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Abstract: Accurate water demand forecasting is essential to operate urban water supply facilities
efficiently and ensure water demands for urban residents. This study proposes an extreme learning
machine (ELM) coupled with variational mode decomposition (VMD) for short-term water demand
forecasting in six cities (Anseong-si, Hwaseong-si, Pyeongtaek-si, Osan-si, Suwon-si, and Yongin-si),
South Korea. The performance of VMD-ELM model is investigated based on performance indices and
graphical analysis and compared with that of artificial neural network (ANN), ELM, and VMD-ANN
models. VMD is employed for multi-scale time series decomposition and ANN and ELM models are
used for sub-time series forecasting. As a result, ELM model outperforms ANN model. VMD-ANN
and VMD-ELM models outperform ANN and ELM models, and the VMD-ELM model produces the
best performance among all the models. The results obtained from this study reveal that the coupling
of VMD and ELM can be an effective forecasting tool for short-term water demands with strong
nonlinearity and non-stationarity and contribute to operating urban water supply facilities efficiently.

Keywords: extreme learning machine; variational mode decomposition; water demand forecasting;
artificial neural network

1. Introduction

Many urban areas around the world are confronted with stresses associated with water supply
due to natural and social factors including economic growth, overpopulation, and climate change [1–5].
To solve the problems, accurate water demand forecasting and the expansion and efficient operation of
water supply and distribution facilities are essential. Especially, reliable and accurate water demand
forecasting is essential to develop reliable water supply expansion strategies at the lowest cost.
However, water demand forecasting is still a challenging task due to the availability of data, various
influencing factors, various forecasting periods, and the nonlinearity and non-stationarity of data [1,6].

Water demand forecasting can be classified as short-term, medium-term, and long-term
forecasting in terms of forecast horizon although there is no general rule for the classification.
According to Tiwari and Adamowski [7], hourly forecasting (up to 48-h lead time), daily forecasting
(up to 14-day lead time), and weekly forecasting (up to 26-week lead time) are classified as short-term
forecasting. Medium-term forecasting includes monthly forecasting with up to 24-month lead time,
whereas annual and decadal forecastings are considered as long-term forecasting. Decision problems
in tactical planning level including revenue forecast and investment planning are treated based on
medium-term forecasting, whereas long-term forecasting is used for decision problems such as capacity
expansion in strategic planning level. This study is focused on short-term forecasting based on daily
water demand time series. Short-term forecasting can be utilized for dealing with decision problems
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related to the operational management and optimization of water supply system in operational
planning level [6].

Water demand forecasting methods can be classified into unit water demand analysis, qualitative
methods, univariate time series methods, exponential smoothing models, moving average models,
time series regression models, stochastic process models, scenario-based approaches, decision support
system, machine learning models, and composite models [6]. Especially, machine learning models
and composite models have been recently applied in order to improve the accuracy of short-term
water demand forecasting [7–10]. For example, Adamowski et al. [8] proposed an artificial neural
network (ANN) coupled with discrete wavelet transform (DWT) for urban water demand forecasting.
They found that the DWT-ANN model forecasted water demands more accurately than other models
including multiple linear regression (MLR), multiple nonlinear regression (MNLR), autoregressive
integrated moving average (ARIMA), and ANN models. Tiwari and Adamowski [7] proposed
bootstrap-based ANN (BNN) and wavelet-bootstrap-neural network (WBNN) models for short-term
urban water demand forecasting. They revealed that the WBNN model reduced the forecast uncertainty
and produced more accurate and reliable water demands and confidence intervals. Multi-scale
relevance vector regression (MSRVR) was proposed by Bai et al. [9] for urban water demand forecasting.
They used stationary wavelet transform (SWT) in order to decompose water supply time series into
multi-scale components and then trained relevance vector regression (RVR) using wavelet coefficient
for each scale. They found that the MSRVR model was able to be an effective tool for improving
daily urban water demand forecasting. Brentan et al. [10] proposed a hybrid regression combining
support vector regression (SVR) and adaptive Fourier series (AFS) in order to forecast short-term water
demands. They revealed that the combination of forecasting (SVR) and post-processing (AFS) models
were effective to near real-time water demand forecasting.

Furthermore, many other studies on water demand forecasting have been conducted recently.
The combination of seasonal autoregressive integrated moving average (SARIMA) models and
data assimilation for short-term water demand forecasting was presented by Arandia et al. [11].
They found that for offline mode, the models with weekly seasonality outperformed ones with daily
periodicity, and for online mode, the forecasting accuracy was able to be improved significantly by
data assimilation. Gagliardi et al. [12] proposed a Markov chain-based short-term water demand
forecasting model. They showed that homogeneous Markov chain model was more efficient than
non-homogeneous Markov chain model and produced better forecasting accuracy compared with
ANN and naïve models. A moving window-based model for short-term water demand forecasting
was presented by Pacchin et al. [13]. They demonstrated that the proposed model was able to provide
good accuracy over the entire forecasting time. To assess the predictive uncertainty of hourly water
demand forecasting, Alvisi and Franchini [14] applied model conditional processor (MCP) which can
combine water demand forecasts obtained from two or more forecasting models. They revealed that
MCP was able to provide better forecasting accuracy compared with single forecasting models (ANN
and periodic pattern-producing models). An overview of short-term water demand forecasting
methods including autoregressive (AR), moving average (MA), autoregressive moving average
(ARMA), autoregressive moving average exogenous (ARMAX), feed-forward back-propagation neural
network (FFBP-NN), and hybrid models (combination of ARMA and FFBP-NN) was presented by
Anele et al. [15]. From comparative analysis utilizing a common dataset, they concluded that ARMA,
ARMAX, and hybrid models may be the best candidates for assessing the predictive distribution of
future water demands. Anele et al. [16] applied an MCP approach for water demand forecasting
and compared it with ARMA, FFBP-NN, and hybrid models (coupling of ARMA and FFBP-NN).
They revealed that MCP marginally outperformed the compared models and may be an effective tool
for real-time short-term water demand forecasting.

This study proposes an extreme learning machine (ELM) coupled with variational mode
decomposition (VMD) in order to enhance the accuracy of short-term water demand forecasting. VMD,
which is a relatively novel time series decomposition technique in hydrological fields, is employed
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in this study for decomposing an original water demand time series into sub-time series. VMD has
been successfully applied for the analysis of hydrological variables and exhibited better performance
compared with conventional methods including DWT and ensemble empirical mode decomposition
(EEMD) [17,18]. DWT has drawbacks that mother wavelets, decomposition level, and edge effect
should be considered for time series decomposition, and empirical mode decomposition (EMD) has
disadvantages including mode mixing, stopping criteria, and end-point effect. EEMD was developed
for mitigating the problems of EMD (especially the mode mixing) but the problems were not completely
resolved. On the other hand, VMD decomposes an original signal into multiple modes and then
updates them based on Wiener filtering. By utilizing Wiener filtering, VMD can be more robust to
sampling and noise and yield narrow-banded modes (see Dragomiretskiy and Zosso [19] and Theorem
1 of Polyak and Pearlman [20]). This helps to alleviate the effect of mode mixing and extract the
time-frequency features accurately. In addition, VMD can be implemented faster and more efficiently
compared with EMD and EEMD since VMD is a non-recursive algorithm based on augmented
Lagrangian method and alternate direction method of multipliers (ADMM) (see Algorithm 1 of
Dragomiretskiy and Zosso [19]).

Meanwhile, ELM is selected as a forecasting model for the decomposed water demands due
to its ease of modeling and excellent performance [18,21,22]. Conventional gradient descent-based
ANN models require many iterative learning steps for obtaining the optimal learning performance.
This increases the computational time and the possibility of being trapped in the local minima.
Recurrent neural network (RNN) is known as a powerful model for time series modeling. However,
in practice, RNN has the disadvantage that it is difficult to be trained properly due to the vanishing
gradient and exploding gradient problems [23]. Deep learning models require many training datasets
and very long computational time since they have many weights and biases that should be trained due
to their structural complexity. Further, optimization algorithms need to be used for determining the
optimal learning parameters since deep learning models have many learning parameters that should
be selected in advance. Moreover, deep learning models require many computational resources
and long computational time, even using graphics processing unit (GPU)-based deep learning
models. In practice, one may get just as good performance with non-deep learning models using
far less computational time and resources although this is dependent on the given problems and
datasets [24]. On the other hand, for the ELM model, the input weights and biases are assigned
randomly, and the smallest norm least-squares solution for the output weights is calculated analytically
using Moore-Penrose generalized inverse (see Definitions 2.1–2.2 and Theorem 2.1 of Huang et al. [25]).
This can increase the learning speed extremely and provide better generalization compared with
conventional ANN models. Thus, in this study, the performance of VMD-ELM model for short-term
water demand forecasting in six cities (Anseong-si, Hwaseong-si, Pyeongtaek-si, Osan-si, Suwon-si,
and Yongin-si), South Korea is investigated and compared with that of ANN, ELM, and VMD-ANN
models, based on performance indices and graphical analysis.

2. Materials and Methods

2.1. Data Used

Figure 1 shows the locations of water purification plant and water supply areas. The Suji water
treatment plant, which is located in the north of study area, supplies water to six cities, Anseong-si,
Hwaseong-si, Pyeongtaek-si, Osan-si, Suwon-si, and Yongin-si, which are located in the southern
region of Gyeonggi-do, South Korea. The plant has the capacity of 916,000 m3/day and has been
operated by the K-water (http://www.kwater.or.kr, accessed on 12 August 2018). Table 1 shows the
area, population, and water demand of study area. The total area is 2460.51 km2 with a total population
of 3,840,907. Especially, Suwon-si is a city with the largest population among local governments,
South Korea and has the largest population density in the study area. Yongin-si is the fastest growing
city in South Korea, which has the second largest population in the study area. Suwon-si and Yongin-si

http://www.kwater.or.kr
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have the largest water demand among the cities in the study area. Domestic water demand is higher
in Osan-si, Suwon-si, and Yongin-si, whereas agricultural water demand is higher in Anseong-si,
Hwaseong-si, and Pyeongtaek-si.

In this study, daily water demand data between 2008 and 2017 provided by K-water were used
for developing water demand forecasting models. For training the models efficiently [26], the water
demand data were scaled into the range of [0, 1]. There is no clear criterion to divide the entire data
into training and testing data. However, the length of the training data is typically set at 70–90% of
the total data length [27,28]. Thus, in this study, the scaled data were then partitioned into training
(2008–2014, data length = 2557 (70%)) and testing datasets (2015–2017, data length = 1096 (30%)).
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Figure 1. Water supply areas and location of water purification plant.

Table 1. Area, population, and water demand of study area.

Cities Area
(km2)

Population
(People)

Population
Density

(People/km2)

Water Demand (103 m3/year)

Total Domestic Industrial Agricultural

Anseong-si 553.39 182,294 329.4 245,000 41,353 17,873 185,774
Hwaseong-si 693.92 729,939 1051.9 381,375 96,075 30,260 255,040
Pyeongtaek-si 458.08 489,081 1067.7 384,013 80,825 46,221 256,967

Osan-si 42.73 218,635 5116.7 37,403 24,160 6474 6769
Suwon-si 121.05 1,203,285 9940.4 582,384 520,385 14,339 47,660
Yongin-si 591.34 1,017,673 1721.0 705,685 418,171 2733 284,781

Source: Water Resources Management Information System (http://www.wamis.go.kr (accessed on 12 August 2018)).

2.2. Variational Mode Decomposition (VMD)

VMD, which is developed by Dragomiretskiy and Zosso [19], is a non-recursive and adaptive
time-frequency analysis method. The VMD decomposes an original time series f into K sub-time series
called intrinsic mode functions (IMFs). The IMFs can be obtained by updating Equations (1)–(3) until
convergence [19].

ûn+1
k (ω) =

f̂ (ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûn

i (ω) + λ̂n(ω)/2

1 + 2α(ω−ωn
k )

2 (1)

http://www.wamis.go.kr
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ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(2)

λ̂n+1(ω) = λ̂n(ω) + τ

[
f̂ (ω)−∑

k
ûn+1

k (ω)

]
(3)

where ûn
k = the kth mode in nth iteration, f̂ = the Fourier transform of f, ωn

k = the kth center frequency
in nth iteration, λ̂n = the Lagrange multiplier in nth iteration, α = the quadratic penalty factor, τ =
the time step of dual ascent. For the theoretical details of VMD, one can refer to Dragomiretskiy and
Zosso [19].

2.3. Artificial Neural Network (ANN)

ANN is an artificial intelligence (AI) model for solving various problems including classification
and regression [29]. Multilayer perceptron (MLP) is a kind of feedforward ANN organized into layers
with multiple neurons [30], which has been widely applied in hydrological fields. Figure 2 represents
the general structure of three-layer MLP. The neurons of the input layer receive the input vectors
(lagged water demands), and output values (forecasted water demands) are yielded from the neuron
of the output layer. The hidden layer, which is the middle layer of MLP, connects the neurons of the
input and output layers. The MLP can be represented as Equation (4) [31]:

ŷj =
L

∑
i=1

βih(wi · xj + bi) +β0, j = 1, 2, · · · , N (4)

where xj and ŷj = the input and output vectors, wi and βi = the weights for the hidden and output
layers, bi and β0 = the biases for the hidden and output layers, L = the number of the neurons of
hidden layer, N = the length of time series data, and h = the transfer function. The determination of
the parameters (weights and biases) of MLP, which is called model learning, is conducted through
learning algorithms such as backpropagation (BP). The detailed theoretical background of ANN can
be found in Alpaydin [32].
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2.4. Extreme Learning Machine (ELM)

ELM is a least square-based single-hidden layer feed-forward neural networks (SLFNs) [33].
In terms of training speed and generalization capability, ELM is known to be superior to conventional
ANN [34]. The SLFN with the weights and biases generated randomly can be expressed as Equation
(5) and written compactly as Equation (6).

L

∑
i=1

βih(wi · xj + bi) = tj, i = 1, 2, · · · , L, j = 1, 2, · · · , N (5)

Hβ = T (6)

where H = h(wi · xj + bi) = the matrix comprised of the outputs from hidden neurons, h = the transfer
function, wi = [wi1, wi2, · · · , win]

T = the ith weight vector between input and hidden neurons,
xj = [xj1, xj2, . . . , xjn]

T = the jth input vectors, bi = the ith bias for hidden neurons, L and N = the

number of hidden neurons and the data length, respectively, β =
[
βT

1 , βT
2 , · · · , βT

L

]T

L×m
= the matrix

comprised of weights between hidden and output neurons, βi = [βi1, βi2, · · · , βim]
T = the ith weight

vectors between hidden and output neurons, and T =
[
tT
1 , tT

2 , · · · , tT
N
]T

N×m = the matrix comprised of
target vectors tj ∈ Rm.

Unlike conventional ANN, the β is analytically determined by the method of least squares as
Equation (7).

β̂ = H†T (7)

where H† = PHT is the Moore-Penrose generalized inverse of H, and P =
(
HTH

)−1 is the inverse of
the covariance matrix of H. Figure 3 represents the general structure of ELM model used in this study.
For detailed theoretical background on the ELM, one can refer to Huang et al. [33].

Hydrology 2018, 5, x FOR PEER REVIEW  6 of 19 

 

2.4. Extreme Learning Machine (ELM) 

ELM is a least square-based single-hidden layer feed-forward neural networks (SLFNs) [33]. In 

terms of training speed and generalization capability, ELM is known to be superior to conventional 

ANN [34]. The SLFN with the weights and biases generated randomly can be expressed as Equation 

(5) and written compactly as Equation (6). 

1

( ) , 1, 2, , , 1, 2, ,
L

i i j i j

i

h b i L j N


    β w x t  (5) 

Hβ T  (6) 

where ( )i j ih b  H w x  = the matrix comprised of the outputs from hidden neurons, h = the transfer 

function,  
T

1 2, , ,i i i inw w ww  = the ith weight vector between input and hidden neurons, 

1 2[ , , ..., ]j j j jnx x x x  = the jth input vectors, ib  = the ith bias for hidden neurons, L and N = the 

number of hidden neurons and the data length, respectively, 
T

T T T

1 2, , , L L m
   β β β β  = the matrix 

comprised of weights between hidden and output neurons,  
T

1 2, , ,i i i im  β  = the ith weight 

vectors between hidden and output neurons, and 
T

T T T

1 2, , , N N m
   T t t t  = the matrix comprised of 

target vectors m

j t . 

Unlike conventional ANN, the β is analytically determined by the method of least squares as 

Equation (7). 

†ˆ β H T  (7) 

where † TH PH  is the Moore-Penrose generalized inverse of H, and  
1

T


P H H  is the inverse of 

the covariance matrix of H. Figure 3 represents the general structure of ELM model used in this study. 

For detailed theoretical background on the ELM, one can refer to Huang et al. [33]. 

 

Figure 3. General structure of extreme learning machine (ELM). 

2.5. VMD-Based Water Demand Forecasting 

VMD-based machine learning models (VMD-ANN and VMD-ELM) for water demand 

forecasting are to couple VMD and single machine learning models (ANN and ELM), respectively. 

O

  

B

Input Layer Hidden Layer Output Layer

Bias

x1

xn

x3

x5

  

  

  

  

  

H1
h(w1x+b1)

H10
h(w10x+b10)

H20
h(w20x+b20)

HL
h(wLx+bL)

Figure 3. General structure of extreme learning machine (ELM).

2.5. VMD-Based Water Demand Forecasting

VMD-based machine learning models (VMD-ANN and VMD-ELM) for water demand forecasting
are to couple VMD and single machine learning models (ANN and ELM), respectively. VMD was
adopted as a time series decomposition method for decomposing water demand time series into IMFs,
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and ANN and ELM models were used for model learning and forecasting for each IMF. Figure 4 shows
the flowchart of VMD-based water demand forecasting consisting of the following four steps:

Step 1. Decomposition: Water demand time series is decomposed into IMFs using VMD.
Step 2. Model learning: ANN and ELM models are learned for each IMF.
Step 3. IMF forecasts: ANN and ELM models produce forecasted values for each IMF.
Step 4. Final forecasts: Summing the forecasted IMFs produces the final water demand forecasts.

Hydrology 2018, 5, x FOR PEER REVIEW  7 of 19 

 

VMD was adopted as a time series decomposition method for decomposing water demand time 

series into IMFs, and ANN and ELM models were used for model learning and forecasting for each 

IMF. Figure 4 shows the flowchart of VMD-based water demand forecasting consisting of the 

following four steps: 

Step 1. Decomposition: Water demand time series is decomposed into IMFs using VMD. 

Step 2. Model learning: ANN and ELM models are learned for each IMF. 

Step 3. IMF forecasts: ANN and ELM models produce forecasted values for each IMF. 

Step 4. Final forecasts: Summing the forecasted IMFs produces the final water demand forecasts. 

 

Figure 4. Flowchart for variational mode decomposition (VMD)-based water demand forecasting. 

2.6. Performance Evaluation Indices 

In this study, multiple performance indices were used for evaluating the model performances. 

Mathematical expressions and ranges for the performance indices are presented in Table 2. Since 

there is no universal performance index, it is desirable to choose the indices that are appropriate for 

a particular application. Furthermore, it is common to use multiple performance indices since there 

are pros and cons in each index [35,36]. The performance indices used in this study are categorized 

as absolute, relative, and dimensionless errors. The absolute errors include the mean absolute error 

(MAE), the root mean squared error (RMSE), and the fourth root mean quadrupled error (R4MS4E). 

RMSE and R4MS4E are sensitive to forecasting errors for peak and high data values, and thus can be 

good performance indices for high data values. In contrast, MAE is evaluated based on all deviations 

without being weighted to lower and higher data values. MAE, RMSE, and R4MS4E have the 

advantage that they can represent the size of a typical error effectively since they are evaluated in the 

same unit as the original data. For a perfect model, MAE, RMSE, and R4MS4E would be zero [36]. 

The mean absolute relative error (MARE) and median absolute percentage error (MdAPE) belong to 

relative errors. MARE is a good index for low data values since it is more affected to forecasting errors 

for low data values. MdAPE is similar to MARE but it has the advantage that it is less sensitive to 

skewed error distributions and outliers. For a perfect model, MARE and MdAPE would be zero [36]. 

Original time series

Variational Mode Decomposition (VMD)

IMF 1 IMF 2 IMF 3 IMF 4

ANN (IMF 1)
ELM (IMF 1)

ANN (IMF 2)
ELM (IMF 2)

ANN (IMF 3)
ELM (IMF 3)

ANN (IMF 4)
ELM (IMF 4)

Forecasted IMF 1 Forecasted IMF 2 Forecasted IMF 3 Forecasted IMF 4

Final Forecasts

Figure 4. Flowchart for variational mode decomposition (VMD)-based water demand forecasting.

2.6. Performance Evaluation Indices

In this study, multiple performance indices were used for evaluating the model performances.
Mathematical expressions and ranges for the performance indices are presented in Table 2. Since there is
no universal performance index, it is desirable to choose the indices that are appropriate for a particular
application. Furthermore, it is common to use multiple performance indices since there are pros and
cons in each index [35,36]. The performance indices used in this study are categorized as absolute,
relative, and dimensionless errors. The absolute errors include the mean absolute error (MAE), the root
mean squared error (RMSE), and the fourth root mean quadrupled error (R4MS4E). RMSE and R4MS4E
are sensitive to forecasting errors for peak and high data values, and thus can be good performance
indices for high data values. In contrast, MAE is evaluated based on all deviations without being
weighted to lower and higher data values. MAE, RMSE, and R4MS4E have the advantage that they
can represent the size of a typical error effectively since they are evaluated in the same unit as the
original data. For a perfect model, MAE, RMSE, and R4MS4E would be zero [36]. The mean absolute
relative error (MARE) and median absolute percentage error (MdAPE) belong to relative errors. MARE
is a good index for low data values since it is more affected to forecasting errors for low data values.
MdAPE is similar to MARE but it has the advantage that it is less sensitive to skewed error distributions
and outliers. For a perfect model, MARE and MdAPE would be zero [36]. The dimensionless errors
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include the modified versions of the coefficient of efficiency (CE) and the index of agreement (IOA).
The CE and IOA have the drawback that they can overestimate the model performance for peak data
values. The modified CE (MCE) and modified IOA (MIOA) for j = 1 can reduce the overestimation for
peak data values and represent better overall evaluation, whereas larger values of j can be used for
the performance evaluation of high data values [35]. For a perfect model, MCE and MIOA would be
one [35,36].

Table 2. Mathematical expressions and ranges for performance indices.

Performance Indices Equations Ranges

Absolute errors

MAE MAE = 1
N

N
∑

i=1

∣∣Qi − Q̂i
∣∣ [0, ∞]

RMSE
RMSE =

√
N
∑

i=1
(Qi−Q̂i)

2

N
[0, ∞]

R4MS4E R4MS4E = 4

√
1
N

N
∑

i=1

(
Qi − Q̂i

)4
[0, ∞]

Relative errors
MARE MARE = 1

N

N
∑

i=1

|Qi−Q̂i|
Qi

[0, ∞]

MdAPE MdAPE = Median
(∣∣∣Qi−Q̂i

Qi

∣∣∣× 100
)

[0, ∞]

Dimensionless errors

MCE MCEj = 1−
N
∑

i=1
|Qi−Q̂i|j

N
∑

i=1
|Qi−Q|j

with j ∈ N [−∞, 1]

MIOA MIOAj = 1−
N
∑

i=1
|Qi−Q̂i|j

N
∑

i=1
(|Q̂i−Q|+|Qi−Q|)j

with j ∈ N [0, 1]

Q̂i : forecasted water demand, Qi : observed water demand; Q: mean of observed water demand; and N: data length.

3. Results and Discussion

3.1. Development of Single and VMD-Based Forecasting Models

To develop VMD-based water demand models, water demand time series should first be
decomposed using the VMD. The decomposition results depend on the quadratic penalty factor
(α) and the number of IMFs (K). In this study, the values of α and K were determined based on the
following trial-and-error method:

Step 1. For K = {2, 3, ......, 20} and α = {5, 10, 20, 50, 70, 100, 150, 200, 500, 1000, 2000}, the corresponding
IMFs are generated from water demand time series.

Step 2. For each set of K and α values, the IMFs are summed to reconstruct the water demand
time series.

Step 3. Correlation coefficients (r) between original and reconstructed water demand time series
are estimated.

Step 4. The sets of K and α values corresponding to r ≈ 1 are selected.
Step 5. The optimal values of K and α are selected based on the performances of VMD-based

forecasting models.

Figure 5 represents the correlation coefficients between the water demand time series and the
reconstructed time series for different K and α values. Based on Figure 5, the sets of K and α values
corresponding to r ≈ 1 were selected and then K = 4 and α = 5 producing the best performance
of VMD-based forecasting models were selected as the optimal values. Using the K and α values,
the original water demand time series was decomposed into four sub-time series (IMF 1-IMF 4) as
seen in Figure 6.
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For developing forecasting models using ANN and ELM, the potential influencing input variables
should be selected in advance. Various lag times for daily water demand time series were considered
in this study. The optimal lag time was determined by autocorrelation function (ACF), partial
autocorrelation function (PACF), and average mutual information (AMI) [37]. The structure of input
and target variables for the ANN and ELM models is as follows:

Qt+i = f (Qt−5, Qt−4, Qt−3, Qt−2, Qt−1, Qt) (8)

where Qt−j = the input water demand time series lagged by j days (j = 0, 1, ......, 5), Qt+i = the target
water demand time series for lead time i day (i = 1, 2, ......, 7), and f = the ANN and ELM models. In the
same manner, the structure of input and target variables for VMD-ANN and VMD-ELM models is
determined as follows:

IMF1t+i = f (IMF1t−9, IMF1t−8, . . . , IMF1t−1, IMF1t) (9)

IMF2t+i = f (IMF2t−1, IMF2t) (10)

IMF3t+i = f (IMF3t−1, IMF3t) (11)

IMF2t+i = f (IMF2t−1, IMF2t) (12)

Figure 7 shows correlation coefficients between IMFs obtained from the entire water demand time
series and ones from the partial water demand time series with different lengths. From Figure 7, it was
seen that time series decomposition by VMD was dependent on the length of water demand time
series. When the length of the partial time series was more than 500, the decomposition result was
almost the same as the result for the entire time series. Thus, for real-time forecasting, VMD should be
executed whenever new observations are acquired, and at least 500 previous time series data should
be used for time series decomposition.

In ANN and ELM modeling, selecting the optimal number of hidden neurons is a critical step
since it affects the model performance. A trial-and-error approach [37] was utilized for determining
the optimal number in this study. In most hydrological fields, the logistic sigmoid function has been
widely applied to ANN modeling in order to compute the output of each neuron [26]. The function is
also applied to ANN and ELM modeling in this study. Furthermore, the ANN model was learned by
BP algorithm and the default values of learning parameters (learning and momentum rates) presented
by Zell et al. [38] were used. When considering both processing speed and accuracy, it is more
efficient to use the appropriate small values of learning parameters than to determine them using a
trial-and-error approach [39]. More information on this can be found in Rumelhart et al. [40], Pao [41],
and Seo et al. [18].
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3.2. Performance Evaluation

In this study, absolute error indices (MAE, RMSE, and R4MS4E), relative error indices (MARE
and MdAPE), and dimensionless error indices (MCE and MIOA) were employed in order to evaluate
and compare model performances for testing data. MCE and MIOA with j = 1 (MCE1 and MIOA1)
were used to evaluate overall performances, and MCE and MIOA with j = 2 and 3 (MCE2, MCE3,
MIOA2, and MIOA3) were employed to evaluate performances for high water demands. The results of
performance evaluation for testing data are summarized in Table 3.

Table 3. Performance evaluation for testing data.

Models
Lead

Times
(Days)

MAE
(m3/day)

RMSE
(m3/day)

R4MS4E
(m3/day) MARE MdAPE MCE1 MIOA1 MCE2 MIOA2 MCE3 MIOA3

ANN

1 18,694 24,366 34,700 0.028 2.330 −0.141 0.576 −0.284 0.797 −0.422 0.901
2 21,322 27,658 39,636 0.032 2.592 −0.362 0.516 −0.831 0.728 −1.533 0.835
3 22,714 29,468 42,812 0.035 2.851 −0.460 0.491 −1.086 0.692 −2.088 0.792
4 21,924 29,203 43,984 0.033 2.616 −0.431 0.498 −1.106 0.688 −2.296 0.775
5 22,044 29,447 45,190 0.034 2.606 −0.432 0.496 −1.126 0.683 −2.421 0.761
6 23,444 30,669 45,419 0.036 2.824 −0.514 0.478 −1.282 0.666 −2.610 0.752
7 25,252 32,166 45,993 0.039 3.245 −0.639 0.452 −1.551 0.644 −3.065 0.739

ELM

1 14,620 19,928 30,446 0.022 1.622 0.421 0.693 0.648 0.894 0.783 0.961
2 16,703 23,184 37,696 0.025 1.849 0.338 0.643 0.523 0.846 0.625 0.920
3 17,890 24,932 40,900 0.027 2.003 0.291 0.618 0.449 0.822 0.527 0.898
4 19,809 26,841 42,127 0.030 2.285 0.216 0.558 0.361 0.767 0.452 0.857
5 21,006 28,235 43,937 0.031 2.510 0.169 0.533 0.294 0.740 0.372 0.832
6 19,585 27,322 43,623 0.029 2.161 0.226 0.594 0.339 0.793 0.398 0.875
7 20,375 27,516 43,073 0.031 2.416 0.195 0.561 0.330 0.770 0.412 0.858

VMD-ANN

1 6417 8719 13,455 0.009 0.717 0.746 0.864 0.933 0.981 0.982 0.997
2 8852 11,899 17,349 0.013 1.004 0.649 0.808 0.874 0.961 0.957 0.993
3 12,166 16,154 23,847 0.018 1.432 0.518 0.728 0.769 0.923 0.891 0.978
4 14,291 18,210 25,581 0.021 1.824 0.434 0.682 0.706 0.902 0.857 0.972
5 13,701 18,046 26,735 0.020 1.655 0.458 0.686 0.711 0.899 0.849 0.967
6 16,225 21,094 30,659 0.024 1.987 0.359 0.631 0.606 0.860 0.765 0.946
7 17,058 23,013 35,325 0.026 1.945 0.326 0.609 0.531 0.827 0.664 0.916

VMD-ELM

1 3637 4927 7519 0.005 0.403 0.856 0.927 0.978 0.994 0.997 0.999
2 6327 8643 12,999 0.010 0.696 0.749 0.868 0.934 0.981 0.983 0.997
3 10,156 13,824 21,805 0.015 1.161 0.598 0.784 0.830 0.949 0.925 0.987
4 10,068 13,691 21,945 0.015 1.159 0.601 0.784 0.834 0.949 0.926 0.987
5 11,888 16,010 25,408 0.018 1.393 0.530 0.745 0.773 0.930 0.884 0.979
6 12,836 17,513 27,604 0.019 1.460 0.493 0.728 0.728 0.917 0.847 0.972
7 14,405 20,077 31,553 0.022 1.634 0.431 0.696 0.643 0.890 0.766 0.956

For single forecasting models (ANN and ELM), the ELM model yielded lower MAE and higher
MCE1 and MIOA1 than ANN model. ANN model produced negative MCE1. These indicated that
ELM model represented better overall performance compared with ANN model, and ANN model



Hydrology 2018, 5, 54 12 of 19

performed worse than a “no knowledge” model. ELM model yielded lower values of MARE and
MdAPE compared with ANN model. ELM model produced better performance than ANN model for
low water demands. Furthermore, the ELM model yielded lower values of RMSE and R4MS4E and
higher values of MCE2, MIOA2, MCE3, and MIOA3 than ANN model. ANN model produced negative
values of MCE2 and MCE3. These indicated that ELM model represented better performance for higher
water demands compared with ANN model, and ANN model produced worse performance than a
“no knowledge” model. Consequently, it was found from the results of single forecasting models that
ELM model performed better over the entire range of testing data compared with ANN model.

For VMD-based forecasting models (VMD-ANN and VMD-ELM), VMD-ELM model yielded
better performance indices than VMD-ANN model. For example, the MAE values of VMD-ELM
model were lower than those of VMD-ANN model, and the MCE1 and MIOA1 values of VMD-ELM
model were higher than those of VMD-ANN model. These represented that the overall performance
of VMD-ELM model was better compared with VMD-ANN model. Furthermore, the values of MARE
and MdAPE for VMD-ELM model were smaller than those for VMD-ANN model, and VMD-ELM
produced lower values of RMSE and R4MS4E and higher values of MCE2, MIOA2, MCE3, and MIOA3

compared with VMD-ANN models. These results represented that VMD-ELM model performed
better than VMD-ANN model for low and high water demands. Consequently, from the results of
VMD-based forecasting models, it was found that VMD-ELM model outperformed VMD-ANN model
over the entire range of testing data.

These results are due to the theoretical characteristics of ANN and ELM models. For the ANN
model, gradient descent-based learning algorithms such as BP algorithm adjust all the parameters
iteratively and require many iterative steps for obtaining satisfactory performance. Thus, the learning
process is very slow, and it is difficult for the ANN model to reach the minimum training error due
to infinite training iteration and local minima. In addition, the ANN model may be over-trained
by gradient descent-based learning and produce worse generalization performance. Gradient
descent-based learning algorithms only ty to reach the smallest training error, and do not consider
the magnitude of the weights. These characteristics make it difficult for the ANN model to achieve
the best generalization performance [25]. On the other hand, the ELM model is considered as a linear
system after the input weights and the biases of the hidden layer are assigned randomly. Namely,
the input weights and the biases of the hidden layer do not need to be tuned and any iterative learning
process is also not required. The output weights of the ELM model can be determined analytically
by finding the smallest norm least-squares solution for the linear system using the Moore-Penrose
generalized inverse. Thus, the ELM model can produce the minimum training error, the smallest norm
of weights, and the best generalization performance [25].

From the comparison of single and VMD-based forecasting models, VMD-ANN and VMD-ELM
models represented better performance compared with ANN and ELM models. For instance,
VMD-ANN and VMD-ELM models yielded lower MAE and higher MCE1 and MIOA1 values than
ANN and ELM models, which represented better overall performance for VMD-ANN and VMD-ELM
models. Furthermore, VMD-ANN and VMD-ELM models yielded lower MARE and MdAPE values
than ANN and ELM models. For VMD-ANN and VMD-ELM models, the values of RMSE and
R4MS4E were lower and the values of MCE2, MIOA2, MCE3, and MIOA3 were higher compared
with ANN and ELM models. These results represented that VMD-ANN and VMD-ELM models
produced better performance than ANN and ELM models for low and high water demands. Therefore,
from the comparison of single and VMD-based forecasting models, it was found that VMD-ANN
and VMD-ELM models outperformed ANN and ELM models over the entire range of testing data,
VMD-ELM model produced the best performance, and the performances of ANN and ELM models
were able to be improved by VMD.

In general, water demand time series is a combination of different time-frequency features and has
strong nonlinearity and non-stationarity. In this study, VMD decomposes an original water demand
time series into multiple modes (low- and high-frequency modes), and then the modes are updated



Hydrology 2018, 5, 54 13 of 19

by Wiener filtering [42]. Since the modes represent simpler patterns than the original time series,
the ANN and ELM models can be learned more effectively using the modes as training datasets
than using the original time series. Especially, since low-frequency mode (IMF 1), which represents
the trend component of water demand time series, can be modeled very accurately by the single
forecasting models, the performance of water demand forecasting can be improved significantly by
VMD. Thus, for water demand time series with strong nonlinearity and non-stationarity, VMD-based
forecasting models can produce better performance than single forecasting models.

Figure 8 shows scatter diagrams for forecasted and observed water demands. It was observed
from Figure 8 that the scatter points of VMD-ANN and VMD-ELM models were closer to 1:1 slope line
than those of ANN and ELM models. Based on scatter diagrams, VMD-ELM model produced the most
accurate result among all other models. Although VMD-ANN and VMD-ELM models represented
similar dispersion around 1:1 slope line, VMD-ANN model yielded underestimated values for high
water demands. ELM model represented better accuracy than ANN model. Especially, the ANN
model produced greatly underestimated result for high water demands. Although VMD was able
to improve the underestimation of ANN model for high water demands, the underestimation was
not resolved completely even in VMD-ANN model. Consequently, VMD-ELM model represented
better accuracy compared with all other models, in terms of under- and overestimation and dispersion
around 1:1 slope line. It was also found from these results that the accuracy of ANN and ELM models
was able to be improved significantly by VMD.
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Figure 9 shows Taylor diagram for single and VMD-based forecasting models. The diagram
provides a graphical summary for the agreement of observed and forecasted patterns, based on
correlation coefficient (CC), standard deviation (SD), and centered root-mean-square difference
(CRMSD) [43]. In Figure 9, the gray contour lines and black arc represent the values of CRMSD and SD
for observed pattern, respectively. The closer a model is to the black hollow circle marker, the closer
the forecasted pattern is to the observed pattern. From Figure 9, it was observed that VMD-ANN
and VMD-ELM models yielded higher CC and lower CRMSD than ANN and ELM models, and ELM
and VMD-ELM models produced SD values closer to the observed pattern compared with ANN and
VMD-ANN models. Especially, it was shown that VMD-ELM models were located the closest to the
black hollow circle marker among all other models. Consequently, based on Taylor diagram, it can be
said that VMD-ANN and VMD-ELM models outperformed ANN and ELM models, and VMD was
able to improve the accuracy of ANN and ELM models.
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Figure 9. Taylor diagram for single and VMD-based forecasting models.

Figures 10 and 11 show residual boxplots and time series plots for single and
VMD-based forecasting models, respectively. It was observed from Figure 10 that the ranges
(maximum—minimum) and interquartile ranges (third quartile—first quartile) of residuals for
VMD-ANN and VMD-ELM models were smaller than those for the ANN and ELM models, and the
median values of residuals for the ANN and ELM models were biased in the negative direction
from zero compared with VMD-ANN and VMD-ELM models, respectively. Furthermore, it was
observed from Figure 11 that VMD-ANN and VMD-ELM models forecasted the observed pattern
more accurately than ANN and ELM models. Especially, compared with VMD-ANN and VMD-ELM
models, the ANN and ELM models showed greater over- and underestimation for low and high water
demands, respectively. These results indicated that VMD was able to reduce the residuals of ANN and
ELM models significantly, improve under- and overestimation represented in ANN and ELM models,
and thus enhance the accuracy of ANN and ELM models.
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From the results obtained from this study, VMD-based forecasting models produced better
performances than single forecasting models in daily water demand forecasting. Similar results
have also been reported from previous studies dealing with DWT-based hybrid modeling for water
demand [7–9] and VMD-based hybrid modeling for river stage [17] and rainfall-runoff [18]. VMD
decomposes water demand time series, which is a mixture of complex and irregular components,
into multiple sub-time series (IMFs). Machine learning-based forecasting models are then constructed
for each sub-time series. Since the sub-time series represent simpler temporal patterns than the original
time series, the machine learning models can be trained more effectively, and thus water demand time
series with strong nonlinearity and non-stationarity can be forecasted more accurately. Furthermore,
by applying Wiener filtering, VMD can be more robust to noise affecting the decomposition accuracy
of water demand time series negatively and yield narrow-based modes. Due to these characteristics,
the VMD not only alleviates the mode mixing but also provides accurate time-frequency features.
In addition, since VMD is a non-recursive signal decomposition algorithm, error propagation which
inevitably occurs in iterative algorithms does not occur. These characteristics enable the VMD to
produce more accurate time-frequency features compared with other signal decomposition methods
such as EMD [42,44].

Meanwhile, VMD-based water demand forecasting models can be a more reliable forecasting
tool by combining with resampling techniques including simple bootstrap, block bootstrap, Gaussian
process regression bootstrap, Bayesian bootstrap, and maximum entropy bootstrap. Hybrid modeling
similar to this concept was carried out successfully by Tiwari and Adamowski [7]. They developed a
hybrid model (WBNN) coupling simple bootstrap, DWT, and ANN in order to forecast short-term
urban water demand and concluded that WBNN model was able to decrease the forecasting uncertainty
and thus provide more accurate and reliable water demand forecasts. Therefore, the combined model
of resampling techniques, VMD, and machine learning models can be suggested as a future study for
improving short-term water demand forecasting.
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4. Conclusions

This study investigates the performances of VMD-based water demand forecasting models. VMD
and two machine learning models, the ANN and ELM, were employed for the decomposition of
water demand time series and the forecasting of sub-time series, respectively. The performances
of single forecasting models (ANN and ELM) and VMD-based forecasting models (VMD-ANN
and VMD-ELM) are evaluated based on performance indices and graphical analysis. For single
forecasting models, the ELM model outperforms the ANN model. VMD-ANN and VMD-ELM models
perform better compared with ANN and ELM models, and the VMD-ELM model achieves the best
performance among all the models. From the results of this study, it is revealed that VMD can
reduce forecasting error and improve model performance in machine learning-based water demand
forecasting. Therefore, VMD-based machine learning models can be effective forecasting tools for
short-term water demand with strong nonlinearity and non-stationarity and contribute to operate
urban water supply facilities efficiently. This study is limited to short-term water demand forecasting
for a specific area. Further studies need to be performed with regard to water demand forecasting for
other areas which have demographic, economic, and weather conditions similar to the area where
forecasting models are developed.

Author Contributions: Conceptualization, Y.S.; Methodology, Y.S.; Formal Analysis, Y.S.; Investigation, Y.S.; Data
Curation, Y.S.; Writing-Original Draft Preparation, Y.S.; Writing-Review & Editing, Y.S., S.K. and Y.C.; Supervision,
Y.C.; and Project Administration, Y.C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. House-Peters, L.A.; Chang, H. Urban water demand modeling: Review of concepts, methods, and organizing
principles. Water Resour. Res. 2011, 47, W05401. [CrossRef]

2. Schuetze, T.; Santiago-Fandiño, V. Quantitative assessment of water use efficiency in urban and domestic
buildings. Water 2013, 5, 1172–1193. [CrossRef]

3. Hao, L.; Sun, G.; Liu, Y.; Qian, H. Integrated modeling of water supply and demand under management
options and climate change scenarios in Chifeng city, China. J. Am. Water Resour. Assoc. 2015, 51, 655–671.
[CrossRef]

4. Arsiso, B.K.; Tsidu, G.M.; Stoffberg, G.H.; Tadesse, T. Climate change and population growth impacts on
surface water supply and demand of Addis Ababa, Ethiopia. Clim. Risk Manag. 2017, 18, 21–33. [CrossRef]

5. Lee, J.S.; Kim, J.W. Assessing strategies for urban climate change adaptation: The case of six metropolitan
cities in South Korea. Sustainability 2018, 10, 2065. [CrossRef]

6. Donkor, E.A.; Mazzuchi, T.A.; Soyer, R.; Roberson, J.A. Urban water demand forecasting: Review of methods
and models. J. Water Res. Plan. Manag. 2014, 140, 146–159. [CrossRef]

7. Tiwari, M.K.; Adamowski, J. Urban water demand forecasting and uncertainty assessment using ensemble
wavelet-bootstrap-neural network models. Water Resour. Res. 2013, 49, 6486–6507. [CrossRef]

8. Adamowski, J.; Chan, H.F.; Prasher, S.O.; Ozga-Zielinski, B.; Sliusarieva, A. Comparison of multiple
linear and nonlinear regression, autoregressive integrated moving average, artificial neural network,
and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada.
Water Resour. Res. 2012, 48, W01528. [CrossRef]

9. Bai, Y.; Wang, P.; Li, C.; Xie, J.; Wang, Y. A multi-scale relevance vector regression approach for daily urban
water demand forecasting. J. Hydrol. 2014, 517, 236–245. [CrossRef]

10. Brentan, B.M.; Luvizotto, E., Jr.; Herrera, M.; Izquierdo, J.; Pérez-García, R. Hybrid regression model for near
real-time urban water demand forecasting. J. Comput. Appl. Math. 2017, 309, 532–541. [CrossRef]

11. Arandia, E.; Ba, A.; Eck, B.; McKenna, S. Tailoring seasonal time series models to forecast shot-term water
demand. J. Water Res. Plan. Manag. 2016, 142, 1–10. [CrossRef]

12. Gagliardi, F.; Alvisi, S.; Kapelan, Z.; Franchini, M. A probabilistic short-term water demand forecasting
model based on the Markov chain. Water 2017, 9, 507. [CrossRef]

http://dx.doi.org/10.1029/2010WR009624
http://dx.doi.org/10.3390/w5031172
http://dx.doi.org/10.1111/1752-1688.12311
http://dx.doi.org/10.1016/j.crm.2017.08.004
http://dx.doi.org/10.3390/su10062065
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000314
http://dx.doi.org/10.1002/wrcr.20517
http://dx.doi.org/10.1029/2010WR009945
http://dx.doi.org/10.1016/j.jhydrol.2014.05.033
http://dx.doi.org/10.1016/j.cam.2016.02.009
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000591
http://dx.doi.org/10.3390/w9070507


Hydrology 2018, 5, 54 18 of 19

13. Pacchin, E.; Alvisi, S.; Franchini, M. A short-term water demand forecasting model using a moving window
on previously observed data. Water 2017, 9, 172. [CrossRef]

14. Alvisi, S.; Franchini, M. Assessment of predictive uncertainty within the framework of water demand
forecasting using the Model Conditional Processor (MCP). Urban Water J. 2017, 14, 1–10. [CrossRef]

15. Anele, A.O.; Hamam, Y.; Abu-Mahfouz, A.M.; Todini, E. Overview, comparative assessment and
recommendations of forecasting models for short-term water demand prediction. Water 2017, 9, 887.
[CrossRef]

16. Anele, A.O.; Todini, E.; Hamam, Y.; Abu-Mahfouz, A.M. Predictive uncertainty estimation in water demand
forecasting using the model conditional processor. Water 2018, 10, 475. [CrossRef]

17. Seo, Y.; Kim, S.; Singh, V.P. Comparison of different heuristic and decomposition techniques for river stage
modeling. Environ. Monit. Assess. 2018, 190, 392. [CrossRef] [PubMed]

18. Seo, Y.; Kim, S.; Singh, V.P. Machine learning models coupled with variational mode decomposition: A new
approach for modeling daily rainfall-runoff. Atmosphere 2018, 9, 251. [CrossRef]

19. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.
[CrossRef]

20. Polyak, N.; Pearlman, W.A. Stationarity of the Gabor basis and derivation of Janssen’s formula.
In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis,
Victoria, BC, Canada, 4–6 October 1992. [CrossRef]
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