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Abstract: The lack of reliable continuous rainfall records can exacerbate the negative impact of
extreme storm events. The inability to describe the continuous characteristics of rainfall from storm
events increases the likelihood that the design of hydraulic structures will be inadequate. To mitigate
extreme storm impacts and improve water governance at the catchment scale, it is vital to improve
the availability of data and the array of tools used to model and forecast hydrological processes.
In this paper, we describe and discuss the implementation of a web-based system for the estimation of
intensity–duration–frequency (IDF) curves (WEBSEIDF) in Chile. The web platform was constructed
using records from 47 pluviographic gauges available in central Chile (30–40◦ S), with at least 15 years
of reliable records. IDF curves can be generated for durations ranging from 15 min to 24 h. In addition,
the extrapolation of rainfall intensity from pluviograph to pluviometric gauges (i.e., 24-h rainfall
accumulation) can be carried out using the storm index (SI) method. IDF curves can also be generated
for any spatial location within central Chile using the ordinary Kriging method. These procedures
allow the generation of numerical and graphical displays of IDF curves, for any selected spatial
location, and for any combination of probability distribution function (PDF), parameter estimation
method, and type of IDF model. One of the major advantages of WEBSEIDF is the flexibility of
its database, which can be easily modified and saved to generate IDF curves under user-defined
scenarios, that is, changing climate conditions. The implementation and validation of WEBSEIDF

serves as a decision support system, providing an important tool for improving the ability of the
Chilean government to mitigate the impact of extreme hydrologic events in central Chile. The system
is freely available for students, researchers, and other relevant professionals, to improve technical
decisions of public and private institutions.

Keywords: extreme storm events; rainfall intensity; IDF curves; IDF model; web-based system

1. Introduction

Intensity–duration–frequency (IDF) curves are constructed based on the frequency of annual
maximum rainfall intensities. They are an essential tool for the design of drainage and flood prevention
infrastructures in urban areas. IDF curves ensure that hydraulic structures are adequate for, and can
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withstand the impacts of, extreme storm events, that is, that the collapse of drainage systems, damage to
infrastructure, and loss of human life will not occur as the result of large floods, landslides, mudflows,
and so on [1–3]. Extremes in the variability of the hydrologic cycle increase the negative effects of major
storm events, because infrastructure design is less likely to be commensurate to the hydrologic effects
of these storms [4,5]. Recent studies have used IDF curves to force hydrological models evaluating
river basin responses for hydrologic design and water management [6–9].

As the probability of observing a greater frequency and intensity of storm events is expected to
increase [10,11], the development of IDF curves will be a crucial challenge to minimize the vulnerability
and exposure of ecosystems and human systems to the effects of global warming [12–16]. Research
efforts have been focused on developing and evaluating IDF curves under non-stationary conditions
(climate change scenarios), in order to establish differences between historical and future design
storms [17–21]. However, in many places of the world, the inability to access data to evaluate mitigation
and adaption options, and the lack of technical resources to implement adaptation options, have been
identified as barriers to climate change adaptation [22,23]. The lack of consistent spatio-temporal
distribution of ground-based rainfall intensity records is an additional challenge that governments and
water resources managers face. To address this gap, web-based systems are a supportive tool aimed to
storing and displaying historical and future projections of storm designs.

Central Chile (30–40◦ S), where 73% of the national population is concentrated [24], is cyclically
impacted by extreme hydrological events. Precipitation along this Mediterranean territory is caused
primarily by winter (austral) frontal systems [25–29]. These systems generate storms that can be
similar in intensity to the convective systems registered in northern Chile [30]. It is estimated that
the Chilean Government invested about US$1.5M to help with the recovery efforts derived from the
damage caused by frontal precipitation systems that affected central Chile between 2000 and 2009 [31].
This magnitude of damages can be attributed to the lack of spatio-temporal hydrological information,
the unplanned development activities by private and public entities, and the poor implementation
of suitable policies for land management. In other words, the region is not well prepared to face the
extreme events resulting from global warming [16].

Given the Chilean authorities’ interest on implementing a statistically reliable and robust system to
store historic records of extreme storm events for central Chile, a web-based system for the generation
of IDF curves (WEBSEIDF) was developed using rainfall intensity records from 47 pluviograph stations
distributed in central Chile. WEBSEIDF makes it possible to construct IDF curves for durations of 0.25,
0.5, 0.75, 1, 4, 6, 12, and 24 h. The system also enables the extrapolation of IDF curves to ungauged
areas, that is, in pluviometric gauges, IDF curves can be constructed using the storm index (SI) method,
a linear scaling method proposed by the authors of [32]. A geostatistical method to extrapolate IDF
curves has been also included in WEBSEIDF, that is, the ordinary Kriging method. This system provides
a solution for ungauged areas that require the development of IDF curves for hydraulic structure
design. Details about the structure and use of WEBSEIDF are provided in the following sections of
this manuscript.

2. Methods

In this section, the procedures that were used to construct the IDF curves and their further
integration into WEBSEIDF are described. Each of the sections that comprise the methodology is linked
to the process of developing the database and the elements (user’s interface) that allow the user to
interact with the tools in WEBSEIDF.

2.1. Intensity–Duration–Frequency Relationship

Precipitation, as a component of the water cycle, can be characterized based on three fundamental
relationships: (1) the intensity, or temporal rate of precipitation (mm/h); (2) the duration for which
the given average rainfall intensity will occur; and (3) the return period (T), which is the frequency
or probability of occurrence [32–34]. The procedure to construct IDF curves is conducted by fitting
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rainfall intensity records to a probability density function (PDF), or a cumulative distribution function
(CDF), while accounting for a specific duration that can vary from 15 min up to 24 h, as desired [34].
Annual maximum series (AMS) or partial duration series (PDS) can be used to construct the IDF
Curves [19,35]. The maximum rainfall intensity for each duration is related to a return period (T),
corresponding to a CDF. In terms of probability, T can be defined as a function of the probability of
exceedance (occurrence) as follows:

P(X > xT) =
1
T

and P(X ≤ xT) = 1− 1
T

where,

• P(X > xT) is the probability of exceedance within a year of a storm event with rainfall intensity xT.
• P(X ≤ xT) is the probability of occurrence within a year of a storm event with rainfall intensity xT.
• T is the return period or the number of years.

If the CDF is known, the frequency of extreme storms can be determined by fitting annual
maximum rainfall intensity records to a PDF that best describes the temporal distribution of these
independent events. According to the authors of [36], among all available PDFs, the most commonly
used functions for describing random variables for maximum rainfall intensities are the following:
generalized extreme value (GEV), Gumbel, and Pearson type-III. In WEBSEIDF, the user has the option
to select some of the aforementioned PDFs to fit the historical intensity records, while accounting
for different “goodness of fit” tests. Although this flexibility is available, it has been shown by the
authors of [30] that the fit of the Gumbel distribution obtains good results in central Chile, where
most pluviograph gauges are concentrated. Likewise, the Pearson-III PDF has demonstrated a good
fit for data on arid and semi-arid regions of Chile (29–32◦ S), where rainfall intensity records have
higher variability.

2.2. Probability Density Functions Included in WEBSEIDF

When annual maximum rainfall records are available, a frequency analysis can be conducted to
estimate the exceedance probabilities, whose reciprocal is the return period [34–36]. Table 1 summarizes
the PDFs implemented in WEBSEIDF. Further details related to the theory of frequency analysis in
hydrology can be found in the literature [37–42]. The available PDFs in the WEBSEIDF system are
considered sufficient for most modeling situations.

Table 1. Probability density functions available in web-based system for the estimation of
intensity–duration–frequency (IDF) curves (WEBSEIDF).

Name Probability Density Function

Generalized
Extreme Value (GEV)

F(X) = exp
[
−
(

1− k x−µ
α

) 1
k
]

• where k is the shape parameter
• if k = 0, is Type I or Gumbel
• if k < 0, not considered in this study see [31]
• if k > 0, is Type III or Weibull

Gumbel
F(X) = e−e−α (x−µ)

• where α and µ are the scale and location parameters of the distribution

Pearson Type-III

F(X) = 1
αΓ(β)

x∫
0

e
−( x−µ

δ
)
(

x−δ
δ

)
dx

• where α, δ and µ are the parameters of the distribution
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2.3. Parameter Estimation Methods

In hydrology, PDF parameters are usually estimated using the method of moments (MoM), which
is simple and easy to implement. The maximum likelihood (ML) method is more complex due to
the required algebraic manipulation [43,44], even though it can be very efficient when the sample
size is large [45]. Greenwood [46] proposed another method to estimate parameters using probability
weighted moments (PWM). One advantage of this method is that it can be written in an inverse form
for Gumbel and Weibull; it also provides better results for the GEV in terms of bias and variance
for sample sizes between 15 and 100 data points [44,47]. These advantages outweigh the fact that
for small sample sizes, the ML can generate spurious values for the k parameter [48]. These three
methods—MoM, ML, and PWM—have been implemented in WEBSEIDF and allow the user to compare
the performance and results provided by the methods.

2.4. Mathematical Modelling of IDF Curves

Traditionally, IDF curves are represented graphically, which can introduce bias during the reading
of a desired IDF curve. Interpretation errors are generally associated with the resolution of the printed
curve on paper, and this error is amplified when the information is used for the design of hydraulic
structures. Bernard [49] was one of the first to develop a mathematical model that describes rainfall
intensity as a function of certain return period (T) and duration (D). This model is parametrized by
simple linear regression and can produce a family of IDF curves, eliminating subjective reading errors.
Currently, there is a large range of mathematical models for the generation of IDF curves, all with a
similar structure to that of Bernard’s model [49]. The mathematical models for IDF curve estimation
that are available in WEBSEIDF are listed on Table 2; while not exhaustive, they are considered sufficient
for most modeling scenarios.

Table 2. Mathematical models for IDF curve estimation available in WEBSEIDF.

Author Model

Sherman (1931) [50] i = kTm

(D+b)n

Bernard (1932) [49] i = kTm

Dn

Wenzel (1982) [51] i = k
Dn+b

Chen (1983) [52] i = iT
1

k
(D+b)n

Chow et al. (1988) [43] i = kTm

Dn+b

Koutsoyiannis et al. (1998) [37] i = k
[

m−ln[− ln(1− 1
T )]

(D+b)n

]
k, b, m, n are parameters of the IDF models.

2.5. Goodness-of-Fit of PDFs and Mathematical Models

To verify the consistency between the rainfall records, the PDFs, and the IDF models, three
goodness-of-fit tests are used: (1) the Mann–Whitney U test can be applied with the aim of determining
if the two independent samples (observed and modeled rainfall intensity) come from the same
population [53]; (2) the non-parametric Kolmogorov–Smirnov (K–S) test [54], which is important to
determine the maximum deviation (theoretic and observed) of the modeled rainfall intensity; and (3)
the coefficient of determination (R2), which is used to estimate the percentage of variance explained by
the modeled rainfall intensity [55], which can be determined as a combination of any selected PDF
and/or IDF model. Both the Mann–Whitney U and K–S tests can be evaluated by looking at their
p-values under the module Statistics (see Section 3.4). In the K–S test, the null hypothesis regarding the
distribution of rainfall intensity records is rejected if the test statistic, D (maximum difference between
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observed and estimated rainfall intensity), is greater than the critical value obtained from a table
associated to a desired alpha value (see Table 1). The Mann–Whitney test is based on a comparison
between each observation and each value estimated by the fitted PDF. If both series have the same
median, then each observed rainfall value has an equal probability of being greater or smaller than
each value estimated by the PDF. As it is also possible that two or more observations estimated from
the PDF can be equal to the observed rainfall intensity value, U can be calculated by allocating half of
the tie to the observed rainfall intensity records, and the other half to the estimated values. This can be
done by using the normal approximation with an adjustment to the standard deviation (see Table 1).
It is important to mention that all tests are calculated by comparing the rainfall intensity records of
both observed and theoretical distributions for all durations and period returns (two column vectors).
A summary of the three goodness-of-fit tests implemented in WEBSEIDF is presented in Table 3.

Table 3. Goodness-of-fit tests used in WEBSEIDF.

Goodness-of-Fit Test Reference Equation Parameters

Kolmogorov–Smirnov
Test

D = sup|Fn(xi)− F(xi)|
If D ≤ Dt → p-value ≥ α-level: accept H0
If D > Dt → p-value < α-level: reject H0

• Fn(xi) observed frequency of rainfall intensity
• F(xi) theoretical frequency of rainfall intensity
• Ho both the observed and theoretical

frequencies have the same cumulative
distribution function (CDF)

• H1 both the observed and theoretical
frequencies have a different cumulative
distribution function (CDF)

• Dt is the absolute maximum distance
(supremum) between the CDFs of
both populations

Coefficient of
Determination (R2)

R2 = 1− ∑(yi−ŷi)
2

∑(yi−yi)
2

• yi observed rainfall intensity or observed
rainfall frequency.

• ŷi modeled rainfall intensity, or theoretical
rainfall frequency.

• yi averaged observed rainfall intensity

Mann–Whitney U Test
n < 25 Z = (n1 × n2) +

(
n1+n2+1

2

)
−∑ R1

• n1 sample size of group R1
• n2 sample size of group R2
• ∑ R1 is the sum of ranges of group R1
• ∑ R2 is the sum of ranges of group R2
• Ho the cumulative distributions functions of

group R1 and group R2 are identical
• H1 the cumulative distributions functions of

group R1 and group R2 are not identical.
Mann–Whitney U Test
n > 25

Z =
∑ R1−∑ R2−

[
(n1−n2)×

(
n1+n2+1

2

)]
√

n1×n2×
(

n1+n2+1
3

)

2.6. Extrapolation and Interpolation of IDF Curves

Most of the rain gauges in Chile measure rainfall accumulation every 24 h, limiting the capacity to
construct IDF curves in areas lacking pluviograph gauges or tipping buckets that can provide rainfall
accumulation for durations shorter than 24 h. In order to extend the spatial distribution of IDF curves
to pluviometric gauges (24-h rainfall accumulation), extrapolation or interpolation methods can be
applied. Two methods have been implemented in WEBSEIDF: (1) storm index; and (2) ordinary Kriging.
Details about both methods are described below.

2.6.1. Storm Index Method

The storm index (SI), proposed by the authors of [32], was implemented in WEBSEIDF. SI is a
dimensionless scaling ratio that can be calculated for any pluviographic gauge. This ratio is calculated
between the maximum rainfall intensity in 24 h and the rainfall intensity for all durations less or equal
than 24 h. Pizarro et al. [32] indicated that reliable constructions of IDF curves in pluviometric gauges
are attained when the maximum absolute difference between the raw rainfall intensity in 24 h for both
pluviographic and pluviometric gauges does not exceed 2 mm/h. The method assumes that rainfall
characteristics observed in the pluviographic gauge are similar to those of the pluviometric gauge;
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however, this does not necessarily mean that the two gauges have to share similar climatic patterns.
In fact, Pizarro et al. [30] concluded that maximum rainfall intensities values in Chile can be similar at
different latitudes, that is, convective storms of northern Chile can be of similar intensity than frontal
storms of central and southern Chile. The SI method was developed by [1] and validated for central
Chile by [32]. The SI method is defined by the following expression:

SI(ij) =
Imax(ij)

Imax(24,j)

where SI(ij) is the storm index in the pluviograph gauge for the duration i (hours), and the return
period j (years); Imax(ij) is the maximum rainfall intensity for the duration i and return period j; and
Imax(24,j) is the maximum rainfall intensity in 24 h for the return period j. This linear scaling method
allows the increase of the spatial distribution of maximum rainfall intensity and the corresponding
IDF curves, thus improving the availability of hydrological data for hydrologic design and water
management. The WEBSEIDF also makes this method available so the user can spatially extrapolate
rainfall intensity data (and IDF curves) to pluviometric gauges.

2.6.2. Ordinary Kriging

Geostatistical interpolation was also implemented in WEBSEIDF. Ordinary Kriging interpolation is
used to reproduce a spatial prediction of rainfall intensity at any location of interest within the domain
of interest. This method uses a semivariogram or a covariance model that relies on spatial relationships
of rainfall intensity data [56,57]. The method is a geostatistical interpolation method similar to the
inverse distance weighting (IDW) because it also weights nearby data points. In Kriging, however, the
weights are not only dependent on distance; but they also depend on the overall spatial distribution
of the data points. The method has been widely used in hydrology to determine spatio-temporal
patterns of rainfall, and also in other environmental sciences [58–60]. The Kriging method is defined
as a linear sum:

Ẑ(S0) =
N

∑
i=1

λiZ(Si)

where,

• Z(Si) is the measured rainfall intensity value at the location i
• λi is the weight for the location i
• S0 is the predicted location
• N is the number of measured values

2.7. Implementation and Validation of WEBSEIDF

WEBSEIDF offers a geographical information system (GIS) interface that enables users to easily
access historical information from individual or multiple pluviograph gauges located in central Chile.
Additionally, users provide updates to the database (in the necessary format) if newer data or gauges
are needed to construct IDF curves. WEBSEIDF is similar in structure and components to the web
tool developed and described by the authors of [23], for the generation of IDF curves under climate
change scenarios in Canada. WEBSEIDF was developed in three stages: (1) collection of the rainfall
intensity measurements database; (2) construction of IDF curves and mathematical models; and (3)
development of a web-based GIS interface allowing simple browsing by users.

2.7.1. Consolidation of a Rainfall Intensity Database

To determine maximum rainfall intensities for durations between 1 and 24 h from pluviograph
gauges, data from pluviograph strip charts must be analyzed (see details in [61]). However, there
are limits to the usefulness of these data for durations of less than one hour. To overcome this
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problem, a device that uses an algorithm for automatic digitization of pluviograph strip charts was
developed to calculate rainfall intensities for 15-min increments, ranging from 0.25 to 24 h (see details
in Section 2.7.2). The device significantly improves the reading resolution of rainfall intensity records
for the construction of IDF curves in Chile. It was initially used to estimate the rainfall intensity
signals from the pluviograph strip charts kept by the National Directorate of Water Resources (DGA),
the government organization responsible for monitoring and managing water resources in Chile.
Additionally, data were digitized from pluviograph strip charts maintained by other water-related
institutions, such as the Chilean Meteorological Directorate and the electric generation company ENEL
(also known as ENDESA). After all data from the collected strip charts were digitized, a database
containing 47 pluviograph gauges (see Appendix A) was consolidated, containing at least 15 years of
rainfall intensity records. The established threshold allowed for the development of a database that
can be considered statistically reliable, relative to the historical pluviograph records available in the
country. Regarding the length of the rainfall series, it is important to mention that at least 30 years
of records are needed to reduce the uncertainty of the rainfall estimates for T greater than 20 years.
This is an advantage of WEBSEIDF because it allows the users to make updates in the spatio-temporal
resolution of the database, that is, increase the number of gauges or add new records in existing gauges.

2.7.2. Pluviograph Strip Charts Reader

A device named a pluviograph strip charts reader (PSCR) was developed to digitize the analog
pluviograph strip charts (manuscript under preparation). The PCSR significantly reduced the time to
analyze a single pluviograph strip chart, because traditional time-consuming and error-prone manual
techniques are replaced by a semi-automatic process of tracing the rainfall signal. The device was
designed to read rainfall intensities in increments as small as 15 min, with a temporal displacement of
5 min; thus, the PCSR can generate a whole range of rainfall intensity durations. However, because
of the thickness of the drawn trace in the pluviograph strip charts, rainfall intensity for durations
of less than 15 min cannot be reliably extracted. In fact, reading tests show unreliable intensity
readings at resolutions lower than 15 min. As a result, WEBSEIDF was implemented to provide the
following durations: 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 h. The configuration of PSCR has the following
components: (1) processing server, (2) scanner, and (3) digitization software (Figure 1).Hydrology 2018, 5, x FOR PEER REVIEW  9 of 23 
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Figure 1. Main components of the pluviograph strip charts reader (PSCR).

The software used in PSCR is web-based and server-stored. It enables the simultaneous analysis
of pluviograph strip charts via wireless connection, for up to five end users, without affecting the
computational efficiency. This capability means a considerable reduction in processing time, as well
as an increased capacity for extracting and managing large volumes of data. The PSCR uses a
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scanner to extract the rainfall intensity data, taking into consideration the need to acquire images
from pluviograph bands of the size 9 × 42.5 cm. The scanner is an Epson Workforce Pro GT-S50, with
automatic sheet feeder, able to read 50 double-sided sheets per minute. Given the size of the charts,
the scanner was configured to capture images at a resolution of 5019 × 1181 pixels and 300 dots per
inch (dpi).

Using the algorithm designed for the automatic digitization of strip charts, the PSCR automatically
generates a trace of the rainfall intensity signal that is overlaid on the scanned image. This trace can
be adjusted by the end user to correct possible errors derived from handwritten annotations, which
are very common and can reduce the effectiveness of the algorithm. Once the band trace has been
completed, rainfall intensity time series can be extracted as a plain text file, which can then be used
to calculate annual maximum rainfall intensities. As a validation procedure, the digitized rainfall
intensity data obtained from PSCR for durations of 1, 6, and 24 h were compared to manually extracted
data for the same durations. For all analyzed cases, the Mann–Whitney U test confirmed that there
were no statistically significant differences (α-level or significance level of 0.05) in the calculated values
of rainfall intensity.

2.7.3. Database for Mathematical Models

Each of the mathematical models was developed in Python using the methods described in
Section 2.4, and then implemented in WEBSEIDF. The modelling process is conducted in two stages:
(1) a PDF (see Table 1) is fitted to the annual maximum rainfall intensities associated with each
duration (D) and return period (T), and (2) an analysis using ordinary least squares regression (OLSR)
was conducted to estimate the optimal parameters for all the models presented in Table 2 [62].
The performance of the models is evaluated using the tests described in Table 3. Additionally,
a geostatistical tool that uses ordinary Kriging [63] was also built-in to perform spatial interpolations
and create isolines of maximum rainfall intensities within central Chile.

2.7.4. Informatic Development of WEBSEIDF

The development of WEBSEIDF responded to the need of an easily accessed database for rainfall
intensity data extracted from pluviograph strip charts. In fact, WEBSEIDF is the first web-based system
for IDF curves in Chile, and there are no similar systems available. WEBSEIDF is an innovative tool for
storing, visualizing, and analyzing rainfall intensity data. The system required the addition of a spatial
support component; PostGIS, which is an extension of the popular PostgreSQL, was used. A PHP
(hypertext preprocessor) was used to connect directly to the database to visualize, modify, and register
data supplied by the user and the stations that contain information about maximum rainfall intensities.
A connection between Python and the database was established so that all mathematical operations
and statistical analyses described in Sections 2 and 2.1–2.6 could be performed. The libraries NumPy,
SciPy, and MatPlotLib were used. The results of the calculations were formatted using JSON, read
using JavaScript, and finally visualized on a web page using HTML (v4). JavaScript libraries such as
Flot were used to visualize the IDF curves. To generate the equations related to the IDF curves, LaTeX
and MathML were used by the libraries JQuery and MathJax. For the graphical user interface (GUI),
the Mapserver tool was used to create map visualizations displaying the available pluviograph gauges
and rain gauges. Finally, WEBSEIDF was developed for common browsers including Internet Explorer,
Mozilla Firefox, and Google Chrome (see Figure 2 for details). All software and informatics steps
performed to develop WEBSEIDF are similar to those used by the authors of [23], in the development
of a web-based tool for IDF curves estimation under climate change scenarios in Canada.
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Some of the important advantages of WEBSEIDF are the following:

1. The system is web-based, allowing users to access it from any location with an Internet connection.
2. Its GIS-based architecture allows the integration of hardware, software, and georeferenced data

in the process of capture, storage, manipulation, analysis, and visualization.
3. Its flexibility allows users to easily incorporate additional spatial data into the system—that is,

the database allows the addition of new pluviograph gauges.
4. It is flexible enough to incorporate new processing algorithms and models to represent IDF curves.

The architecture and functionality of WEBSEIDF, which are linked to a GIS component, require the
integration of different programming languages—that is, those used for mathematical calculations, and
those used for management of the database. This system is designed to enable continuous development
and improvement, to ensure current and future relevance to the management of water resources in
central Chile.

2.7.5. Georeferenced Database

The georeferenced database (geodatabase) for WEBSEIDF was designed to store, organize, and
manipulate rainfall intensity data. The geodatabase design accounted for the following entities:
(1) Users, which contains the list of users registered in the system; (2) Station, which stores the data
from each pluviograph gauge or rain gauge; (3) User_Station, which stores the user’s data related
to station data; (4) Maximum_Yearly_Precipitation, which contains the precipitation data from the
pluviograph gauges or rain gauges; and (5) Users_Maximum_Yearly_Precipitation, which is a copy of the
data provided in (4), allowing each user to have their own copy of the data (see Figure 3 for details).
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2.7.6. Graphical User’s Interface (GUI) of WEBSEIDF

The WEBSEIDF interface has an intuitive structure that allows users to easily explore all the tools
available in the system. In fact, the GUI (graphical user interface) enables users to interact with available
data and to generate the visualization of IDF curves and their mathematical models. The structure of
the interface (Figure 4) is composed of the following elements: (a) a geographical information system
(GIS) with a drop-down menu that contains satellite maps, cartographic information—that is, water
resources, road networks, administrative divisions, and so on; (b) a georeferenced pluviographic and
pluviometric gauges; (c) a toolbar menu that the user can use to manipulate the visualization in the
GIS environment; and a control panel that allows administrative control of access privileges.
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2.7.7. Procedure to Generate IDF Curves Using WEBSEIDF

The generation of IDF curves in WEBSEIDF is a straightforward procedure. First, a user account
must be created, a process described in Section 3.1. WEBSEIDF contains a point-based database for
central Chile that can be accessed, extracted, modified, and analyzed. This database has pluviograph
and pluviometric gauges that can be used to generate IDF curves. For ungauged areas, the ordinary
Kriging interpolation method allows for the construction of IDF curves at any spatial location within
central Chile. In pluviometric gauges (24-h rainfall accumulation), the SI method is used to generate
the IDF curves. Users can select from a complete set of PDFs, estimation methods, and IDF models to
analyze and compare the sensitivity of the generated IDF curves. The flexibility of WEBSEIDF allows
users to save modifications made to the database without affecting the records contained in the original
database. This option is very useful for generating climate change scenarios based on modified rainfall
intensity records [23]. These steps are summarized in Figure 5.

2.7.8. Considerations about the Methodologies Included in WEBSEIDF

The selection and compilation of storm records can include PDS or AMS. In general, PDS
for frequency analysis can generate higher values for a given frequency, compared with AMS.
The difference in rainfall intensity values is generally greater for the most frequent events (i.e., 2-year,
5-year, 10-year), and it decreases as the return period increases, that is, the difference in rainfall intensity
values is minimal for less frequent events (i.e., 25-year, 50-year, 100-year, 500-year). The selection of
either PDS or AMS can have significant implications in the design or control of drainage and flood
prevention infrastructures [64,65]. Accordingly, it is recommended to test both types of series (with
different PDFs and IDF models) to select the most appropriate model for the management of extreme
hydrological events.
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Regarding the ordinary Kriging method of interpolation included in WEBSEIDF, it is worth
mentioning that this is just one of many techniques that can be used for the interpolation of spatial
data. The basic assumption of Kriging is the principle that data spatially closer are more likely to be
more similar in behavior than data with a larger separation distance. Although this assumption largely
holds for climate data, there are other factors that determine rainfall intensities such as elevation and
proximity to large bodies of water. Although techniques such as co-Kriging or regression Kriging can
be used to model secondary variables, the ordinary Kriging method implemented in the WEBSEIDF

system does not take this data into account, although currently, active research is being carried out to
determine how best to model these and other secondary variables. Furthermore, another simplification
introduced into the WEBSEIDF system is that users cannot estimate the covariance structure of the
data. The covariance structure of the rainfall data was previously analyzed and determined and hence
the covariance parameters have been fixed. As many users of the system may not be familiar with
geostatistical methods and the associated parameter estimation stage, it was decided to fix these, which
also ensures the stability of the Kriging process. When adding data from other spatial locations where
rainfall characteristics maybe significantly different to the target area in south-central Chile, it will be
necessary to reestimate these parameters.

3. Results and Discussion

3.1. Register, Login, and Use of WEBSEIDF

WEBSEIDF is currently hosted on a server at the University of Talca, and can be accessed through
the following link: http://ree.ctha.cl (or http://see.utalca.cl for spanish version). The system is able to
store information from the end users to facilitate analysis about its usage. The conditions about usage
and privacy policies have been established according to confidentiality policies. Once a user’s account
has been created, their username and password are directed to a new window (Figure 6a) where it is
possible to login into WEBSEIDF. In the next window, users can either start a new session or continue

http://ree.ctha.cl
http://see.utalca.cl
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from a previous saved session, allowing them to make changes to the database and save these changes
for future use (Figure 6b).
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3.2. Spatial Visualization and Adding New Data into WEBSEIDF

To visualize or analyze rainfall intensity data in WEBSEIDF, users can generate queries by selecting
a point-based feature (pluviograph gauge or rain gauge), or by entering the coordinates of the area of
interest within central Chile (all available point-based features would be included inside this polygonal
domain). For instance, if the user selects a single pluviographic gauge or pluviometric gauge (rain
gauge), or clicks on the map, a new window providing specific information about the selected feature(s)
opens up. The menu for this window allows selection of the PDF, the parameter estimation method,
and the IDF model for each selected pluviographic gauge or pluviometric gauge. Once this information
is selected, the user can visualize and export the following data and results: (1) annual maximum
precipitation accumulation for different durations; (2) annual maximum rainfall intensity for different
durations; (3) IDF curves; (4) mathematical models; (5) storm index; (6) statistics; (7) export; and (8)
other associated analysis (Figure 7).
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Figure 7. Visualization and analysis of rainfall intensity for a pluviographic gauge (San Javier) included
in WEBSEIDF.



Hydrology 2018, 5, 40 14 of 22

For any pluviographic gauge or rain gauge, it is possible to add new data—that is, information on
maximum storm precipitation accumulation from newly acquired years. These data must be inputted
for the entire range of durations established in WEBSEIDF, that is, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 h
(see Figure 8), by an operator. Administrative privileges are required for users to be able to add new
data to WEBSEIDF.Hydrology 2018, 5, x FOR PEER REVIEW  15 of 23 
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Figure 8. Tabular form of precipitation accumulation data from a pluviograph gauge (San Javier)
included in WEBSEIDF. New precipitation accumulation data for different durations can be inserted,
as shown.

3.3. Graphical Visualization of IDF Curves

The annual maximum rainfall accumulation for a selected pluviograph gauge or rain gauge is
converted into annual maximum intensities for the whole range of durations established in WEBSEIDF.
This conversion provides data suitable for the estimation of IDF curves. In the current version of
WEBSEIDF, the users can select any of the three available PDFs, the method for parameter estimation,
and the IDF model to be fitted using the original rainfall intensity data. After selecting this primary
information, the user can obtain a graphic representation of the IDF curves and the selected IDF model
with its corresponding parameter values. The system allows positioning the mouse over any IDF curve
to get a pop-up window showing the intensity of rainfall, the duration, and the corresponding return
period. This is a handy option to easily display and determine rainfall intensity values along the IDF
curves (see Figure 9). To determine the best fit for combinations of selected PDF and IDF models,
the results of the fitted PDFs and mathematical models can be displayed in the Statistics module,
which provides the results of three goodness of fit tests included in WEBSEIDF: Mann–Whitney,
Kolmogorov–Smirnov, and coefficient of determination (see Section 2.5 and Figure 10 for details).
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Figure 10. Storm index (SI) calculated for each duration and return period of a pluviographic gauge
(Talca City) included in WEBSEIDF. The results of the goodness of fit represent the modeled rainfall
intensity, because of the combination between any selected PDF and IDF model. As the p values in the
red boxes are larger than the α-level (α = 0.1), the Gumbel PDF is accepted for San Javier.



Hydrology 2018, 5, 40 16 of 22

3.4. Extrapolation of IDF Curves

To extend the spatial distribution of IDF curves to pluviometric gauges (24-h rainfall
accumulation), the storm index (SI) method [32] was implemented in WEBSEIDF. Users can construct
IDF curves for the pluviometric gauges using the SI of a reference pluviograph gauge. As a reasonable
rule of thumb, Pizarro et al. (2015) [32] suggested that consistent extrapolations of IDF curves are
attained when the maximum absolute difference between the raw rainfall intensity in 24 h for both
pluviographic and pluviometric gauges does not exceed 2 mm/h. In WEBSEIDF the SI is first calculated
in a reference pluviographic gauge, and then used to generate IDF curves, their mathematical models,
and statistics of interest for any neighboring pluviometric gauge. WEBSEIDF also allows the users
to download .xls and .pdf formats of the raw data and IDF curves. More details about the options
available in WEBSEIDF can be obtained from the user’s manual.

3.5. Geostatistical Interpolation of IDF Curves

Geostatistical interpolation of maximum rainfall intensities at specific user-defined locations is
also available in WEBSEIDF. The system uses ordinary Kriging interpolation to reproduce a spatial
prediction of IDF curves at any location of interest within central Chile. Available in the main interface
toolbar, the interpolation option can be applied by selecting any spatial location or geographic point
where the IDF curves need to be interpolated (Figure 11). The interpolation can be also applied for
any selected pluviographic or pluviometric gauge. Once the user selects a point of interest (gauge),
a report is displayed indicating the coordinates of the selected location, and the distance in kilometers
from the nearest pluviograph and pluviometric gauges.
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3.6. Isolines of Maximum Rainfall Intensity

This option allows generating isolines for the maximum rainfall intensity, considering all the
pluviographic and pluviometric records available in central Chile. This choice can be accessed from
WEBSEIDF drop-down menu. Activating this preference deploys isolines in the map for any selected
duration and return period (Figure 12a,b). The rainfall intensity value (mm/h) contained in the isolines
map can be displayed by positioning the identification tool (from the toolbar menu) over any desired
spatial location. This selection allows for the visualization of the spatial distribution of maximum
rainfall intensity records in central Chile, and the differences associated with the whole range of
durations and return periods. The isolines of maximum rainfall intensity for any duration and return
period are plotted considering all the available records available in WEBSEIDF database. The rainfall
intensity value of any selected isoline is automatically displayed in a new window (see Figure 12).
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4. Conclusions

WEBSEIDF is a web-based system that has been developed to consolidate a database of historical
rainfall intensity records for central Chile. The system stores, visualizes, and analyzes maximum
rainfall intensity records between 15 min and 24 h from pluviographic or pluviometric gauges,
to generate IDF curves at any spatial location within the domain of central Chile. This is the first
system capable of generating this level of spatio-temporal resolution in the development of IDF curves
in central Chile. This innovation is very important because extreme rainfall events of shorter durations
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have often proven to be more powerful and destructive than those of longer duration. Additionally, the
IDF curves can be extrapolated to ungauged areas (i.e., pluviometric gauges) using rainfall intensity
data from pluviographs combined with the SI scaling method. WEBSEIDF also makes it possible
to generate IDF curves for ungauged areas by interpolating data of existent pluviograph gauges.
This approach to generate IDF curves has a substantial advantage, compared with methodologies such
as generalized IDF curves, because it allows for the disaggregation of data on the spatial variability of
rainfall intensity to a higher spatial resolution. Finally, it is important to point out that one of the major
advantages of WEBSEIDF is the flexibility that allow users to add new rainfall intensity records into
the database. WEBSEIDF is freely available for students, researchers, and other relevant professionals,
providing capabilities that can be used to improve technical decisions of public and private institutions.
The database provided by WEBSEIDF can be used in the design of major and minor storm water
management systems, sanitary sewers, retention ponds, culverts, bridges, dams, pumping stations,
roads, and drainage planning, and so on, to mitigate the impacts of extreme events in central Chile.
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Appendix A

Table A1. Pluviograph gauges included in WEBSEIDF. The pluviographs bands were contributed
by three Intitutions: The National Directorate of Water Resources (DGA), The National Company of
Electricity (ENEL), and the National Meteorological Directorate (DMC).

Origin Name Lat (S) Long (W) Period of Records Available Years

DGA Embalse Rungue 33◦01′ 70◦55′ 1979–2007 26
DGA Cerro Calán 33◦23′ 70◦32′ 1975–2012 38
DGA Los Panguiles 33◦26′ 71◦00′ 1981–2011 31
DGA Pirque 33◦40′ 70◦36′ 1972–2010 39
DGA Melipilla 33◦40′ 71◦11′ 1975–2012 37
DGA La Obra 33◦35′ 70◦29′ 1995–2012 18
DGA Huechun Andina 33◦04′ 70◦46′ 1994–2012 15
DGA San Antonio 33◦34′ 71◦37′ 1997–2011 15
DGA MOP-DGA 33◦26 70◦38′ 1992–2008 17
DMC Tobalaba 33◦27′ 70◦32′ 1998–2009 12
ENEL Quinta Normal 33◦26′ 70◦40′ 1917–2009 89
ENEL Cerrillos 33◦29′ 70◦42′ 1960–2005 45
ENEL Pudahuel DMC 33◦23′ 70◦47′ 1974–2009 36
ENEL Edificio Central Endesa 33◦27′ 70◦39′ 1969–2001 23
DGA Los Queñes 35◦00′ 70◦49′ 1974–2009 36
DGA Potrero Grande 35◦12′ 71◦07′ 1971–2009 38
DGA Pencahue 35◦23′ 71◦48′ 1974–2009 36
DGA Talca 35◦26′ 71◦35′ 1982–2009 28
DGA San Javier 35◦36′ 71◦44′ 1974–2009 36
DGA Colorado 35◦38′ 71◦16′ 1969–2009 40
DGA Melozal 35◦45′ 71◦47′ 1971–2009 35
DGA Embalse Ancoa 35◦54′ 71◦17′ 1971–2009 38
DGA Parral 36◦09′ 71◦50′ 1974–2009 36
DGA Embalse Digua 36◦15′ 71◦32′ 1971–2009 39
DGA Embalse Bullileo 36◦17′ 71◦26′ 1971–2009 39
DGA San Manuel 36◦21′ 71◦39′ 1995–2009 15
DMC Curico 34◦57′ 71◦13′ 1966–2009 40
ENEL Armerillo 35◦42′ 71◦06′ 1959–2000 41
ENEL Casa de Maq. Cipreses 35◦48′ 70◦49′ 1964–2000 30
ENEL Desague Laguna Invernada 35◦44′ 70◦47′ 1963–1980 18
ENEL Melado en la Lancha 35◦51′ 71◦04′ 1966–1993 25
ENEL El Lirio 35◦40′ 71◦21’ 1968–1994 27
DGA Embalse Coihueco 36◦35′ 71◦47′ 1971–2009 38
DGA Chillán Viejo 36◦38′ 72◦08′ 1974–2009 36
DGA Embalse Diguillín 36◦50′ 71◦44′ 1965–2009 45
DGA Quilaco 37◦41′ 72◦00′ 1965–2009 45
DGA Cerro El Padre 37◦46′ 71◦53′ 1970–2009 40
DGA Caracol 36◦38′ 71◦23′ 1987–2009 23
DGA Contulmo 38◦00′ 73◦13′ 1987–2009 21
DGA La Punilla 36◦39′ 71◦19′ 1965–1986 20
DMC Chillan 33◦35′ 72◦02′ 1974–2009 30
DMC Concepcion, Carriel Sur 36◦46′ 73◦3′ 1966–2009 44
DMC Concepcion, Bellavista 36◦49′ 73◦02′ 1965–1988 22
DMC Concepcion, Hualpencillo 36◦46′ 73◦03′ 1946–1963 13
DMC Los Angeles, Maria Dolores 37◦24′ 72◦25′ 1995–2009 15
ENEL Polcura en Balseadero 37◦19′ 71◦32′ 1959–2000 40
ENEL Troyo 38◦14′ 71◦18′ 1968–1994 27
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