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Abstract: This study presents a comprehensive trend analysis of precipitation, temperature,
and runoff extremes in the Central Valley of California from an operational perspective. California is
prone to those extremes of which any changes could have long-lasting adverse impacts on the society,
economy, and environment of the State. Available long-term operational datasets of 176 forecasting
basins in six forecasting groups and inflow to 12 major water supply reservoirs are employed.
A suite of nine precipitation indices and nine temperature indices derived from historical (water year
1949–2010) six-hourly precipitation and temperature data for these basins are investigated, along
with nine indices based on daily unimpaired inflow to those 12 reservoirs in a slightly shorter period.
Those indices include daily maximum precipitation, temperature, runoff, snowmelt, and others
that are critical in informing decision making in water resources management. The non-parametric
Mann-Kendall trend test is applied with a trend-free pre-whitening procedure in identifying trends in
these indices. Changes in empirical probability distributions of individual study indices in two equal
sub-periods are also investigated. The results show decreasing number of cold nights, increasing
number of warm nights, increasing maximum temperature, and increasing annual mean minimum
temperature at about 60% of the study area. Changes in cold extremes are generally more pronounced
than their counterparts in warm extremes, contributing to decreasing diurnal temperature ranges.
In general, the driest and coldest Tulare forecasting group observes the most consistent changes
among all six groups. Analysis of probability distributions of temperature indices in two sub-periods
yields similar results. In contrast, changes in precipitation extremes are less consistent spatially and
less significant in terms of change rate. Only four indices exhibit statistically significant changes in
less than 10% of the study area. On the regional scale, only the American forecasting group shows
significant decreasing trends in two indices including maximum six-hourly precipitation and simple
daily intensity index. On the other hand, runoff exhibits strong resilience to the changes noticed in
temperature and precipitation extremes. Only the most southern reservoir (Lake Isabella) shows
significant earlier peak timing of snowmelt. Additional analysis on runoff indices using different
trend analysis methods and different analysis periods also indicates limited changes in these runoff
indices. Overall, these findings are meaningful in guiding reservoir operations and water resources
planning and management practices.
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1. Introduction

Climatic and weather-induced hazards including excessive heat, flooding, and drought are often
economically, environmentally, and societally disruptive [1–3]. Previous studies have suggested that
such hazards are typically caused by changes in the frequency and intensity rather than the mean
of hydro-climatic variables including precipitation, temperature, and runoff [4,5]. Changes in these
variables are projected to intensify in both magnitude and occurrence frequency in the future [6–9].
In light of those observations and projections, numerous studies have been dedicated to investigating
the (often evolving) spatial and temporal characteristics of observed hydroclimatic extremes in areas
prone to these extremes including the State of California [10–17], with the general goal being to (1) gain
insights on their past behavior so that they can be better predicted in the future; and (2) inform the
development of corresponding mitigation and adaptation strategies.

As the home to over 37 million people [18] and an important economy in the world, California
predominantly relies on a relatively small number of big storms in the winter in the Central Valley to
meet its increasing and often competing water demand during the spring and early summer [19]. A year
having fewer or greater than average of such events can be particularly dry or wet. The State is thus
prone to hydroclimatic extremes, with the most recent examples being water year 2015 (record high
temperature and record low snowpack observed across the State) [20] and water year 2017 (record high
precipitation in the Northern Sierra). Any changes to precipitation, temperature and runoff events,
particularly extremes, could have long-lasting adverse impacts on the society, economy, and environment
of the State. Understanding the variability and trends in these extremes is the foremost step in better
predicting their future occurrence and behavior. This is particularly important in the Central Valley which
serves as a major water supply source for the State. The Central Valley also accommodates the majority
of the State’s complex water storage and transfer system including the Central Valley Project (CVP) and
State Water Project (SWP). On average, these two projects collectively provide water to about two thirds
of Californians and about 15,000 km2 of farmland across the State annually [21].

A number of previous studies have looked at the changes in hydroclimatic extremes in areas
covering California [22–26]. The data used were typically at monthly or coarser resolution either
focusing on climatic (precipitation and temperature) extremes or hydrologic (runoff) extremes.
Those studies may be more meaningful in guiding long-term planning practice rather than real-time
operations (e.g., providing flow forecasting to inform decisions for a short-term reservoir release
schedule). The latter requires the analysis to be focused on an operational dataset (used to train or run
the operational models) at temporal (sub-daily) and spatial (at forecasting basin) scales meaningful
to short-term operations. Additionally, those studies generally employed the traditional linear
regression approach that requires the residuals of the fitted regression line be normally distributed.
This assumption is often difficult to be satisfied. Similar studies have also been conducted in regions
out of California [27,28]. To our knowledge, no studies have been conducted to assess the changes in
both climatic and hydrologic extremes in California, (1) at the spatial scale directly relevant to real-time
water management operations; (2) using operational datasets; and (3) via a trend analysis approach
other than the traditional linear regression method.

This study provides a comprehensive trend analysis of precipitation and temperature extremes
for 176 major operational forecasting basins in six different forecasting groups as well as runoff
extremes at 12 major water supply reservoirs in California’s Central Valley. Operational long-term
six-hourly precipitation and temperature along with daily inflow data for those study basins and
reservoirs are used for this purpose. The study adopts a non-parametric rank-based Mann-Kendall test
method with a trend-free pre-whitening procedure which requires fewer assumptions than the linear
regression method. Additionally, this study investigates changes in empirical probability distributions
of individual study metrics in two equal sub-periods via the two-sample Kolmogorov-Smirnov test.
The study aims to address the following questions: (1) what are the direction (increasing, decreasing,
or no change), rate of change, and spatial coverage of the changes in those precipitation, temperature,
and runoff extremes; and (2) what are the scientific and practical implications of these changes?
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2. Materials and Methods

2.1. Study Area and Dataset

This study focuses on 176 operational forecasting basins in the Central Valley (Figures 1 and A1).
These basins span a wide range of elevation (with basin median elevation varying from 35 m
to 3048 m) and basin size (with basin area ranging from 2.3 km2 to 2782 km2) (Figure A1 and
Tables A1–A6 in Appendix A). The U.S. National Weather Service California-Nevada River Forecast
Center (NWS/CNRFC) and California Department of Water Resources (CA DWR) jointly produce
and issue short-to-long term streamflow forecasts for these basins year-round via a set of hydrologic
forecasting models. These forecasts are critical to water resources managers in terms of reservoir
operation, flood control, drought management, water supply planning, environment protection,
and emergency response, among others.

Historical six-hourly mean areal precipitation (MAP) and mean areal temperature (MAT) data
along with daily unimpaired runoff data are used to calibrate the operational forecasting models.
The primary sources of MAP and MAT are point measurements of precipitation and temperature
collected by Cooperative observers and archived by the National Centers for Environmental
Information (NCEI). NWS hydrologists select stations and quality control the point data including
consistency corrections for station moves and measurement time of day. Basin-averaging techniques for
MAP are applied using PRISM climate normals [29] and station normals. The point measurements are
distributed spatially and temporally into six-hourly time steps for the period of record through
the MAP and MAT Preprocessors developed at the NWS Office of Hydrologic Development.
Those steps generally include preliminary data checks, preliminary corrections, missing data estimate,
and normalized value calculation. The readers are referred to [30] for the technical details of these
analysis procedures. Daily and hourly observed streamflow from U.S. federal (e.g., United States
Geological Survey, Army Corps of Engineers), state (e.g., California Department of Water Resources),
and local (e.g., Kings River Water Association) agencies are applied in deriving daily unimpaired
runoff for those basins. These unimpaired runoff data are archived in California Data Exchange Center
(CDEC; https://cdec.water.ca.gov/). During every dry season, forecasters update the MAP, MAT,
and daily runoff data to date for a subset of all forecasting basins and re-calibrate the forecasting
models for them. The re-calibration process for all basins normally takes several years. The latest data
available for all study basins are up to 2010.

This study uses six-hourly MAP and MAT data for those 176 basins from water year 1949–2010 that
CNRFC maintains and applies in calibration operations. Those basins belong to six forecasting groups
in operations (Table 1). All the groups share a similar seasonality in precipitation (Figure 2a). It is worth
noting that regional precipitation and temperature are weighted average values of individual basins
based on basin size. Most of the annual precipitation (ranging from 82% of the Upper Sacramento
(UPS) to 88% for the Tulare (TUL)) occurs during the wet season from November to April. The highest
amount of precipitation occurs consistently in January. The wettest region is the American (AME)
with a long-term mean annual precipitation of 1264 mm. In contrast, the Tulare (TUL) region receives
the least amount of annual precipitation. Regarding temperature (Figure 2b), the North San Joaquin
region (NSJ) is the warmest with an annual mean temperature at 12.9 ◦C, which is expected since a
majority portion of this region is in the foothills rather the crest of the Sierra (Figure 1). In contrast,
the Tulare region (TUL) has the lowest temperature given its relatively higher elevation compared to
other groups (Figure 1). It is also the driest region (Figure 2a) due to its geographic location (climate
tends to be drier towards the southern Valley basins).

In addition to precipitation and temperature data, daily unimpaired inflow (from CDEC) to
12 major water supply reservoirs in the Central Valley are investigated (Figure 1). The aggregated
capacity of these reservoirs makes up over 44% of the total capacity of the State’s 154 major reservoirs.
The largest two reservoirs (Shasta Lake and Lake Oroville, in terms of capacity) serve as the major
water supply sources for the Central Valley Project (CVP) and State Water Project (SWP), respectively.

https://cdec.water.ca.gov/
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The smallest reservoirs include Englebright Reservoir in the Feather-Yuba region (FYU) and Lake
Success in the Tulare region (TUL) (Table 2). In terms of total annual runoff, Shasta Lake receives
the largest amount on both seasonal (April–July) and annual scales, while Lake Success observes the
least amount on both temporal scales. The ratio of April–July runoff over annual runoff, however,
generally increases from north to south, with the exception being Lake Success which is located in
the foothills (Figure 1) and is thus less impacted by snow. This indicates the increasing dominance
of snow contribution to the annual runoff in the southern Sierra watersheds. Those watersheds are
typically located in higher elevations (Figure 1) and thus more impacted by snow. For most reservoirs,
the data record period is water year 1961–2010. For Englebright and Don Pedro, however, the data is
only available in a slightly shorter period (Table 2).

Table 1. General information of six forecasting groups.

Group Name ID Area (km2) Annual Precipitation (mm) 1 Annual Temperature (◦C) 1

Upper Sacramento UPS 30229 940 10.3
Feather Yuba FYU 14425 1220 9.3

American AME 4764 1264 10.2
North San Joaquin NSJ 5066 927 12.9

San Joaquin SJQ 15596 884 9.9
Tulare TUL 7622 739 8.2

1 Annual mean value in the record period 1949–2010.
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Figure 2. (a) Mean monthly precipitation and (b) mean monthly temperature of the study forecast
groups for October (O), November (N), December (D), January (J), February (F), March (M), April (A),
May (M), June (J), July (J), August (A), and September (S). Period of record is from water year 1949–2010.

Table 2. General information of study reservoirs.

Reservoir Name ID
Reservoir
Capacity
(109 m3)

Drainage
Area
(km2)

Unimpaired Inflow

April–July 1

(AJ, 109 m3)
Annual 1

(A, 109 m3)
Ratio
(AJ/A)

Record Period
(Water Year)

Shasta Lake SHDC1 5.61 16630 2.24 7.38 0.30 1961–2010
Lake Oroville ORDC1 4.36 9352 1.96 5.19 0.38 1961–2010

Englebright Reservoir HLEC1 0.09 2836 1.16 2.73 0.42 1970–2010
Folsom Lake FOLC1 1.21 4856 1.48 3.32 0.45 1961–2010

New Melones Reservoir NMSC1 2.96 2341 0.84 1.44 0.58 1961–2010
Don Pedro Reservoir NDPC1 2.50 3970 1.49 2.38 0.63 1971–2010

Lake McClure EXQC1 1.26 2686 0.77 1.22 0.63 1961–2010
Millerton Lake FRAC1 0.64 4242 1.55 2.26 0.69 1961–2010

Pine Flat Reservoir PFTC1 1.23 4105 1.53 2.14 0.72 1961–2010
Lake Kaweah TMDC1 0.23 1436 0.36 0.56 0.64 1961–2010
Lake Success SCSC1 0.10 1006 0.08 0.18 0.44 1961–2010
Lake Isabella ISAC1 0.70 5309 0.57 0.90 0.63 1961–2010

1 Mean value in the record period.

2.2. Study Indices

The indices investigated in this study include nine indices for each variable of temperature,
precipitation, and runoff (Table 3). The temperature and precipitation indices are fairly standard
indices defined by the World Meteorological Organization Commission for Climatology and the Expert
Team on Climate Change Detection, Monitoring, and Indices (ETCCDMI) [31]. They have been widely
applied in analyzing extreme events worldwide [12,14,15,17,32–35]. The runoff indices selected are
typically used as operational metrics in guiding reservoir operations and water supply planning
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practices [36]. The snowmelt related indices (S1D, S3D, S5D, and SP) are determined from runoff
observations from April-July which is typically deemed as the major snowmelt period in California.
The timing of the center of mass of the annual runoff (QC) is calculated as a flow-weighted timing
following [37,38]:

QC =
∑ qiti

∑ qi
(1)

where ti (i = 1, 2, 3, . . . , n; n = 365 for normal years and 366 for leap years) is timing in days since the
start of the water year; qi is the corresponding runoff observation for day i.

Table 3. Study indices.

Variable Index Description Unit

Temperature TX6h Annual maximum six-hour temperature ◦C
TN6h Annual minimum six-hour temperature ◦C
TXM Annual mean of daily maximum temperature (TX6h) ◦C
TNM Annual mean of daily minimum temperature (TN6h) ◦C
DTR Annual mean of diurnal temperature range ◦C
TX10 Cold days (with TX below 10th percentile temperature) days
TX90 Warm days (with TX above 90th percentile temperature) days
TN10 Cold nights (with TN below 10th percentile temperature) days
TN90 Warm nights (with TN above 10th percentile temperature) days

Precipitation R10 Annual count of days with precipitation above 10 mm days
R20 Annual count of days with precipitation above 20 mm days
R6h Annual maximum six-hour precipitation mm
R1D Annual maximum daily precipitation mm
R3D Annual maximum three-day precipitation mm
R5D Annual maximum five-day precipitation mm
R95 Annual count of precipitation above 95th percentile mm
R99 Annual count of precipitation above 99th percentile mm
SDII Annual precipitation divided by number of wet days 1 mm

Runoff Q1D Annual maximum daily runoff m3/s
Q3D Annual maximum three-day runoff m3/s
Q5D Annual maximum five-day runoff m3/s
S1D Annual maximum snowmelt runoff m3/s
S3D Annual maximum three-day snowmelt runoff m3/s
S5D Annual maximum five-day snowmelt runoff m3/s
QP Peak runoff day DOWY 2

QC Timing of the center of mass of the runoff DOWY 2

SP Peak snowmelt runoff day DOWY 2

1 Wet days indicate the days with accumulated precipitation above 1 mm; 2 DOWY designates “Day of Water Year”.
For instance, DOWYs for 1st October and 1st January are 1 and 93, respectively.

2.3. Trend Analysis

There are generally two types of trend analysis methods, parametric and non-parametric [39,40],
commonly applied in climatic and hydrological trend analysis. Compared to parametric methods
(e.g., linear regression), the non-parametric approaches require fewer assumptions including not
requiring the study data to be normally distributed. The assumptions on data distribution are often
not satisfied due to a range of issues including missing data. As such, the non-parametric methods
are considered more robust than the parametric ones [40]. Among the non-parametric methods,
the Mann–Kendall test (MKT) [41,42] is likely the most widely used, particularly in the field of
hydrology and climatology [43]. This study employs the MKT in assessing the significance of a
trend. In this approach, the sign of each possible pair of observations is first identified, followed
by the calculation of the corresponding test statistic δ. The null hypothesis (H0) assumes no
significant monotonic trend in the observations while the alternative hypothesis suggests otherwise.
The null hypothesis is rejected when |z| > z1−α/2, where z1−α/2 is the probability of the standard
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normal distribution at a significance level of α. In this study, α is set as 0.05 unless otherwise
noted. The corresponding z1−α/2 equals 1.96 in this case. The non-parametric Theil–Sen approach
(TSA) [44,45] is used in the study to identify the slope of significant trends determined via the MKT.
The slope values (vector S) of all data pairs in the study time series are first determined:

S =
xi − xj

i− j
i = 1, 2, . . . , n; j = 1, 2, . . . , n; i > j (2)

where n is the length of the time series; xi and xj are time series values at time i and j, respectively,
with i > j. The median of S is the Sen’s estimate on the slope. A positive (negative) slope value indicates
an increasing (decreasing) trend. A detailed explanation on the TSA method can be found at [43].

Previous research [46–48] suggested that the presence of positive serial correlation (which is
common in hydroclimatic observations including temperature and runoff measurements) increases
the probability of false rejection of the null hypothesis of no trends. [43,49] proposed a trend-free
pre-whitening procedure (TFPW) to address the serial correlation issue. The general steps include,
first, de-trending the original time series which has a significant trend (determined via the MKT with
a significance level of 0.05); removing a lag-one auto-regressive process from the de-trended time
series to produce a new time series; adding the trend in the original time series to the new time series,
yielding a pre-whitened time series which is then used in the trend analysis. The readers are referred
to [49] for technical details on the TFPW procedure.

2.4. Distribution Pattern

In addition to the trends across the entire study period, changes in empirical probability
distributions of individual study indices in two equal sub-periods of the study period are also
investigated. Specifically, the study period of a specific index (e.g., 1949–2010 for R10) is divided into
two halves (e.g., 1949–1979 and 1980–2010). The general idea is to evaluate if there are any pronounced
shifts in the statistical characteristics (e.g., median, probability distribution) of the study indices in
two different phases of the study period. Two equal sub-periods (e.g., two halves of the study period)
are often adopted as a common practice [30]. The empirical probability distribution functions (PDFs)
of the index in these two sub-periods are derived and compared with each other. Following [32],
a two-sample Kolmogorov-Smirnov test is applied to test if the index values in two sub-periods
come from a same distribution (null hypothesis) or different distributions (alternative hypothesis).
Specifically, the test compares the cumulative distribution functions (CDFs) of two samples in those
two sub-periods, respectively. The test outputs a p-value corresponding to a critical value of the
maximum absolute difference between these two CDFs. The alternative hypothesis is favored if the
p-value is less than a preset significance level (0.05 in this case). More details on this method are
available in [32,50].

3. Results

3.1. Temperature Indices

A variety of basins show significant trends for each of the nine temperature indices, ranging from
41 basins (for number of warm days (TX90)) to 136 basins (for annual mean minimum temperature
(TNM)) out of the 176 study basins (Figure 3a). The trends in three indices including number of cold
days (TX10), number of cold nights (TN10), and mean diurnal temperature range (DTR) are mostly
negative, indicative of decreasing number of cold days, cold nights, and decreasing daily temperature
range for those basins. For warm days (TX90), about half of the basins (22 out of 41) showing
significant changing tendency have increasing trends. For the remaining five indices, the trends
are generally positive, suggesting that the number of warm nights (TN90), six-hourly maximum
(TX6h) and minimum (TN6h) temperature, and annual mean maximum (TXM) and minimum (TNM)
temperature are all increasing for those basins that exhibit significant trends. The relationship between
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these trend slopes and basin elevations is moderate for the number of cold days (TX10, with a
Pearson’s correlation coefficient at 0.53 and p = 0.002) and minimum six-hourly temperature (TN6h,
with a correlation coefficient at 0.57 and p = 0), indicating basins in higher elevations have a relatively
stronger increasing trend in these two indices. For other indices, the correlation is generally not strong
(Figure 3a), neither is the relationship between these trend slopes and the geographic location (latitude
and longitude) of the study basins (not shown). It is worth noting that there are a few basins showing
increasing trends in cold days (TX10) and diurnal temperature range (DTR) as well as decreasing warm
nights (TN90) and annual mean maximum temperature (TXM). However, these basins only account
for a very small percentage of the entire study area (1.3% for TX10, 1.9% for TN90, 1.6% for TXM,
and 1.7% for DTR). Nevertheless, the inconsistent responses across different basins to the changing
climate highlight the complex geographic conditions of these basins (Tables A1–A6). Looking at the
overall percentage of area showing significant trend (Figure 3b), slightly above 60% of the total area of
the 176 study basins exhibits increasing trend for number of warm nights (TN90), maximum six-hourly
temperature (TX6h), and annual mean minimum temperature (TNM). There is roughly 60% of the total
area showing decreasing trend in the number of cold nights (TN10). About half of the area observes
increasing minimum six-hourly temperature (TN6h), while the basins showing a smaller daily diurnal
temperature ranges also accounts for about half of the total area. For the remaining indices, the area
with either increasing or decreasing trend accounts for less than one third of the total area.
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Figure 3. (a) Slope of significant trend of temperature indices at basin-scale in the study period
1949–2010. The unit of the slope for the first four indices (TX10, TX90, TN10 and TN90) is days/year;
for other indices, the unit is ◦C/decade. The numbers in parentheses represent the correlation values
between the slope and basin elevation; the numbers above these correlation values designate the
sample size (i.e., number of basins showing significant trends). (b) Aggregated area of basins showing
negative or positive trends over the total area of all 176 study basins.
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On the regional scale (Figure 4), all six regions exhibit significant increasing trend in the annual
mean minimum temperature (TNM). All regions except for the Upper Sacramento region (UPS) show
significant decreasing trend (with changing rate ranging from −0.44 to −0.31 day/year) in the number
of cold nights (TN10) and increasing trend (with trend slope varying from 0.26 to 0.56 day/year)
number of warm nights (TN90). Those five regions also observe decreasing (with rate varying from
−0.31 to −0.13 ◦C/decade) diurnal temperature range (DTR). Five out of six regions (except for North
San Joaquin) also show increasing tendency in maximum six-hourly temperature (TX6h). Across all
regions, Tulare (TUL) is the only one exhibiting significant trends in all nine temperature indices,
highlighting its sensitivity to temperature change. Except for Tulare region, the other five regions
show no significant changes in the number of cold days (TX10), warm days (TX90), and annual mean
maximum temperature (TXM).
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Figure 4. Slope of significant trend of temperature indices at regional (forecasting group) scale in the
study period 1949–2010. Slope unit is day/year for TX10, TX90, TN10 and TN90; for other indices,
the unit is ◦C/decade. White color indicates that there is no significant trend. Slope values of significant
decreasing trends are provided.

Different basins show significantly different distribution patterns in the first half and second half
(hereinafter referred to as “two sub-periods”) of the study period across different temperature indices
(Figure 5). More than half of the study area shows different distributions for four indices including
number of cold nights (TN10) and warm nights (TN90), minimum six-hourly temperature (TN6h),
and the annual mean of minimum temperature (TNM). Specifically, 77% of the study area has different
TNM distributions in two sub-periods of the entire study period (Figure 5i). For these four indices,
their corresponding study areas exhibiting significant trend are also high (around 60%, Figure 3b).
The index with the smallest amount of area (9%) showing different distributions in two sub-periods is
the number of warm days (TX90; Figure 5b). This confirms the observation in Figure 3 that changes in
this index are the least consistent among all indices. Particularly, for the basins with significant trend in
this index, about half of them have increasing trend and the other half show negative trends (Figure 3b).
For the remaining four indices, the area showing different distributions in two sub-periods accounts
for about 23% (number of cold nights, TX10) to 38% (annual mean maximum temperature, TXM).

Looking at differences in distribution patterns in the two sub-periods at the regional scale, annual
mean minimum temperature (TNM) is the only index showing significant differences across all
six study regions (Figure 6), with the p-value ranging from near zero (TUL) up to 0.01 (UPS). It is
also the only index exhibiting significant trends for all regions (Figure 4). In contrast, the number of
warm days (TX90) tends to preserve the same distribution in two sub-periods for all regions. For the
number of cold nights (TN10) and minimum six-hourly temperature (TN6h), five out of six regions
have significant differences in distribution patterns in two sub-periods. Across all study regions, Tulare
region (TUL) again shows most significant changes with eight out of nine indices having significantly
different distribution patterns in two sub-periods.
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Figure 5. Study basins (highlighted in blue) with significantly (at a significance level of 0.05) different
probability distributions in two different sub-periods of the study period for temperature indices
(a) TX10, (b) TX90, (c) TN10, (d) TN90, (e) TX6h, (f) TN6h, (g) TXM, (h) TNM, and (i) DTR.
Percentage numbers show how much the aggregated area of those basins accounts for the entire
study area.
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Figure 6. p-Values of the Kolmogorov-Smirnov test for nine temperature indices in the study period
from water year 1949–2010. White color indicates that the null hypothesis (index in two sub-periods
comes from the same distribution) is favored (p-value > 0.05).
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The probability distributions of those indices in two sub-periods are further explored for the Tulare
region (TUL) (Figure 7). It is evident that, except for TX90 index (number of warm days; Figure 7b),
other indices have remarkable shifts in the distributions in two sub-periods. This is consistent with the
observation in Figure 6 that TX90 is the only index with a p-value (0.12) greater than 0.05. Among other
indices, minimum six-hourly temperature (TN6h) has the highest p-value (0.03). Compared to the first
sub-period (1949–1979), the second sub-period (1980–2010) observes less number of cold days (TX10;
Figure 7a) and cold nights (TN10; Figure 7c) on average, while it has higher number of warm nights
(TN90; Figure 7d). Meanwhile, the second sub-period generally has higher maximum (TX6h; Figure 7e)
and minimum (TN6h; Figure 7f) six-hourly temperature as well as higher annual mean maximum (TXN;
Figure 7g) and minimum (TNM; Figure 7h) temperature. Those observations collectively indicate a
transition to more warming conditions in the recent decades (1980–2010). The second sub-period also has
a smaller diurnal temperature range (DTR; Figure 7i) compared to the first sub-period, implying that the
daily minimum temperature is increasing at a faster rate than the daily maximum temperature.
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Figure 7. Probability Distribution Functions of nine temperature indices (a) TX10, (b) TX90, (c) TN10,
(d) TN90, (e) TX6h, (f) TN6h, (g) TXM, (h) TNM, and (i) DTR in two sub-periods: water year 1949–1979
(red line) and 1980–2010 (blue line) for the Tulare region (TUL).

3.2. Precipitaiton Indices

For precipitation, only four out of nine investigated indices show significant trend in a certain
number of basins (Figure 8). Specifically, only four basins that account for 1.6% of the total study area
exhibit decreasing trend in maximum six-hour precipitation (R6h; Figure 8a). The decreasing rate is
generally small, ranging from −0.15 mm/year to −0.10 mm/year. There are 11 basins (7.5% of the
entire study area) showing decreasing trend in maximum daily precipitation (R1D), with trend slope
ranging from −0.47 mm/year to −0.24 mm/year (Figure 8b). There is only one basin (1% of the study
area) showing significant declining tendency in 99th percentile precipitation (R99). As for the simple
daily intensity index (SDII), 23 basins (9.3% of the study area) exhibit decreasing tendency (Figure 8d).
However, the decreasing rate is not remarkable in terms of magnitude. The correlation coefficient between
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the slope value of R1D (SDII) and basin median elevation is −0.62 with p = 0.04 (−0.64 with p = 0.001),
indicative of a milder decreasing rate for high elevations for those basins exhibiting significant trends.
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Looking at the regional scale, generally all regions show a declining tendency in maximum
six-hourly (T6h), daily (R1D), three-day (R3D), and 99th percentile precipitation (R99) as well as
the simply daily intensity index (SDII) (Table 4). However, only the trends in R6h and SDII for
American region (AME) are significant (α = 0.05). In both cases, the decreasing rates are generally
small (−0.11 mm/year and −0.05 mm/year, respectively).

Table 4. Trend slope of precipitation indices at the regional scale 1.

ID R10 R20 R6h R1D R3D R5D R95 R99 SDII

UPS 0 0 −0.02 −0.16 −0.15 −0.10 −0.27 −0.51 −0.01
FYU 0 −0.03 −0.02 −0.23 −0.34 −0.39 −2.60 −1.48 −0.03
AME 0.03 −0.03 −0.11 −0.27 −0.42 −0.55 −2.85 −1.50 −0.05
NSJ 0 0 −0.06 −0.13 −0.12 −0.18 −0.37 −0.74 −0.02
SJQ 0.02 0 −0.03 −0.12 0.00 0.06 0.05 −0.80 −0.01
TUL 0.03 0 −0.03 −0.16 −0.15 −0.05 0.23 −0.45 −0.03

1 Trend slope unit is mm/year. Significant (α = 0.05) trends are highlighted in bold.
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The distribution patterns in two sub-periods for those precipitation indices are also investigated.
Unlike their temperature counterparts, those indices show no significant shifts in distributions for any
basin or any region (p-value consistently above 0.05). All in all, the changes in precipitation extremes
are generally insignificant in terms of change rate and spatially incoherent.

3.3. Runoff Indices

In addition to precipitation and temperature indices, this study further investigates the changes
in runoff indices since runoff, as opposed to precipitation and temperature, is often the variable
directly used to inform decision making in most water resources planning and management practices.
Surprisingly, none of the 12 locations exhibit any statistically significant (at 0.05 significance level) in
peak volume indices (including maximum daily, three-day, and five-day runoff and snowmelt) and
the timing indices (QP, QC, and SP). Only Lake Isabella (ISAC1) shows significant decreasing trend
in peak snowmelt timing (occurs earlier at a rate about 0.23 day/year)) when the significant level is
slightly increased (using 0.06 instead of 0.05 as the significance level). With an even higher significance
level (0.10), one additional location (Folsom Lake, FOLC1) shows significant trend in peak runoff
timing (occurs later at a rate of 1 day/year). This is likely due to the decreasing tendency observed in
most precipitation extremes (Table 4) in the American region (AME) which drains into Folsom Lake.
For other indices and other locations, no significant trends are detected at this significant level (0.10).

Looking at index PDFs in two sub-periods of the record period, it is largely unlikely to favor
the hypothesis that the index in two sub-periods comes from two different distributions only with
one exception (peak snowmelt timing for Lake Isabella; Table 5). This is likely due to the fact that its
drainage basins are the most southern ones (drier conditions are typically expected moving south).
Snowmelt makes up a large contribution to runoff at this location (April–July runoff accounts for 63%
of the annual runoff; Table 2). While snowmelt is very sensitive to warming, no significant changes
in precipitation extremes are observed (Figure 8). In brief, changes in runoff extremes are even less
significant and consistent (spatially) compared to changes in precipitation indices.

Table 5. p-Value of the KS test on runoff indices 1.

ID Q1D Q3D Q5D S1D S3D S5D QP QC SP

SHDC1 0.88 0.88 0.65 0.88 0.88 0.65 0.41 0.24 0.12
ORDC1 0.65 0.88 0.65 0.99 0.99 0.88 0.65 0.99 0.41
HLEC1 0.98 0.85 0.84 0.41 0.71 0.81 0.96 0.08 0.89
FOLC1 0.88 0.88 0.88 0.88 0.65 0.88 0.12 0.24 0.65
NMSC1 0.41 0.24 0.24 0.41 0.41 0.41 0.65 0.99 0.88
NDPC1 0.77 0.77 0.77 0.50 0.50 0.77 0.77 0.28 0.50
EXQC1 0.65 0.88 0.88 0.99 0.99 0.99 0.12 0.99 0.88
FRAC1 0.65 0.88 0.99 0.99 0.99 0.99 0.12 0.88 0.06
PFTC1 0.88 0.65 0.99 0.99 0.99 0.99 0.41 0.88 0.65

TMDC1 0.88 0.88 0.65 0.99 0.88 0.88 0.88 0.99 0.24
SCSC1 0.65 0.65 0.88 0.24 0.41 0.65 0.12 0.65 0.24
ISAC1 0.88 0.41 0.65 0.65 0.65 0.88 0.24 0.65 0.03

1 The null hypothesis (no change in distribution) is favored when p-value > 0.05.

4. Summary and Discussions

4.1. Temperature Indices

The results show significant decreasing trend in the number of cold nights (TN10) along with
increasing trends in the number warm nights (TN90), maximum six-hourly temperature (TX6h),
and annual mean minimum temperature (TNM) for about 60% of the entire study area. At the regional
scale, changes in these indices are also evident. Specifically, all six study regions show increasing trends
in annual mean minimum temperature (TNM) and five regions exhibit significant trend in cold nights
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(TN10; decreasing trend), warm nights (TN90; increasing trend), and maximum six-hourly temperature
(TX6h; increasing trend). This transition toward more warm extremes has also been noticed in previous
studies in other regions around the world [17,32–34,51]. The current study further identifies decreasing
trends in diurnal temperature range (DTR) at both basin (statistically significant at about half of the entire
study area) and regional (significant over five out of six regions) scales. This finding was also reported
in previous studies [10,16,33,35]. This decreasing trend is likely due to the fact that increasing trend
observed in annual mean maximum temperature (TXM) is not as significant (in terms of change rate)
and consistent (in terms of area exhibiting trends) as that of the annual mean minimum temperature
(TNM). The correlation between the changing rate and the elevation of the corresponding basin (exhibiting
changes) is generally not strong. There are remarkable shifts in the empirical probability distribution
functions (PDFs) in the first half (1949–1979) of the study period and second half (1980–2010) of the study
period over half of the entire study area for the number of cold nights (TN10), warm nights (TN90),
minimum six-hourly temperature (TN6h), and annual mean minimum temperature (TNM), indicating
more warming conditions in the second half of the study period. Comparing different regions, Tulare
region (TUL) preserves the most consistent changes measured by both trend (all nine indices show
significant warming tendency) and PDFs pattern change (eight out of nine indices with PDFs shifts
toward warming conditions in the second half of the study period). This is not surprising given its
elevation (highest and thus coolest region) and geographic location (most southern and thus driest region)
which make it the region most sensitive to any changes in temperature extremes.

4.2. Precipitation Indices

In contrast to temperature indices, precipitation indices show much less significant and coherent
changes. Five indices including annual count of heavy precipitation days (R10) and very heavy
precipitation days (R20), maximum three-day (R3D) and five-day precipitation (R5D), along with annual
count of precipitation above 95th percentile (R95) show no significant increasing or decreasing trends at
any of the 176 study basins. Only four basins (1.6% of the entire study area) show statistically significant
decreasing trend in maximum six-hourly precipitation (R6h) and only one basin (1% of the study area)
has decreasing trend in the 99th percentile precipitation (R99). A slightly larger number of basins (11;
7.5% of the study area) exhibits decreasing tendency in maximum daily precipitation (R1D). However, the
decreasing rates are generally small. Decreasing trends are also observed in the simple daily precipitation
intensity index (SDII) for 23 basins (9.3% of the study area). At the regional scale, most regions show weak
and insignificant trends for most indices. Only one region (American) observes statistically significant
decreasing trend in two indices. When comparing the PDFs of these indices in two halves of the study
periods, no basins or regions show remarkable shifts in the distribution pattern. Lack of strong (in terms
of changing rate) and consistent (spatially) changes in precipitation has also been reported in previous
work [11,33,52,53]. In general, this observation implies that natural variability in precipitation may still
dominate the influence of climate change, which is most likely the case in the current study given the fact
that California has the largest year-to-year natural variability in precipitation across the United States [19].

4.3. Runoff Indices

In another finding, this study identifies that there are generally no significant changes in peak
volume and timing of runoff and snowmelt draining into 12 major water supply reservoirs in the Central
Valley, with the sole exception being the peak snowmelt timing for Lake Isabella. This is somewhat
contradictory to previous studies on changes in runoff in the Western United States [37,38,54–57] that noted
increasing fractions of annual runoff occurring earlier than usual in the water year and earlier occurrence
of snowmelt peak. This discrepancy likely stems from the fact that the study methods, study locations,
study data, and record period of the current work are not necessarily included in those previous studies.
Additionally, the pre-whitening procedure [43] applied in this study may mask potential trend in the raw
data. To test this assumption, the Mann-Kendall test (MKT) approach without pre-whitening is applied to
those runoff indices. Moreover, to illustrate how differently the MKT method performs from the traditional
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method, the linear regression method is also utilized in identifying the significance of the linear slope
identified for those indices. The resulting z-value from the MKT and the p-value from the linear regression
are tabulated in Tables 6 and 7, respectively. Additionally, to assess the potential influence of the length of
study period on the results, both the MKT and traditional linear regression methods are applied in every
single 30-year sub-period within the record period of the study indices. A 30-year window is applied to
allow enough sample size (30) for trend analysis. The number of 30-year windows showing statistically
significant changes at a significance level of 0.05 are counted and tabulated in Table 8.

The MKT results (Table 6) are identical with those of the coupled MKT and the trend-free
pre-whitening approach. There are no significant trends detected by the MKT method at a significance
of 0.05. However, the peak snow melt timing for Lake Isabella (ISAC1) and the peak runoff timing for
Folsom Lake (FOLC1) show trends at a significance level of 0.10. This observation implies that the serial
correlation between annual runoff extremes may not be strong. Addition of the pre-whitening procedure
does not change the trend analysis results.

Table 6. z-Value of the MKT on runoff indices 1.

ID Q1D Q3D Q5D S1D S3D S5D QP QC SP

SHDC1 −0.59 −0.52 −0.55 0.33 0.07 −0.12 −0.23 1.57 1.33
ORDC1 −0.20 −0.54 −0.59 0.10 0.00 −0.10 0.51 0.45 0.24
HLEC1 −0.46 −0.24 −0.30 0.64 0.35 0.55 0.53 1.29 −0.70
FOLC1 −0.45 −0.17 −0.23 0.62 0.25 0.30 1.87 1.56 0.80
NMSC1 −0.18 −0.40 −0.55 −0.08 −0.13 −0.20 0.07 −0.55 0.03
NDPC1 0.76 0.64 0.55 1.13 0.90 0.62 0.52 0.50 −1.33
EXQC1 −0.08 0.12 0.27 0.92 0.95 0.72 1.61 0.42 −0.31
FRAC1 0.25 0.57 0.70 0.90 0.95 0.87 0.70 0.07 −1.20
PFTC1 0.40 0.55 0.85 1.10 0.92 0.95 0.92 −0.18 −0.32
TMDC1 −0.03 0.07 0.22 0.77 0.64 0.59 −0.57 0.18 −1.45
SCSC1 −0.30 −0.35 −0.12 −0.16 −0.20 −0.17 1.09 0.74 0.43
ISAC1 0.10 0.25 0.38 0.50 0.50 0.59 0.13 0.12 −1.89

1 Those with significant trends at a significance value of 0.10 are highlighted in bold.

The linear regression results (Table 7) are generally in line with those of the MKT method with a few
exceptions. Particularly, the trend of peak inflow to Lake Folsom is significant (p = 0.02). When a higher
significance level (0.10) is applied, Millerton Lake (FRAC1) inflow shows significant trend (occurs later
at about 1 day/year) in addition to the peak snow melt timing of Lake Isabella (occurs earlier at about
0.24 day/year). However, the linear regression method requires normality in the data, while runoff
extremes are not normally distributed in nature. The non-parametric MKT approach is considered more
robust [58,59] in assessing trend in streamflow data.

Table 7. p-Value of estimated trend slope of runoff indices via linear regression 1.

ID Q1D Q3D Q5D S1D S3D S5D QP QC SP

SHDC1 0.49 0.54 0.58 0.84 0.99 0.94 0.79 0.17 0.29
ORDC1 0.86 0.66 0.65 0.61 0.81 0.94 0.47 0.50 0.98
HLEC1 0.84 0.74 0.70 0.44 0.42 0.39 0.21 0.22 0.51
FOLC1 0.65 0.51 0.51 0.22 0.37 0.41 0.02 0.12 0.30
NMSC1 0.68 0.55 0.53 0.84 0.89 0.71 0.83 0.57 0.93
NDPC1 0.62 0.77 0.80 0.40 0.53 0.58 0.40 0.71 0.30
EXQC1 0.62 0.88 0.99 0.47 0.43 0.55 0.10 0.92 1.00
FRAC1 0.96 0.74 0.52 0.50 0.53 0.49 0.08 0.86 0.30
PFTC1 0.59 0.87 0.52 0.54 0.52 0.49 0.19 0.80 0.79
TMDC1 0.15 0.25 0.37 0.75 0.72 0.73 0.53 0.87 0.24
SCSC1 0.17 0.24 0.27 0.99 0.99 0.96 0.38 0.38 0.77
ISAC1 0.20 0.33 0.47 1.00 0.99 0.97 0.60 0.96 0.07

1 Those with significant trends at a significance level of 0.10 are highlighted in bold.
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The influence of different analysis periods on the trend analysis results are generally marginal,
as indicated by the limited amount of 30-year sub-periods showing significant changes (Table 8).
Specifically, neither the MKT method nor the linear regression method identifies any significant
change in any 30-year sub-period for the maximum one-day (Q1D), three-day (Q3D), and five-day
(Q5D) runoff (Table 8). Additionally, no statistically significant changes in the maximum one-day
(S1D), three-day (S3D), and five-day (S5D) snowmelt are identified via the linear regression method
in any 30-year moving window in the record period. For peak runoff timing (QP), both methods
show significant changes in a few 30-year windows for inflow to Millerton Lake (FRAC1), Pine Flat
Reservoir (PFTC1), and Lake Success (SCSC1). Furthermore, out of 21 possible 30-year windows from
1961–2010, one sub-period 1971–2000 shows earlier peak in inflow to New Melones Reservoir (NMSC1)
and two sub-periods (1969–1998 and 1971–2000) show earlier inflow peak for Lake Isabella (ISAC1)
when the MKT method is applied. As for the timing of the center of mass of the annual runoff (QC),
both methods identified two sub-periods (1980–2009 and 1981–2010) for Lake Oroville (ORDC1) and
Folsom Lake (FOLC1) that show significant changes. For peak snowmelt timing, no methods show
any significant changes in four out of 12 reservoirs. However, for Lake Isabella (ISAC1), both methods
identify earlier peaks in 11 sub-periods. Note when looking at the entire record period, ISAC1 is the
only location showing significant (α = 0.10) earlier peaks in snowmelt when the linear regression and
the MKT (with and without using the pre-whitening procedure) are applied.

Table 8. Number of 30-year periods showing significant trends via the MKT and linear regression
methods 1.

ID Q1D Q3D Q5D S1D S3D S5D QP QC SP

SHDC1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
ORDC1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 2/2 0/0
HLEC1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
FOLC1 0/0 0/0 0/0 0/0 1/0 2/0 0/0 2/2 0/0
NMSC1 0/0 0/0 0/0 1/0 1/0 0/0 1/0 0/0 0/0
NDPC1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
EXQC1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
FRAC1 0/0 0/0 0/0 0/0 0/0 0/0 2/2 0/0 4/3
PFTC1 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0
TMDC1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1
SCSC1 0/0 0/0 0/0 0/0 0/0 0/0 2/4 0/0 0/2
ISAC1 0/0 0/0 0/0 0/0 0/0 0/0 2/0 0/0 11/11

1 The first and second number represent results for the MKT and linear regression methods, respectively.

All in all, no wide spread significant changes in inflows to the 12 study Reservoirs are identified in
this study. Similar findings have also been reported in the literature. For instance, Tamaddun et al. [60]
investigated changes in unimpaired streamflow measured at 600 USGS stations (including 40 in
California) across the Continental United States at the annual and seasonal scales. They identified
no significant trends in annual and spring streamflow volumes at any of those 40 California stations
via the MKT method either with or without the pre-whitening procedure incorporated. They used
at a significance level at 0.10 rather than 0.05. In the current study, the lack of significant trend
in runoff extremes may attribute to the lack of widespread changes in precipitation extremes
(Table 4 and Figure 8). It is also worth noting that the unimpaired runoff is calculated based
on streamflow observations as well as the forecasters’ best knowledge on upstream regulations.
Evaporation from reservoirs is typically neglected from the calculation. Fine-tuning the equations
determining unimpaired reservoir inflow is an on-going effort of the forecasters. A follow-up study
will be conducted and reported when the updated dataset is available.
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4.4. Implications of This Study

The study is unique in that it uses the operational dataset exclusively. These data are quality
controlled by the forecasters based on their knowledge of the natural characteristics of the study areas as
well as diversions and regulations in those areas. Real-time decisions on water management planning
and management operations in the Central Valley are directly based on these data. The findings of this
study have both scientific and practical significance.

From a scientific perspective, increasing warm extremes observed in certain areas in the Central
Valley can guide the enhancement of the current forecasting model specifically for those areas. For instance,
the current snow forecasting model SNOW-17 [61] uses a parameter to represent the maximum possible
snow melt rate. The parameter is typically determined from historical temperature data. In light of the
increasing warm extremes, the actual snow melt rate is most likely to increase accordingly. As such,
this parameter needs to be refined to better reflect the new reality and thus provide more skillful
forecasting. Another area for enhancement is developing new snow accumulation and ablation processes
and incorporating them to the operational forecasting model. The current model is built on snow
measurements available about four decades ago [61] when anthropogenic change of climate was not
as substantial and the stationarity assumption may still have been sound. In the past several decades,
significant changes in snowpack volume have been recorded in the Sierra Nevada Mountains [62–64] and
are projected to continue to change in the future [65]. Snow monitoring techniques have also evolved and
advanced significantly, providing more comprehensive data sources which likely revolutionize the snow
sciences [66–69]. How to capitalize on these advancements to modernize our forecasting tools remains to
be a challenging task for (particularly the next generation) forecasters.

From a practical perspective, these findings have significant implications for adaptive water resources
planning and management practices. For example, the current reservoir operation rule curves in the
Central Valley are mostly built on historical record of runoff, precipitation, and temperature with the
assumption being no changes in those variables, while this study shows increasing warm extremes in
a range of areas across the Central Valley. The warming trend is projected to continue [70–72], mostly
likely leading to increased flooding risks [73,74] and more precipitation falling as rainfall instead of
snowfall [75,76]. The traditional operation rules need to be updated accordingly to better manage water
resources to satisfy increasing and often competing demands in California. Potential changes to the
current rule curves may include reserving a larger flood pool and adjusting the top of conservation pool
downward throughout the winter. Additionally, identifying the vulnerability of the current water system
(including both natural watersheds and man-made water transfer and storage systems including the SWP
and CVP) to a changing climate is the foremost step in developing and implementing any adaptation
strategies [77]. This study shows that Tulare region observes the most significant warming among all
six study regions in the Central Valley, suggesting that it is highly vulnerable to climate change and
requires timely adaptation and mitigation responses.

5. Conclusions

This study presents a comprehensive trend analysis of temperature, precipitation, and runoff
extremes in the Central Valley of California using available long-term operational datasets.
Overall, this study highlights that Central Valley’s precipitation, temperature, and runoff extremes are not
immune from a globally changing climate. Specifically, about 60% of the study area shows increasing
warm extremes and decreasing cold extremes. In comparison, changes in precipitation extremes are
not as widespread. Only four out of nine precipitation indices show significant trends in a limited
number (ranging from 4–22 out of 176) of basins. As for runoff, only one study location (out of 12) shows
significant earlier snowmelt peak timing. Additional analysis on runoff indices using different trend
analysis methods and different analysis periods also indicates limited changes in these runoff indices.
These findings are meaningful in term of guiding water resources planning and management operations
(e.g., prioritizing investment towards the most vulnerable region) and enhancing our forecasting tools for
improved hydrologic forecasts.
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Figure A1. Study basins of (a) Upper Sacramento Group; (b) Feather Yuba Group; (c) American Group;
(d) North San Joaquin Group; (e) San Joaquin Group and (f) Tulare Group.

Table A1. Study basins in the Upper Sacramento Group.

No. ID Description Elevation (m) Area (km2)

0 SHDC1LOF Sacramento River-Shasta Lake 579 1126
1 WHSC1HOF Whiskeytown Dam 1067 512
2 HKCC1HOF Big Chico Creek-Chico 950 184
3 EPRC1HOF Little Stony Creek-East Park Reservoir 549 251
4 VWBC1LOF Sacramento River-Vina Woodson Bridge 347 586
5 ORFC1LOF Sacramento River-Ord Ferry 107 1562
6 RDGC1LOF Clear Creek Near Igoca 243 72
7 BDBC1LOF Sacramento River-Bend Bridge 243 1267
8 TCRC1HUF Thomes Creek-Paskenta Upper 1723 177
9 TCRC1HLF Thomes Creek-Paskenta Lower 1112 343
10 EDCC1HUF Elder Creek-Paskenta Upper 1670 35
11 EDCC1HLF Elder Creek-Paskenta Lower 677 201
12 COTC1HUF Battle Creek-Cottonwood Upper 1790 302
13 COTC1HLF Battle Creek-Cottonwood Lower 973 612
14 CWAC1HUF Cottonwood Creek-Cottonwood Upper 1676 166
15 CWAC1HLF Cottonwood Creek-Cottonwood Lower 480 2207
16 CWCC1HUF Cow Creek-Millville Upper 1676 87
17 CWCC1HLF Cow Creek-Millville Lower 480 1001
18 DLTC1HUF Sacramento River-Delta Upper 1783 283
19 DLTC1HLF Sacramento River-Delta Lower 1052 805
20 PITC1LUF Pit River-Montgomery Creek Upper 1798 1893
21 PITC1LLF Pit River-Montgomery Creek Lower 1311 7121
22 CNBC1LUF Pit River-Canby Upper 1890 637
23 CNBC1LLF Pit River-Canby Lower 1496 2395
24 PLYC1HUF Sout Fork Pit River-Likely Upper 2151 500
25 PLYC1HLF Sout Fork Pit River-Likely Lower 1585 133
26 BLBC1LUF Stony Creek-Black Butte Reservoir Upper 1685 79
27 BLBC1LLF Stony Creek-Black Butte Reservoir Lower 590 1048
28 SGEC1LUF Stony Creek-Stony Gorge Reservoir Upper 1681 62
29 SGEC1LLF Stony Creek-Stony Gorge Reservoir Lower 541 457
30 BKCC1HUF Butte Creek Near Chico Upper 1680 105
31 BKCC1HLF Butte Creek Near Chico Lower 819 271
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Table A1. Cont.

No. ID Description Elevation (m) Area (km2)

32 TEHC1LUF Sacramento River-Tehama Bridge Upper 1722 27
33 TEHC1LLF Sacramento River-Tehama Bridge Lower 347 1310
34 DCVC1HUF Deer Creek-Vina Upper 1680 181
35 DCVC1HLF Deer Creek-Vina Lower 819 351
36 MLMC1HUF Mill Creek-Los Molinos Upper 1722 114
37 MLMC1HLF Mill Creek-Los Molinos Lower 792 221
38 MSSC1LLF Mccloud River-Shasta Lake Lower 1722 69
39 MSSC1LUF Mccloud River-Shasta Lake Upper 1067 560
40 MMCC1HLF Mccloud River-Mccloud Lower 1250 577
41 MMCC1HUF Mccloud River-Mccloud Upper 1798 339

Table A2. Study basins in the Feather Yuba Group.

No. ID Description Elevation (m) Area (km2)

0 DCWC1HOF Wheatland Dry Creek 222 256
1 HCTC1HOF South Fork Honcut Creek Nr Bangor 514 78
2 YUBC1LOF Feather River-Yuba City 59 763
3 NBBC1LUF North Fork Yuba River-New Bullards Bar Reservoir Upper 1692 159
4 NBBC1LLF North Fork Yuba River-New Bullards Bar Reservoir Lower 1063 453
5 GYRC1HUF North Yuba River Below Goodyears Bar Upper 1920 442
6 GYRC1HLF North Yuba River Below Goodyears Bar Lower 1280 198
7 ORDC1LUF Feather River-Lake Oroville Upper 1676 199
8 ORDC1LLF Feather River-Lake Oroville Lower 815 1047
9 MRMC1LUF Merrimac Middle Fork Feather Upper 1745 731

10 MRMC1LLF Merrimac Middle Fork Feather Lower 1347 487
11 WBGC1HUF West Branch Feather River- Magalia Upper 1750 113
12 WBGC1HLF West Branch Feather River- Magalia Lower 1062 156
13 MFTC1HUF Middle Fork Feather River-Portola Upper 1849 1127
14 MFTC1HLF Middle Fork Feather River-Portola Lower 1521 376
15 IIFC1HUF Indian Falls Indian Creek Upper 1810 1476
16 IIFC1HLF Indian Falls Indian Creek Lower 1200 416
17 PLLC1HUF North Fork Feather River-Prattville Upper 1788 1006
18 PLLC1HLF North Fork Feather River-Prattville Lower 1418 251
19 CFWC1LOF Bear River-Camp Far West Reservoir 526 451
20 ROLC1HLF Bear River-Rollins Lake Lower 980 253
21 ROLC1HUF Bear River-Rollins Lake Upper 1608 13
22 MRYC1LOF Marysville Yuba 137 187
23 DMCC1HOF Dry Creek-Merle Collins Reservoir 671 183
24 DCSC1HOF Deer Creek-Smartsville 693 170
25 JKRC1HOF Middle Fork Yuba River-Jackson Meadows Reservoir 2088 96
26 OURC1LLF Middle Fork Yuba River-Our House Lower 913 159
27 OURC1LUF Middle Fork Yuba River-Our House Upper 1813 115
28 BWKC1HOF Canyon Creek-Bowman Reservoir 2027 69
29 FOCC1HOF Fordyce Creek-Fordyce Lake 2217 81
30 SUAC1LOF South Fork Yuba River-Lake Spaulding 2027 221
31 JNSC1LLF South Fork Yuba River-Jones Bar Lower 1052 305
32 JNSC1LUF South Fork Yuba River-Jones Bar Upper 1753 113
33 HLEC1LOF Yuba River-Englebright Reservoir 640 425
34 PLGC1LLF North Fork Feather River At Pulga Lower 1092 626
35 PLGC1LUF North Fork Feather River At Pulga Upper 1745 492
36 SCBC1HLF Spanish Creek-Keddie Lower 1280 306
37 SCBC1HUF Spanish Creek-Keddie Upper 1781 165
38 NFEC1LLF North Fork Feather River-East Branch Lower 1195 188
39 NFEC1LUF North Fork Feather River-East Branch Upper 1676 73
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Table A3. Study basins in the American Group.

No. ID Description Elevation (m) Area (km2)

0 FMDC1HOF French Meadows Reservoir Near Foresthill 1920 147
1 FOLC1LOF American River-Folsom Lake 442 1016
2 CBAC1LLF South Fork American River-Chili Bar Reservoir Lower 975 461
3 CBAC1LUF South Fork American River-Chili Bar Reservoir Upper 1707 138
4 UNVC1HLF Union Valley Reservoir Lower 1448 22
5 UNVC1HUF Union Valley Reservoir Upper 1905 194
6 RRGC1HOF South Fork Rubicon River Below Gerle Creek 1829 101
7 SVCC1LLF Silver Creek-Camino Reservoir Lower 1402 81
8 SVCC1LUF Silver Creek-Camino Reservoir Upper 1615 72
9 MFAC1LLF Foresthill Middle Fork American River Lower 1097 106

10 MFAC1LUF Foresthill Middle Fork American River Upper 1707 55
11 RUFC1LLF Rubicon River Near Foresthill Upper 1250 274
12 RUFC1LUF Rubicon River Near Foresthill Lower 1646 118
13 HLLC1LLF Rubicon River-Hell Hole Reservoir Lower 1432 12
14 HLLC1LUF Rubicon River-Hell Hole Reservoir Upper 2057 195
15 ICHC1HOF South Fork Silver Creek-Ice House Reservoir 2088 70
16 LNLC1HOF Loon Lake 1951 20
17 RBBC1HOF Rubicon River-Rockbound Lake 2331 84
18 NMFC1HLF North Fork Of Middle Fork American River-Foresthill Lower 1250 148
19 NMFC1HUF North Fork Of Middle Fork American River-Foresthill Upper 1646 80
20 NFDC1HLF North Fork American River-North Fork Dam Lower 1100 552
21 NFDC1HUF North Fork American River-North Fork Dam Upper 1900 324
22 AKYC1HLF South Fork American River Near Kyburz Lower 1371 20
23 AKYC1HUF South Fork American River Near Kyburz Upper 2149 474

Table A4. Study basins in the North San Joaquin Group.

No. ID Description Elevation (m) Area (km2)

0 MHBC1LOF Cosumnes River-Michigan Bar 457 573
1 MCNC1LOF Cosumnes River-Mcconnell 61 486
2 THTC1LOF Mokelumne River-Benson Ferry 530 829
3 NHGC1HOF Calaveras River-New Hogan Reservoir 580 127
4 FRGC1HOF Littlejohns Creek-Farmington Reservoir 122 497
5 SOSC1HUF Middle Fork Cosumnes River Nearr Somerset Upper 1744 104
6 SOSC1HLF Middle Fork Cosumnes River Nearr Somerse Lower 1196 170
7 EDOC1HUF North Fork Cosumnes River Nearr El Dorado Upper 1745 115
8 EDOC1HLF North Fork Cosumnes River Nearr El Dorado Lower 1013 409
9 MSGC1LOF Mormon Slough-Bellota 122 276

10 CMPC1HLF Mokelumne River-Pardee Reservoir Lower 1052 666
11 CMPC1HUF Mokelumne River-Pardee Reservoir Upper 2179 814

Table A5. Study basins in the San Joaquin Group.

No. ID Description Elevation (m) Area (km2)

0 HIDC1HOF Fresno River-Hensley Lake 732 604
1 BHNC1HOF Chowchilla River-Buchanan Reservoir 478 602
2 MPAC1HOF Mariposa Creek-Mariposa Reservoir 550 274
3 OWCC1HOF Owens Creek-Owens Reservoir 366 66
4 BCKC1HOF Bear Creek-Bear Reservoir 442 184
5 BNCC1HOF Burns Creek-Burns Creek Reservoir 283 189
6 MEEC1LOF Mckee Rd Bear Ck 98 243
7 KNFC1LOF Stanislaus R Blo Goodwin Dam 317 195
8 LTDC1HOF Friant Little Dry Ck 282 181
9 STVC1LOF Merced River-Stevenson (Stvc1) 107 154

10 DSNC1HOF Snelling Dry Ck 230 187
11 DRYC1HOF Dry Creek At Crabtree Road 300 228
12 DCMC1LOF Modesto Dry Ck 300 282
13 MDSC1LOF Tuolumne River-Modesto (Mdsc1) 35 128
14 RIPC1LOF Ripon Stanislaus 61 154
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Table A5. Cont.

No. ID Description Elevation (m) Area (km2)

15 POHC1LUF Merced River-Yosemite At Pohono Bridge Upper 2500 161
16 POHC1LMF Merced River-Yosemite At Pohono Bridge Middle 2100 176
17 POHC1LLF Merced River-Yosemite At Pohono Bridge Lower 890 22
18 HPIC1HUF Happy Isles Merced River Upper 2720 338
19 NDPC1LUF Tuolumne River-New Don Pedro Reservoir Upper 2500 45
20 NDPC1LMF Tuolumne River-New Don Pedro Reservoir Middle 2100 656
21 NDPC1LLF Tuolumne River-New Don Pedro Reservoir Lower 900 1560
22 CHVC1HUF Cherry Creek-Cherry Lake Upper 2650 171
23 CHVC1HMF Cherry Creek-Cherry Lake Middle 2000 117
24 CHVC1HLF Cherry Creek-Cherry Lake Lower 1450 12
25 LNRC1HUF Eleanor Creek-Lake Eleanor Upper 2438 40
26 LNRC1HMF Eleanor Creek-Lake Eleanor Middle 2000 150
27 LNRC1HLF Eleanor Creek-Lake Eleanor Lower 1460 10
28 HETC1HUF Tuolumne River-Hetch Hetchy Reservoir Upper 2819 228
29 HETC1HMF Tuolumne River-Hetch Hetchy Reservoir Middle 2126 148
30 HETC1HLF Tuolumne River-Hetch Hetchy Reservoir Lower 1280 24
31 NMSC1HUF Stanislaus River-New Melones Reservoir Upper 2682 365
32 NMSC1HMF Stanislaus River-New Melones Reservoir Middle 1966 621
33 NMSC1HLF Stanislaus River-New Melones Reservoir Lower 884 840
34 FRAC1HUF San Joaquin River-Millerton Reservoir Upper 2770 1803
35 FRAC1HMF San Joaquin River-Millerton Reservoir Middle 2100 1342
36 FRAC1HLF San Joaquin River-Millerton Reservoir Lower 890 1048
37 EXQC1LUF Merced River-Exchequer Reservoir Upper 2500 128
38 EXQC1LMF Merced River-Exchequer Reservoir Middle 2100 440
39 EXQC1LLF Merced River-Exchequer Reservoir Lower 900 1265
40 HPIC1HMF Happy Isles Merced River Middle 2000 125
41 OBBC1LOF Stanislaus River-Orange Blossom 107 90

Table A6. Study basins in the Tulare Group.

No. ID Description Elevation (m) Area (km2)

0 ISAC1HUF Kern River-Lake Isabella Upper 2591 54
1 ISAC1HMF Kern River-Lake Isabella Middle 1905 840
2 ISAC1HLF Kern River-Lake Isabella Lower 1143 893
3 SCSC1HUF Tule River-Lake Success Upper 2621 50
4 SCSC1HMF Tule River-Lake Success Middle 1905 300
5 SCSC1HLF Tule River-Lake Success Lower 793 649
6 TMDC1HUF Kaweah River-Lake Kaweah Upper 2591 51
7 TMDC1HMF Kaweah River-Lake Kaweah Middle 1905 51
8 TMDC1HLF Kaweah River-Lake Kaweah Lower 1143 262
9 PFTC1HUF Kings River-Pine Flat Reservoir Upper 3048 2095
10 PFTC1HMF Kings River-Pine Flat Reservoir Middle 2042 1028
11 PFTC1HLF Kings River-Pine Flat Reservoir Lower 890 830
12 MLPC1HUF Piedra Mill Creek Upper 1685 13
13 MLPC1HLF Piedra Mill Creek Lower 747 312
14 DLMC1HUF Lemoncove Dry Creek Upper 1752 6
15 DLMC1HLF Lemoncove Dry Creek Lower 762 188
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