.001 0.002 0.002 10 2.913

Mutonguini
2007 10 1.252 1.150 1.228 1.335 1.114 1.111 0.757 0.763 1.007 1.324 1.283 0.803 9 3.1789
2008 11 1.048 1.240 1.004 1.028 0.930 0.894 0.881 0.885 1.134 1.406 1.239 0.907 10 2.913
2009 12 1.184 1.201 1.301 1.399 1.118 1.090 0.806 0.867 1.072 1.331 1.272 0.836 11 2.8536



Hydrology 2016, 3, 40 32 of 36

Appendix A.2. t-Test and F-Test Following the Arrangement of Sample Datasets in Calendar Months

The student t-test and Fisher’s F-test were conducted for the rain gauge datasets for the respective
periods against datasets generated using the MOVE.2 approach. The datasets used were the MOVE2
datasets developed by replacement of rain gauge values with MOVE.2 computed values following
a jacknife approach. Statistics for the samples are given in Table A3.

Table A3. Summary Statistics of Samples arranged in Calendar form.

Station Name Sample Name Observations Minimum Maximum Mean Std. Deviation

Mutoguini MOVE2 2007-09 36 1.300 320.000 72.117 92.535
RG-2007-09 36 0.000 457.000 91.489 116.371

Kisasi
MOVE2 2007-08 24 3.800 258.000 75.306 77.716

RG 2007-08 24 0.000 457.000 101.512 131.580

Kisasi
MOVE2-2011 12 2.900 289.000 72.158 79.550

Kisasi RG-2011 12 0.800 562.300 114.883 164.200

KYM
MOVE2 2007-2010 48 3.000 162.000 48.156 38.335

RG 2007-2010 48 0.000 296.300 42.673 57.917

Mutomo
MOVE2-2007-09 36 2.100 250.000 45.992 63.348

Mutomo-RG-2007-09 36 0.000 290.500 37.789 71.321

Lukenya MOVE2-2007-09 36 3.000 115.000 36.708 36.632
RG-2007-09 36 0.000 110.100 28.178 34.141

Matiliku
MOVE2-2007-08 24 5.400 287.000 57.333 74.121

RG-2007-08 24 0.000 303.700 59.063 81.379

Matiliku
MOVE2-2010-11 24 3.000 157.000 40.917 40.496

RG-2010-11 24 0.400 531.800 66.787 113.160

Mutito
MOVE2-2007-09 36 3.000 280.000 63.333 62.405

RG-2007-09 36 0.000 262.400 63.183 74.225

Matungulu MOVE2-2007-09 48 4.100 187.500 72.198 52.813
RG-2007-09 48 0.000 271.000 68.898 68.010

Kitui
MOVE2-2007-08 24 8.900 258.000 69.442 71.043

RG-2007-08 24 0.000 266.700 80.796 90.989

Kitui
MOVE2-2011 12 7.100 212.000 60.475 69.233

RG-2011 12 1.800 137.400 39.733 40.296

Appendix A.3. Student’s t-Test on Two Independent Samples

Student’s t-test on two independent samples was done the test compared the mean of the
two independent samples, using the independent sample t-test. The goal was to test if there is a
clear difference between the means of the two samples. The Student’s t-test on two independent
samples was done for the rain gauge datasets for the respective periods against datasets generated
using the MOVE2 jacknife approach the test compared the mean of two independent samples, using
the two independent sample t-test. The results of the test were considered on the merit below:

Accept null hypothesis H0 if computed p-value is greater than the significance level alpha = 0.05.
Reject null hypothesis H0 and if computed p-value is less than the significance level alpha = 0.05.

Table A4 shows the results of t-test for the jacknife samples.

Appendix A.4. Two-Sample Comparison of Variances Tests

Fisher’s F-test for comparison of variances on two independent samples was done. The test
compared the variance of the two independent samples, using the independent sample F-test. The goal
was to test if there is a clear difference between the variance of the two samples. The F test on
two independent samples was conducted for the samples of rain gauge datasets for the respective
periods against samples generated using the MOVE.2 jacknife approach. The test compared the
variance of two independent samples, using the two independent sample F-test. The results of the test
were considered on the merit below:

Accept null hypothesis H0 if computed p-value is greater than the significance level alpha = 0.05.
Reject null hypothesis H0 and if computed p-value is less than the significance level alpha = 0.05.

Table A5 shows the results of F-test for the jacknife samples.
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Table A4. Results of t-test for the jacknife samples.

Mutonguini
2007–2009

Kisasi
2007–2008

Kisasi
2011

KYM
2007–2009

Mutomo
2007–2009

Lukenya
2007–2009

Matiliku
2007–2008

Matiliku
2010–2011

Mutito
2007–2009

Matungulu
2007–2009

Kitui
2007–2008

Kitui
2011

Difference −19.372 −26.206 −42.725 −19.372 8.203 8.531 −1.729 −25.871 0.150 3.300 −11.354 20.742
t (Observed value) −0.782 −0.840 −0.811 −0.782 0.516 1.022 −0.077 −1.055 0.009 0.266 −0.482 0.897

t (Critical value) 1.994 2.013 2.074 1.994 1.994 1.994 2.013 2.013 1.994 1.986 2.013 2.074
DF 70 46 22 70 70 70 46 46 70 94 46 22

p-value (Two-tailed) 0.437 0.405 0.426 0.437 0.608 0.310 0.939 0.297 0.993 0.791 0.632 0.379
alpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
Risk to reject null hypothesis

H0 while it is true 43.70 40.52 42.60 43.7 60.75 31.02 93.90 29.72 99.26 79.12 63.22 37.99

Table A5. Results of F-test for the jacknife samples.

Mutonguini
2007–2009

Kisasi
2007–2008

Kisasi
2011

KYM
2007–2009

Mutomo
2007–2009

Lukenya
2007–2009

Matiliku
2007–2008

Matiliku
2010–2011

Mutito
2007–2009

Matungulu
2007–2009

Kitui
2007–2008

Kitui
2011

Ratio 0.632 0.349 0.235 0.438 0.789 1.151 0.830 0.128 0.707 0.603 2.952 0.610
F (Observed value) 0.632 0.349 0.235 0.438 0.789 1.151 0.830 0.128 0.707 0.603 2.952 0.610

F (Critical value) 1.961 2.312 3.474 1.784 1.961 1.961 2.312 2.312 1.961 1.784 3.474 2.312
DF1 35 23 11 47 35 35 23 23 35 47 11 23
DF2 35 23 11 47 35 35 23 23 35 47 11 23

p-value (Two-tailed) 0.180 0.015 0.024 0.006 0.487 0.679 0.658 < 0.0001 0.309 0.086 0.086 0.243
alpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Accept Reject Reject Reject Accept Accept Accept Reject Accept Accept Accept Accept
Risk to reject null hypothesis

H0 while it is true (%) 18.01 1.45 2.38 0.55 48.67 67.92 65.78 0.01 30.95 8.63 24.28 8.63
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