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Abstract: Monitoring Surface Soil Moisture (SSM) and Root Zone Soil Moisture (RZSM) dynamics
at the regional scale is of fundamental importance to many hydrological and ecological studies.
This need becomes even more critical in arid and semi-arid regions, where there are a lack of in situ
observations. In this regard, satellite-based Soil Moisture (SM) data is promising due to the temporal
resolution of acquisitions and the spatial coverage of observations. Satellite-based SM products are
only able to estimate moisture from the soil top layer; however, linking SSM with RZSM would provide
valuable information on land surface-atmosphere interactions. In the present study, satellite-based
SSM data from Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer
2 (AMSR2), and Soil Moisture Active Passive (SMAP) are first compared with the few available SM
in situ observations, and are then coupled with the Soil Moisture Analytical Relationship (SMAR)
model to estimate RZSM in Iran. The comparison between in situ SM observations and satellite data
showed that the SMAP satellite products provide more accurate description of SSM with an average
correlation coefficient (R) of 0.55, root-mean-square error (RMSE) of 0.078 m3 m−3 and a Bias of
0.033 m3 m−3. Thereafter, the SMAP satellite products were coupled with SMAR model, providing a
description of the RZSM with performances that are strongly influenced by the misalignment between
point and pixel processes measured in the preliminary comparison of SSM data.

Keywords: surface soil moisture; root-zone soil moisture; remote sensing; SMAR

1. Introduction

Soil Moisture (SM) is a connective hydrological variable between the Earth’s surface and the
atmosphere, being dominant on various climatological processes through its role in Evapotranspiration
(ET), runoff and groundwater recharge [1–5]. In turn, detailed information on SM aims at improving
climatic predictions and meteorological models, influencing activities such as water resources
management, agriculture efficiency, irrigation planning, and prevention of natural hazards [6–10].

The discrete nature of direct observation methods precludes the spatial distribution of SM due to
its temporal and spatial variability; moreover, these methods require qualified operators, which makes
them costly and time-consuming [11]. In this context, the application of remotely-sensed products has
become an alternative for large-scale SM monitoring [12]. While visible methods are based on the soil
surface reflectance, thermal infrared methods function on the sensitivity of land surface temperature
(LST) to Surface Soil Moisture SSM [4]. Remote sensing methods based on microwave radiation have
been applied through active or passive sensors. Remotely-sensed SM products through microwave
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emissions are widely investigated in many researches due to their potentials for monitoring SM in
all temporal and meteorological conditions and the infiltration ability of microwave emissions in
sparse vegetation covers. This method functions based on the high level of difference between the
soil and water dielectric constants. Solar illumination and cloud cover do not influence microwave
remote sensing technique, and its longer wavelengths are not susceptible to atmospheric scattering.
Thus, it was considered as the most effective method in remote sensing of SM [11,13]. In recent years,
the surface-reflected Global Navigation Satellite System (GNSS) signals have also been evaluated for
SM estimations, which applies a different source of signals from the active/passive microwave sensors
to observe the Earth’s surface [14]. Moreover, the Advanced Scatterometer (ASCAT), which is an active
microwave remote sensing instrument, provides global SM data sets derived from the backscatter
measurements [15,16].

SM products obtained from active/passive microwave remotely-sensed data have been applied
in wide spectra of contexts [17–26]. However, SM data derived from most of the satellite sources
provide the near surface moisture that needs to be converted in Root Zone Soil Moisture (RZSM)
estimations [27,28]. Recently, high-resolution observations of RZSM have become available through
the NASA Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), which have
been compared with the microwave remote sensing observations obtained from NASA Soil Moisture
Active-Passive (SMAP) mission [29,30]. A more straightforward type of RZSM modelling approach is
the use of an exponential filter to predict RZSM from satellite data [31,32]. In this regard, one of the
recent models is the Soil Moisture Analytical Relationship (SMAR), developed by Manfreda et al., 2014
and tested with satellite data [32–35].

Despite the importance of water in arid and semi-arid regions, there are only a few studies
regarding the evaluation and monitoring of environmental parameters in Iran [36–40]. In particular,
a multiyear SSM dataset was extracted from SMOSL3, ECV-SM ERA-Interim and ERA-Interim/Land
SSM products in 2015 over six sub regions of Iran with meteorological data characterized by different
climate conditions [41]. Their results showed that all SSM products were in good agreement between
each other and with in situ precipitation and temperature measurements.

This paper aims to introduce the current status of soil-moisture monitoring in Iran and further
improve the evaluation of satellite-based SM products with the intention of understanding SM
spatio-temporal variability in semi-arid regions. For this purpose, three different satellite-based SSM
data were compared with observed data obtained from five stations in order to evaluate the reliability
of different remote sensing products. Afterwards, satellite products were applied to run the SMAR
model in order to define the best strategy to describe RZSM in this poorly monitored area.

2. Materials and Methods

2.1. Study Area

Iran can be divided into eight Ecoregions characterized by different annual rainfalls, with an
average of 260 mm (Figure 1) [42,43]. Each ecoregion is characterized by different rainfall regimes
with the driest located in the south-eastern part of the country (Zone 1), while the northern area at the
margins of the Caspian Sea receives the highest amount of annual rainfall (Zones 6 and 8).

2.2. In Situ Data

The entire country is monitored with few Agro-Meteorological (AM) stations (about 23 AM
stations) that measure climatic data and also SM. In particular, SM measurements are taken at different
depths using Time-domain reflectometry (TDR) or gravimetric method on a daily to weekly basis.
The compact data logger applied was COMBILOG 1020 by Theodor Friedrichs & Co. GmbH from
Schenefeld (Germany), which records various measurements such as temperature, wind speed and
soil moisture. The spatial distribution of the AM stations is described in Figure 1 [44].
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The quality of the data is generally poor with several gaps in time series and biases due to the
manual operation of data collection. Therefore, only five of these stations provide reliable time series
that can be used for the subsequent analyses. Information regarding each study site is presented in
Table 1, which provides geographical location, elevation, soil texture, measurement depths, and mean
annual precipitation [45]. Sparse agricultural crops and herbaceous plants cover most of the study sites.
The climate condition in all stations is cold and semi-arid except for Oltan station, which is located in a
mild and semi-arid region. Kahriz station is located near Lake Urmia; therefore, the lake influences
some parameters such as temperature and humidity.
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Figure 1. Location of the Agro-Meteorological (AM) stations in eight Ecoregions of Iran (black and red
symbols) and the selected stations (red symbols).

Figure 2 shows the time series of SM profile of the five selected stations. The stations are located
in two of the eight Ecoregions presented in Figure 1. The Farokhshahr and Toroq stations belong to
zone 2, while the Kahriz, Khosroshah, and Oltan stations belong to zone 3. SM dynamics reflects the
rainfall pattern of these zones; however, Farokhshahr and Khosroshah display significant differences
in the observed dynamics with lower infiltration in the lower soil layers.

Table 1. Characteristics of each monitoring station adopted in the study.

Station
Name Latitude Longitude Elevation

(m) Soil Texture Measurement
Depths (cm)

Mean Annual
Precipitation

(mm/year)

Farokhshahr 32.30 50.93 1636 Loam 5, 10, 30, 50 300
Kahriz 37.88 45.00 1336 Sandy clay 5, 10, 30, 50 313

Khosroshah 37.97 46.04 1338 Sandy loam 5, 10, 20, 30, 50 288
Oltan 39.60 47.76 73 Sandy clay 5, 10, 20, 30, 50 263
Toroq 36.27 59.63 990 Loamy sand 5, 10, 20, 30, 50 233
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Figure 2. Soil Moisture (SM) dynamics along the soil profile and over the period 2015–2016 for the
stations of (A) Farokhshahr; (B) Kahriz; (C) Khosroshah; (D) Oltan; (E) Toroq.
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In situ observations at different depths were applied to describe SM dynamics over the considered
study area. SSM was estimated using the measurements taken at surface, while, RZSM was calculated
as the weighted average of available SM measurements at different depths.

2.3. Satellite Data

In recent decades, various sensors with microwave technology have been launched to remotely
monitor SM. In this research, we applied three SSM products from Soil Moisture and Ocean Salinity
(SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Soil Moisture Active Passive
(SMAP) [46–48].

The AMSR2 sensor, developed by the Japanese Aerospace Exploration Agency (JAXA), was
launched in 2012 aboard GCOM-W1 [49]. AMSR2 is a passive microwave radiometer that retrieves
the SSM both in C and X bands (with 62 km × 35 km, 42 km × 24 km resolution, respectively) every
1 to 2 days from ascending (1.30 P.M. local time) and descending (1.30 A.M. local time) overpasses.
AMSR2 SSM products are retrieved from the JAXA (X band only) and Land Parameter Retrieval Model
(LPRM) (both C- and X band) algorithms [50]. In this research, SSM products by LPRM from X band
(10.7 GHz) with a grid resolution of 0.25 degree were evaluated for the period from 2015 to 2016 [51].

SM estimation using L-band radiometry is a new step in this field since L-band microwave sensors
provide maximum sensitivity to SM [52]. ESA’s SMOS and NASA’s SMAP were launched in 2010 and
2015, respectively, to measure SM at a global scale in L-band [47,48]. SMOS mission observes SM over
land and salinity over oceans with the aim to provide global maps every 3 days with a 50 km ground
resolution, and volumetric SM every 2 to 3 days with the accuracy of a 0.04 m3/m3 [53]. In this study,
SMOS L3 daily products (v300) from the Centre Aval de Traitement des Données SMOS (CATDS) with
a grid resolution of 25 km including both ascending (6:00 A.M.) and descending (6:00 P.M.) overpasses
were used for a time period of 2015–2016 [54].

SMAP, launched by NASA on 31 January 2015, applies a combination of active radar and a
passive radiometer in order to measure SM and freeze/thaw at a global scale [48]. SMAP observes
Earth’s surface from 6:00 A.M. (descending) and 6:00 P.M. (ascending) overpasses and provides global
coverage every 1 to 3 days. The SMAP radar stopped transmitting on 7 July 2015 and currently, SMAP
only provides SM products from the radiometer. In this research, level 3 SMAP SM products for both
ascending/descending overpasses were used during 2015–2016. These products (L3-SM-P) resampled
to a global 36 km gridding resolution are available on NASA National Snow and Ice Data Centre
Distributed Active Archive Centre (NSIDC DAAC) website [55].

For evaluation of remotely-sensed SM data, SSM values corresponding to each station were
extracted using Matlab software. Day and night datasets were integrated in order to fill the time series
with all available dates. In case two values were available in the same day (day and night), a simple
arithmetic mean was calculated as reference value.

2.4. Soil Moisture Analytical Relationship (SMAR) Model

SMAR model predicts the RZSM based on SSM time series using an analytical relationship
developed by Manfreda et al. [33]. The SMAR equation describes the analytical relationship between
SSM (s1) and RZSM (s2):

s2
(
t j
)
= sw2 +

(
s2

(
t j−1

)
− sw2

)
e−a(t j−t j−1) + (1− sw2)b y

(
t j
)(

t j − t j−1
)
. (1)

The function adopts a term y(t) [–] that represents the fraction of soil saturation infiltrating in the
lower layer of soil. It assumes the form:

y[s1(t), t] =
{

(s1(t) − sc1), s1(t) ≥ sc1

0, s1(t) < sc1
(2)



Hydrology 2019, 6, 44 6 of 13

where a = V2
(1−sW2)n2Zr2

is a normalized daily root zone water loss coefficient, b = n1Zr1
(1−sW2)n2Zr2

is a
normalized coefficient controlling diffusion rate of excess soil moisture, n1 [–] is soil porosity of the
first soil layer, Zr1 [L] is depth of the first layer, s1 (θ1/n1) [–] is relative saturation of the first layer,
sc1 [–] is relative saturation value at field capacity of the first layer of soil, s2 [–] represents the relative
saturation of the second layer, sw2 [–] is the relative saturation of the second layer at wilting point, n2

[–] is soil porosity of second layer, Zr2 [L] is the depth of second layer, V2 [LT−1] is the soil water loss
coefficient accounting for both ET and percolation losses, and finally t j represent time.

SMAR represents a SM analytical relationship between the two state variables introduced with the
physically consistent parameters. Model parameters can be estimated exploiting physical information
or calibration using RZSM data. It should be noted that SMAR may produce values higher than 1 and
in consequence, these are automatically set equal to 1. It is necessary to take into account the potential
effect of runoff that is neglected in the mathematical formulation.

2.5. Root Zone Soil Moisture Estimations

Following Faridani et al. [32], SMAR model was applied using three different approaches. SMAR
model includes various parameters, which may be estimated considering soil texture information and
climate conditions in the region. In the present application, range of parameters was set based on
physical characteristics of the sites, but their values were calibrated using both point scale measurements
and satellite data. An optimization procedure was carried out to calibrate the model using a genetic
algorithm function that adopts the root mean square error (RMSE) as the objective function.

The three schemes have been adopted:

• Scheme i: SMAR model is used exploiting as input the time series of in situ SSM data and it is
calibrated with the values of in situ observations of RZSM (i.e., point scale application);

• Scheme ii: SMAR model is used exploiting as input the time series of satellite SSM data and it is
calibrated with the values of in situ observations of RZSM (i.e., pixel scale application);

• Scheme iii: SMAR model is used exploiting as input the time series of satellite SSM data,
but parameters are assigned using the same values obtained from the point scale/scheme i (i.e.,
an extension of in situ point parametrization to the pixel scale.)

Model performances were quantified through the correlation coefficient (R), RMSE, and bias [56].

3. Results and Discussion

3.1. Evaluation of Remotely-Sensed Data

SSM level 3 products obtained from three chosen satellites, namely SMAP, SMOS, and AMSR2
over a time period of 2015 to 2016 were compared with SSM measurements in the studied stations
in Figure 3. Since most passive satellite sensors cannot observe deeper than a few centimeters [38],
the SM measured at the depth of 10 cm was considered as the reference SSM (associated with the first
layer of soil in SMAR schematization).

The scatterplots and time series of different SM observations have been depicted in order to
provide a preliminary check of data. Table 2 indicates the validation results of all satellite products
with observed data in terms of R, RMSE, and Bias statistical indices. We must acknowledge that the
comparison is strongly affected by the reference scale of the two measurements (in situ vs. satellite) that
may significantly differ because of the internal spatial heterogeneity of soil or land use. Nevertheless,
the in situ measurements available were limited in space, and this was the only comparison possible that
could provide information about the evolution of soil moisture and an indication on the discriminatory
capacity of different sensors.

The direct comparison of the two datasets showed significant variability among the different
remotely sensed data. SM products obtained from SMAP were more consistent compared to other
sensors and showed closer agreement with in situ observations (with and average R = 0.55 and
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RMSE = 0.078 m3 m−3). AMSR2 and SMOS provided progressively a lower correlation with local
measurements with values that move from 0.49 to 0.34. All evaluated sensors showed an overestimation
with regards to the observed SSM data in the studied areas.

Table 2. Comparison between remotely sensed and observed SM data expressed in terms of R,
root-mean-square error RMSE (m3 m−3) and Bias (m3 m−3). In addition, the number of measurements
is also provided (N).

AMSR2 SMOS SMAP
Stations R RMSE BIAS N R RMSE BIAS N R RMSE BIAS N

Farokhshahr 0.57 0.143 0.128 306 0.30 0.093 0.030 134 0.40 0.039 −0.010 191
Kahriz - - - - 0.32 0.115 −0.032 159 0.39 0.135 0.123 195

Khosroshah 0.26 0.100 0.046 524 0.47 0.156 0.088 362 0.67 0.069 0.046 339
Oltan 0.70 0.210 0.178 533 0.29 0.148 0.083 384 0.74 0.075 0.058 243
Toroq 0.45 0.089 0.023 303 0.34 0.084 −0.035 127 0.56 0.070 −0.051 130

Average 0.49 0.135 0.094 417 0.34 0.119 0.027 233 0.55 0.078 0.033 220

Time series in Figure 3 show that AMSR2 tended to overestimate SSM with a positive bias in all
stations. This result is also confirmed by previous studies [57,58]. However, in stations with lower moisture
values (Toroq and Khosroshah), AMSR2 provided more precise description of local fluctuations of SM.Hydrology 2019, 6, 44 8 of 13 
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Figure 3. Temporal evolution of SM (left) and Scatterplots (right) of remotely sensed data and measured
Surface Soil Moisture (SSM) data in the five stations of (A) Farokhshahr; (B) Kahriz; (C) Khosroshah;
(D) Oltan; (E) Toroq. Dashed lines in Scatterplots represent the ideal line of a perfect agreement.
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SMOS measurements showed the higher dispersion respect to local measurements with a
correlation coefficient ranging from 0.29 to 0.47. Therefore, SMOS provided the least useful information
in terms of SSM with a precision lower than the targeted for the sensor (RMSE < 0.04 m3 m−3) [55].
Such low performances are also confirmed by the studies performed by Oliva et al., 2012 and
Khazaal et al., 2014, who suggested that SMOS faces radiometric interferences in some areas such as
the Middle East [59,60].

In conclusion, SSM estimations performed by SMAP satellite provided the best accuracy for
the considered dataset. Performances were still not fully satisfying respect to expected precision of
the sensor (RMSE < 0.04 m3 m−3). RMSE values obtained by SMAP assumed an average value of
0.078 m3m−3 and showed an overestimation of +0.033 m3 m−3 (mean bias). In conclusion, SMAP
described well the seasonal and temporal SSM fluctuations and showed a lower mean RMSE. As a
consequence, SMAP data were chosen to be applied in the next steps as inputs for the SMAR model.
SMAP products dominance regarding the other remotely-sensed data and its ability to estimate SSM
frequencies has been also mentioned in many other similar investigations [61–63].

3.2. Application of the SMAR Model

As mentioned in Section 2.5, the performance of SMAR model in estimating RZSM was evaluated
using three different schemes with the aim to explore the impact of different scales of application on
model performances. A summary of the performances in terms of R, RMSE and Bias is given in Table 3
along with the estimated parameters for each of the proposed schemes.

SMAR model was applied at daily scale in all station except for Toroq, where the time-step
(tj − tj−1) in Equation (2) was set equal to 3 days and/or 4 days as a function of the available in situ
measurements. Time series of RZSM predicted with the three mentioned SMAR schemes and measured
in situ data at one point are depicted in Figure 4.

Table 3. Statistical indices and Soil Moisture Analytical Relationship (SMAR) model parameters for the
three schemes in all stations.

Station Schemes n1 n2 sc1 sw2
V2

(m/day) R RMSE
(m3 m−3)

Bias
(m3 m−3)

Farokhshahr
i 0.497 0.530 0.247 0.170 0.0096 0.9254 0.0119 0.0045
ii 0.467 0.467 0.476 0.183 0.0057 0.9782 0.0045 −0.0002
iii 0.497 0.530 0.247 0.170 0.0096 0.544 0.0313 0.0247

Kahriz
i 0.462 0.529 0.388 0.248 0.0198 0.9150 0.0303 0.0004
ii 0.466 0.530 0.467 0.219 0.0250 0.2813 0.1430 0.0871
iii 0.462 0.529 0.388 0.248 0.0198 0.2920 0.3209 0.2879

Khosroshah
i 0.500 0.520 0.430 0.122 0.0113 0.8524 0.0184 0.0025
ii 0.484 0.530 0.477 0.112 0.0056 0.5975 0.0257 0.0118
iii 0.500 0.520 0.430 0.122 0.0113 0.5057 0.0314 0.0151

Oltan
i 0.452 0.430 0.241 0.215 0.0249 0.8066 0.0459 0.0068
ii 0.433 0.470 0.436 0.211 0.0250 0.6526 0.1000 0.0487
iii 0.452 0.430 0.241 0.215 0.0249 0.7677 0.2450 0.1820

Toroq
i 0.490 0.530 0.289 0.237 0.019 0.9463 0.0146 0.0003
ii 0.444 0.508 0.421 0.241 0.0051 0.9225 0.0174 0.0006
iii 0.490 0.530 0.289 0.237 0.019 0.7521 0.0291 0.0018

In general, scheme (i) had the best performance in estimating the RZSM in all stations. Scheme (ii)
was also quite successful, while scheme (iii) produces unrealistic results. Obviously, the first scheme
adopts two time series that are coherent with the structure of the model and its good performances
are expected. The second scheme forces the model parametrization to replicate the time series of in
situ point scale RZSM, but obviously the critical differences between the two datasets in terms of scale
diminishes the quality of the results. Nevertheless, the second scheme produces relatively good results
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with set of parameters slightly different respect to the first scheme. Finally, scheme iii demonstrates
that the parametrization derived from point scale observations is clearly not compatible with the use
of satellite data as input given the strong differences in the reference scale.
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It is interesting to observe that some of the SMAR‘s parameters, such as n1, n2, and sw2, display
a small variability moving from scheme (i) to (ii), while V2 and sc1 display a significant sensitivity
respect to the input time series of SSM. Therefore, the two parameters V2 and sc1 are more influenced
by the change of scale and are also able to force using satellite time series of SSM as input. For instance,
the overestimation of the satellite-based SSM data produces as a consequence, higher values of the
parameter field capacity of the surface layer (sc1).

More specifically, some differences in model performances were observed between different
stations especially for scheme (ii). Such differences may be due to the relative agreement between the
time series of SSM. Such differences can be due to the fact that the in situ station is not representative
of the dynamics of the satellite pixel. Therefore, the performance of SMAR improves as the correlation
between the two increase (compare results in Tables 2 and 3).

4. Conclusions

Iran deals with climate change and a severe shortage of water resources. Therefore, monitoring
SSM and RZSM helps to understand important hydrological and ecological processes; leading to
mitigate the potential negative impacts of above-mentioned crises. This paper deals with the use of
satellite sensors in order to monitor SM in Iran considering the available in situ observations and
satellite data (i.e., SMOS, SMAP, and AMSR2).
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SM is measured using TDR or gravimetric methods in 23 AM stations at 3–5 depths, but only
five of them provide continuous time series. Therefore, analyses presented are strongly limited by
the available dataset that is also limited in spatial coverage of in situ observations and also quality of
data. These limitations clearly identify an urgent need to increase the number of AM stations and to
equip them with proper automatic SM measuring devices (e.g., TDR with data logger) in the region.
Nevertheless, the available data were exploited to provide a preliminary evaluation on the satellite
products available for SM monitoring in Iran.

Through comparison between SSM of in situ observations and pixel scale SSM, it was possible
to rank the reliability of different satellite products. The direct comparison between a point and a
pixel value performed herein cannot be considered as a measure of accuracy of satellite products since
the spatial variability within the pixel was completely neglected. Therefore, analysis provided only a
qualitative analysis that identifies the SMAP products as the most appropriate for Iran.

In consequence, the SMAP data was implemented into the SMAR model to provide a description
of RZSM at the in situ-point and at the pixel-scale. Analyses showed that SMAR provided fairly
good results especially when applied directly at the point scale using consistent time series. RZSM
predictions based on satellite SSM were influenced by the existing correlation with the point scale
dynamics, but the temporal pattern is well interpreted.

Due to the lack of SM measuring stations and the poor quality of the available data in regions
like Iran, remote sensing techniques represent a viable strategy for SM monitoring in scars-data
regions. The proposed study represents a preliminary attempt to address this issue identifying possible
strategies and products to further explore in order to provide an alternative methodology for RZSM
monitoring in arid and semi-arid areas such as Iran.
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