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Abstract: Temporal variability analysis of rainfall and river discharges is useful in determining
the likelihood of the occurrence of extreme events such as drought or flooding for the purposes of
developing policies to mitigate their effects. This study investigated the temporal variability of rainfall
and discharges into Lake Nakuru, Kenya using meteorological drought indicators and hydrological
drought indicators from 1981 to 2018. The standardized precipitation index (SPI) and standardized
precipitation evaporation index (SPEI) were used to characterize meteorological drought, while the
streamflow drought index (SDI) was used to characterize hydrological drought. A SWAT model
was applied for the prediction of streamflow on five tributaries of Lake Nakuru (Njoro, Ngosur,
Nderit, Larmudiac, and Makalia Rivers). The model was successfully calibrated on Njoro River at
the upstream of river gauging station 2FCO5 from 1984 to 1996, and the parameters were validated
from 1997 to 2007. The SUFI-2 algorithm was applied in SWATCup to perform the calibration of the
model. The model performance was considered satisfactory in daily time step (NSE = 0.58, R2 = 0.58
during calibration and NSE = 0.52, R2 = 0.68 during validation). The average annual water balance
revealed that out of 823 mm received annual precipitation, 154 mm was surface runoff and 178 mm
was the annual average water yield. The average annual actual evapotranspiration (ET) was 607 mm.
The results for the temporal variation of the SPI and SDI for the five subcatchments indicated that
the drought events identified by the 12-month SPI/SPEI were almost all identified by the 12-month
SDI. At the catchment scale, SPI showed an equal distribution of wet and dry periods, with 50.00% of
positive anomalies and 50.00% of negative anomalies being observed from 1981 to 2018, while SDI
observes a high frequency of dry periods (52.63%) and a lower frequency of wet periods (47.37%).
There is a higher frequency of wet periods compared to dry periods for both indices from 2009
to 2010 at 60.00% and 40.00% for SPI and 90.00% and 10.00% for SDI, respectively. Both indices
observed that 1984 and 2000 were severely dry years (SPI/SPEI < −2.00), while 2018 was severely wet
(SPI/SPEI > 2.00). The results for the variability in rainfall and streamflow indices revealed that the
last 10 years (2009–2018) were wetter than the period from 1981 to 2008.
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1. Introduction

Changes in the spatial configuration of runoff can occur as a result of changes in the spatial
distribution and temporal variability of atmospheric precipitation, which are linked to climate change.
Runoff, therefore, becomes a product of the interaction between climate and changes in land use in a
basin [1]. A water balance study of the Volta Basin in West Africa confirmed that runoff was extremely
sensitive to precipitation [2]. Rainfall exhibits high spatial and temporal variability globally and is one
of the climatic factors affecting temporal patterns of water availability. The variability of rainfall can
pose a major risk to water resources and reservoirs due to flooding, which impacts the population and
properties in the basin [3].The variability is attributed to climate variability, whose impact on water
resources in terms of flooding or drought is felt globally [4]. The likelihood of extreme drought or
flooding is determined by a temporal variability analysis of rainfall and river discharges at defined
timescales. This becomes necessary for enhancing water resource management, agriculture production,
planning and designing hydraulic structures, and mitigating the negative effects of flooding [5,6].
Information on the temporal patterns of rainfall runoff is obtained by carrying out an analysis of
historical datasets, which gives timely warnings to allow people to cope with or mitigate the negative
effects of floods and droughts caused by climate change.

Hydrological models such as the hydrologic modeling system (HEC-HMS) [7,8], the Australian
water balance model (AWBM) [9], the soil moisture accounting and routing (SMAR) model [10],
the topography-based hydrological model (TOPMODEL) [11,12] and the soil and water assessment
tool (SWAT) [13] are useful for simulating the runoff from ungauged catchment based on the data
availability and complexity of the hydrological system. Many studies have demonstrated that SWAT is
an effective and promising tool to use for simulating flows and sediments for large-scale watersheds
and complex basins with different land uses and various soil types (Access et al. [14], Brouziyne et
al. [15], Palani et al. [16], Amatya et al. [17], and Tri et al. [18], among others). The advantages of
using SWAT include its applicability to larger watersheds with more than 100 km2, its interface with a
geographic information system (GIS), its ability to perform continuous simulations, and its ability to
characterize a watershed in high spatial detail [19].

Drought is categorized into four major types: agricultural, hydrological, meteorological, and
socioeconomic. Meteorological drought occurs when precipitation is below normal based on its
long-term average, while hydrological drought occurs when the surface water level or groundwater is
low compared to the long-term average [20]. Various indices are used to assess meteorological drought
and hydrological drought, such as the rainfall anomaly index (RAI), deciles index (DI), drought area
index (DAI), standardized precipitation index (SPI), standardized precipitation evaporation index
(SPEI), surface humidity index, Palmer drought severity index (PDSI), and streamflow drought index
(SDI) [21–23]. Among the indices, SPI and SPEI are two outstanding meteorological drought indices
used as descriptor(s) of rainfall variability, while SDI is a hydrological drought index. SPI and SPEI
are described by Gurrapu et al. [24] as multi-scale indices with the advantage of identifying the
multitemporal nature of droughts. Okpara and Tarhule rank SPI first among the three drought indices
evaluated in the Niger Basin of West Africa, describing it as robust and sensitive to dryness [25].
SPI, developed by Mckee [26], has the advantage of providing early warning of drought; it can be
computed at different timescales, helps in assessing drought severity, and is not as complex as the
Palmer index [27]. The index also gives better spatial standardization in comparison to other drought
indices such as PDSI [28]. The SPI at one- and three-month timescales reflects short-term moisture
conditions, while the six- and nine-month timescales reflect medium trends in rainfall. The SPI of
the 12-month timescale reflects long-term precipitation patterns and is possibly tied to streamflow,
reservoir levels, and groundwater levels [29]. SPI is solely based on precipitation and ignores the role
of evaporation; due to this limitation, SPEI was developed to complement the SPI drought index since
it incorporates the effect of potential evaporation [30]. SDI makes similar calculations to SPI and is
widely used due to its simplicity and efficiency [22].
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Lake Nakuru undergoes major fluctuations, sometimes drying up completely [31]. The lake
experienced a prolonged drying period and falling water levels from the mid-1980s through 1996, and had
associated increases in water salinity. The lake dried up completely in 1995 and 1996, resulting in most
birds disappearing and tourism being greatly diminished. Following extreme El Niño-driven flooding
in 1997 and 1998, the lake levels rebounded. Flamingoes returned in 2000, but were fewer in number
than before [32]. According to [33], the lake has shown increasing water levels since 2011. This resulted
in an increase in its flood area from a low area of 31.8 km2 in January 2010 to a high of 54.67 km2 in
September 2013, corresponding to a 71.92% increase in area. Landsat images were used to determine the
lake’s surface variations from 1984 to 2013 [34]. The lake surface area had a steady increase of between
30.48 km2 in November 2009 to 57.55 km2 in January 2014—an increase of 27.09 km2 or 88.94%. The lake
swelled in 2013, submerging old buildings that had been abandoned. The negative effects of flooding
translate to economic losses due to reduced tourism following reduced numbers of flamingoes and the
loss of constructed buildings. There is limited information on rainfall variability within the Lake Nakuru
Basin, and no study has investigated the variability in the streamflow into the lake.

The objectives of the study were: (i) to simulate flow from the gauged subcatchment (Njoro) and
ungauged subcatchments (Ngosur, Nderit, Larmudiac, and Makalia); (ii) to calculate the meteorological
(SPI and SPEI) and hydrological (SDI) drought indices for the description of rainfall and streamflow
variability at the 12-month scale; and (iii) to compare the results of SPI and SDI at the catchment scale
and in individual subcatchments.

2. Materials and Methods

2.1. Description of the Study Area

Lake Nakuru is located in Nakuru County, about 140 km northwest of Nairobi in the Rift Valley at
1759 m above sea level. Lake Nakuru Basin is a closed drainage system of 1800 km2 located between
0019′-0024′S and 36004′-36007E and approximately 3 km south of Nakuru town [35]. The lake is
bounded to the north by Menengai Crater (8060–2040 m a.s.l), to the northeast by Bahati Highlands,
to the west by Mau Escarpment (3000 m a.s.l), to the south by Eburru Crater, and to the east by the
grasslands between Lake Nakuru and Lake Elementatita [36].

Located in the modified tropical climate of the Highland climatic zone, the basin experiences
considerable variation in climate depending on the altitude. The climate ranges from cold and humid
to arid and semi-arid, which are typical characteristics of the Rift Valley floor [37]. The basin receives a
mean annual rainfall of 1060 mm, with the first peak occurring in May; the second peak coincides with
rain in the month of August. The basin also has a mean annual evaporation of 1292 mm. The catchment
area has a variety of land use systems that include small-scale and large-scale intensive agriculture,
urban and industrial centers, ranching, forestry, and wildlife conservation [36]. The alkaline lake is fed
by five tributaries, Makalia, Nderit, Naishi, Njoro, and Larmudiac, as shown in Figure 1, and is a home
to millions of flamingoes.



Hydrology 2019, 6, 88 4 of 25
Hydrology 2019, 6, x 4 of 24 

 

 
Figure 1. Location of Lake Nakuru. 

2.2. Climate Data and Validation 

Historical daily rainfall data for River Njoro subcatchment from 1977 to 2018 was obtained from 
Egerton University Station (KE0863) at Latitude ‒0.37 and longitude 35.93 and altitude 2335.42 m 
a.s.l. Other rainfall stations within the Lake Nakuru catchment such as Bahati Forest Station had data 
from as early as the 1950s, but only a few had records from 1981 to the present. These data was not 
used to run the SWAT model; instead, additional gridded daily rainfall data from the Climate 
Hazards group Infrared Precipitation with Station data (CHIRPS) for the period of 1981 to 2018 was 
used. A study done by Ayugi et al. [38] evaluates the performance of four satellite-derived 
precipitation estimates (SPE) over four distinct climatic zones in Kenya from 1998 to 2016. Daily 
observed data from rain gauge stations are validated using the satellite precipitation estimate 
datasets. CHIRPS data was recommended for use in the examination of long-term precipitation 
trends such as at the seasonal and annual scale for monitoring drought events. The data was freely 
downloaded from (http://dx.doi.org/10.15780/G2RP4Q). The additional stations were distributed to 
represent the four subcatchments without observed rainfall records for the Makalia, Nderit, 
Larmudiac, and Ngosur Rivers, as shown in Figure 1. Validation of CHIRPS rainfall data was 
performed on an annual scale for the KE0863 station by comparing the observed data and extracted 
point-based CHIRPs data. The performance was assessed using Pearson correlation (r) and 
percentage bias (PBIAS) to verify the consistency between the observed and gridded data for further 
use in the analysis and SWAT model run. 

The relative humidity, wind speed, solar radiation, and minimum and maximum temperature 
data were obtained from the National Aeronautics and Space Administration Prediction of 
Worldwide Energy Resource (NASA POWER) project (https://power.larc.nasa.gov/data-access-
viewer/) for the station coordinates shown in Table 1. 

Table 1. Rainfall and temperature data used for SWAT modeling from 1981 to 2018. 

ID. Longitude  Latitude Elevation 
Data 
Type Variables 

Egerton University 
(KE0863) 35.9300  −0.3700 2259 Observed 

Rainfall, 
Temperature 

Ngosur Station 36.14123  −0.46388 1819 CHIRPS Rainfall 
Nderit Station 35.95021  −0.46944 2463 CHIRPS Rainfall 

Makalia Station 36.14547  −0.26095 1910 CHIRPS Rainfall 

Figure 1. Location of Lake Nakuru.

2.2. Climate Data and Validation

Historical daily rainfall data for River Njoro subcatchment from 1977 to 2018 was obtained from
Egerton University Station (KE0863) at Latitude –0.37 and longitude 35.93 and altitude 2335.42 m a.s.l.
Other rainfall stations within the Lake Nakuru catchment such as Bahati Forest Station had data from
as early as the 1950s, but only a few had records from 1981 to the present. These data was not used to
run the SWAT model; instead, additional gridded daily rainfall data from the Climate Hazards group
Infrared Precipitation with Station data (CHIRPS) for the period of 1981 to 2018 was used. A study done
by Ayugi et al. [38] evaluates the performance of four satellite-derived precipitation estimates (SPE) over
four distinct climatic zones in Kenya from 1998 to 2016. Daily observed data from rain gauge stations
are validated using the satellite precipitation estimate datasets. CHIRPS data was recommended for
use in the examination of long-term precipitation trends such as at the seasonal and annual scale for
monitoring drought events. The data was freely downloaded from (http://dx.doi.org/10.15780/G2RP4Q).
The additional stations were distributed to represent the four subcatchments without observed rainfall
records for the Makalia, Nderit, Larmudiac, and Ngosur Rivers, as shown in Figure 1. Validation
of CHIRPS rainfall data was performed on an annual scale for the KE0863 station by comparing the
observed data and extracted point-based CHIRPs data. The performance was assessed using Pearson
correlation (r) and percentage bias (PBIAS) to verify the consistency between the observed and gridded
data for further use in the analysis and SWAT model run.

The relative humidity, wind speed, solar radiation, and minimum and maximum temperature
data were obtained from the National Aeronautics and Space Administration Prediction of Worldwide
Energy Resource (NASA POWER) project (https://power.larc.nasa.gov/data-access-viewer/) for the
station coordinates shown in Table 1.

http://dx.doi.org/10.15780/G2RP4Q
https://power.larc.nasa.gov/data-access-viewer/
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Table 1. Rainfall and temperature data used for SWAT modeling from 1981 to 2018.

ID. Longitude Latitude Elevation Data Type Variables

Egerton University (KE0863) 35.9300 −0.3700 2259 Observed Rainfall, Temperature
Ngosur Station 36.14123 −0.46388 1819 CHIRPS Rainfall
Nderit Station 35.95021 −0.46944 2463 CHIRPS Rainfall

Makalia Station 36.14547 −0.26095 1910 CHIRPS Rainfall
Lamudiac Station 36.18433 −0.22089 2155 CHIRPS Rainfall

2.3. River Discharge Data

Discharge data for Station 2FC05 along River Njoro was obtained from the Water Resources
Authority in Kenya. The data was in daily time steps from 1941 to 2007. The periods from 1987 to
1995 and from 2000 to 2004 had several missing days in the observed data records. The Australian
water balance model (AWBM) [9] was used to simulate the flow at 2FCO5 and calibrate against the
observed data to fill in the gaps and therefore generate a continuous time series of flow data from 1977
to 2007 for SWAT calibration, as shown in Figure 2. The AWBM model allows for calibration using the
flow duration curve (FDC) as given in Figure 3a, which gave a high correlation between the observed
and simulated daily runoff, as shown in Figure 3b, with the coefficient of determination (R2) being
0.9911. The simulated daily time series data for Njoro River was used to calibrate and validate the
SWAT model using SWAT CUP. The simulated flows for the five rivers in the catchment were used to
calculate the time series values for the streamflow drought index (SDI).
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2.4. Drought Indicators

The study characterizes meteorological and hydrological drought indices.

2.4.1. Meteorological Drought Indicator

The standardized precipitation index (SPI) utilizes the monthly time series of rainfall data to
investigate the frequency of dry and wet years (preferably 30 years) to compute its value. The index is
used as a descriptor of rainfall variability and indicates the number of standard deviations by which a
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rainfall event deviates from the average. The computation was performed separately for each month
and for each station by fitting the probability density function (pdf) to the frequency distribution of
rainfall from 1981 to 2018. Each pdf was then transformed into the standardized normal distribution.
Bayissa et al. [28] describes the calculation procedure for SPI in detail. The standardized precipitation
evaporation index (SPEI) differs from SPI by incorporating the effect of potential evaporation, which is
calculated based on temperature in addition to rainfall data. The calculation procedure is similar to
that of SPI [39]. Rainfall data for the observed station and gridded data were used for the analysis
at the 12-month timescale. SPI and SPEI values are classified according to different levels of severity,
as given in Table 2 [22,23,26].

Table 2. Classification of drought Indices.

Classification Values (SPI, SPEI, or SDI)

Extremely wet 2.00 or higher
Very wet 1.50 to 1.99

Moderately wet 1.00 to 1.49
Normal −0.99 to 0.99

Moderately dry −1.00 to −1.49
Very dry −1.50 to −1.99

Extremely dry − 2.00 or lower

2.4.2. Hydrological Drought Indicator

The streamflow drought index (SDI) was used to characterize the drought. Drought occurs
when the level of surface water and the groundwater table are lower than the long-term average.
The indicator include the level of lakes, streams, and groundwater [20]. The SDI was based on daily
simulated data from SWAT (1981 to 2018) at a timescale of 12 months. The computation is similar to
that of SPI, and gamma distribution was used to fit the river discharge data [39].

2.5. SWAT Model

2.5.1. Description of SWAT Model

The SWAT model was developed by the U.S. Department of Agriculture in order to predict the
impact of land management practices on water, sediment, and agricultural chemical yields in large
and complex watersheds with varying soils, land use, and management conditions over a long period
of time. The model operates on a daily time step, with monthly or annual output frequency [40–42].
The model operates by dividing the catchment into sub-basins; each sub-basin is connected to others
through a stream channel and further divided into hydrological response units (HRUs) composed
of homogenous land cover, soil type, and terrain features [43]. The model estimates the relevant
hydrologic components such as evapotranspiration, surface runoff and peak rate of runoff, groundwater
flow, and sediment yield for each HRU. The method calculates surface runoff as a function of soil type,
use of the soil, slope, initial soil humidity, and type of management practice. The water balance of
the soil profile simulated by SWAT is based on the water balance equation (Equation (1)), as found in
several studies [13,40–42,44].

SWt = SWo +
t∑

i=1

(
Rday −Qsur f − Ea −Wseep −Qqw

)
, (1)

where SWt is the final soil water content (mm water), SWo is the initial soil water content on day i
(mm water), t is the time (days), Rday is the amount of precipitation on day i (mm water), Qsurf is
the amount of surface runoff on day i (mm water), Ea is the amount of evapotranspiration on day
i (mm water), Wseep is the amount of water entering the vadose zone from the soil profile on day i
(mm water), and Qgw is the amount of return flow on day i (mm water).
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2.5.2. SWAT Model Input Data

The data required to run SWAT include a digital elevation model (DEM), land use map, soil map,
and weather data.

Digital Elevation Model (DEM)

A DEM with a resolution of 90 m was used to define the topography of Lake Nakuru Basin,
as shown in Figure 4a. The DEM was freely downloaded from the SRTM (Shuttle Radar Topography
Mission) website in March 2019. The same resolution has been applied by several studies such as
Ghoraba [41], Gonzaga et al. [40], Adeogun et al. [44], and Access et al. [14], among others, and the
desired objectives were achieved. The DEM was used to generate the flow direction, flow accumulation,
and stream network grids and delineation of the watershed into sub-basins, as shown in Figure 4b.
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Soil Data

The soil map and characteristics were obtained from ISRIC’s Soil and Terrain Database for Kenya
(KENSOTER) and used to generate Figure 4c. The data described the physical and chemical properties
of the soil such as soil texture, water-holding capacity, bulk density, depth of horizon, number of soil
layers, organic carbon, electrical conductivity, etc. [45]. Other parameters needed by SWAT, such as
hydraulic conductivity, were estimated using the USDA’s Soil Water Characteristics tool.

Land Use/Cover

Land use affects surface erosion, runoff, and evapotranspiration in the watershed [14]. A land use
map from the Global Land Cover Characterization (GLCC) database was used to estimate vegetation
and other parameters representing the Lake Nakuru Watershed (https://www.esa-landcover-cci.org).
Conversion was done from the original land use classes to SWAT classes, as shown in Figure 4d,
and was defined using a look-up table like that shown in Table 3.

Table 3. Actual and SWAT land use land cover class, land use codes, and their percentage land coverage.

Actual Land Use/Land
Cover

SWAT Land Use/Land
Cover Class SWAT Code % Watershed Area

Forest Mixed forest FRSE 20.36
Woodland Range RNGE 1.62
Bushland (dense) Pasture PAST 8.57
Agriculture (dense) Agriculture land AGRR 66.52
Swampy Area Wetland WETF 0.23
Town Urban Medium Density URMD 2.61
Water Open Water WATR 0.09

https://www.esa-landcover-cci.org
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Lake Evaporation Data

Lake Nakuru is an enclosed lake where water loss only takes place through high evaporation,
rendering the lake a hydrologically-impacted ecosystem [46]. The Penman method was used to
estimate evaporation from 1981 to 2018 since it gives reasonably accurate evaporation estimates
under any climatic conditions and for a timescale as long as one month [47]. The method does
not underestimate evaporation when compared to the Thornthwaite method, as illustrated by [48].
The Penman equation is based on the combination of a surface energy balance equation and an
aerodynamic equation, which is an advantage [49]. Datasets used to solve the Penman equation
included elevation data, wind speed, humidity, net solar insolation, and temperature [50]. These data
were obtained from the National Aeronautics and Space Administration Prediction of Worldwide Energy
Resource (NASA POWER) project (https://power.larc.nasa.gov/data-access-viewer/). The calculated
daily potential evapotranspiration data (ETo) were read in the SWAT model.

2.5.3. SWAT Model Setup

The SWAT model setup involves five steps: data preparation, delineation of watershed,
defining HRUs, running the model, analyzing the parameter sensitivity, and calibration and validation
of the model. The configuration of the model started with the projection of all the datasets to the
same projection called UTM zone 37S Southern Hemisphere for Lake Nakuru catchment. The DEM
was used to delineate the watershed. The process included five major steps: DEM setup, stream
definition, outlet and inlet definition, watershed outlets selection, and definition and calculation of
sub-basin parameters. In HRUs, there are four classes of slopes, as shown in Figure 4e, with large
ranges: 0–5% (45.99% of the study area), 5–15% (35.29% of the study area), 15–30% (14.58% of the study
area) and >30%, which is 4.14% of the defined study area. The catchment area was 1391 km2, with 88
subcatchments, and was delineated into 629 hydrological response units (HRUs). Runoff was predicted
separately for each HRU and combined to obtain the total runoff for the watershed. This provides a
much better physical description of the water balance and increases the accuracy of the load predictions
according to Ghoraba [41]. The model was run using the prepared weather input data from January
1981 to December 2018, and all the necessary files needed to simulate SWAT were written at this level.

2.5.4. Model Calibration and Validation

The sequential uncertainty fitting algorithm (SUFI-2) was applied in SWAT Cup to perform the
calibration of the model. The algorithm accounts for different types of uncertainties arising from
model conceptualization, parameters, and observed data. The uncertainty of the input parameter
was represented by a uniform distribution, while the output uncertainty was computed at 95%
prediction uncertainty (95PPU) [43,51]. Calibration was done on Njoro River upstream of the 2FC05
gauge. The area of the watershed contributing runoff to the gauge station was measured as 122 km2.
The watershed configuration is shown in Figure 5. Calibration was done on daily time series from 1884
to 1996, and parameters were validated from 1997 to 2007. Calibration and validation were carried
out by comparing the measured daily discharge values for Njoro River with the simulated stream
flows, and the model performance assessment was in accordance with Moriasi et al. [52]. Based on
previous studies, the parameters most sensitive for hydrological modeling are CN2, ESCO, SOL_AWC,
and GWQMN [15,40,44]. During calibration, 14 parameters were chosen, with the focus being on the
four most sensitive parameters. The final fitted parameter values are as shown in Table 4.

Regionalization was used for predicting the streamflow from the ungauged subcatchments.
This involves the transfer of parameters from a gauged (donor) catchment to ungauged (target)
catchments. There are three widely used regionalization methods: spatial proximity, physical similarity
and integrated similarity [53–55]. Oudin et al. [56] compared the three regionalization approaches
over a wide range of hydroclimates in France. The study used two lumped rainfall–runoff models
applied to daily data over a large set of 913 French catchments and the results indicated that spatial

https://power.larc.nasa.gov/data-access-viewer/
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proximity provides the best regionalization solution, regression is the least satisfactory, and the physical
similarity approach is intermediary. This is because spatial proximity uses parameter values calibrated
for geographic neighbors, with an underlying assumption that the neighboring catchments have
homogenous physical and climatic characteristics and therefore the hydrological responses are similar.
The regression approach is the worst compared to the other two since the cross-correlation between
parameters is seldom taken into account and model calibrations can produce vastly different sets of
parameter values that give a similar model performance. In this study, regionalization by spatial
proximity was applied since Zhang et al. and Merz et al. [53,57] also demonstrated that the use of this
approach offers the best model performance on ungauged catchments. The fitted parameters for the
River Njoro subcatchment were transferred to simulate the flows for the Makalia, Ngosur, Nderit,
and Larmudiac Rivers since their subcatchments are ungauged.
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Table 4. Final fitted parameters.

Parameters. Description Min Max Fitted Value

CN2 Soil Conservation Service runoff curve number for
AMC II −0.25 0.25 0.05

GWQMN A threshold minimum depth of water in the shallow
aquifer for base flow to occur. 0.00 5000.00 2860

SOL_AWC Available water capacity of the soil layer −0.25 0.25 0.25
ESCO Soil evaporation compensation factor 0 1 0.55

GW_REVAP Groundwater coefficient 0 0.2 0.08
SOL_K Saturated hydraulic conductivity −0.8 0.8 −0.03
CH_K2 Effective hydraulic conductivity in main channel 5 130 127

SLSUBBSN Average slope length 0 0.2 0
CH_N2 Manning’s ‘n’ value for the main channel −0.2 0.2 0.13

ALPHA_BF Base flow alpha factor 0 1 0.37
GW_DELAY Groundwater delay 30 450 436

ALPHA_BNK Base flow alpha factor for bank storage 0 1 0.23
SFTMP Snowfall temperature (◦C) −5 5 0.19

REVAPMN Threshold depth of water in the shallow aquifer for
“revap” to occur 0 10 9.84
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2.5.5. Model Performance Evaluation

Evaluation of the model performance is necessary for the verification of the robustness of the
model [44]. In this study, performance evaluation of the model was carried out based on the coefficient
of determination method (R2), given as Equation (2), and the Nash–Sutcliffe efficiency (NSE), given as
Equation (3). We used the model evaluation guidelines provided by Moriasi et al. [52]. R2 ranges from
0 to 1; values greater than 0.5 are considered acceptable [41]. NSE values are considered very good
between 0.75 and 1, good between 0.65 and 0.75, satisfactory between 0.5 and 0.65, and unsatisfactory
below 0.5 [52]:

R2 =

[∑
i

(
Qm,i −Qm

)(
Qs, j −Qs

)]2

∑
m, j

(
Qm, j −Qm

)2 ∑
i

(
Qs,i −Qs

)2 (2)

NSE = 1−
∑

i(Qm −Qs)
2
i∑

m,i

(
Qm,i −Qm

)2 , (3)

where Qm is the discharge measured on the ith day of the simulation, Qs is the simulated discharge,
Qm is the average measured discharge, and Qms is the average simulated discharge.

3. Results and Discussion

3.1. Rainfall Analysis for Lake Nakuru Catchment

3.1.1. Station (KE0863) and CHIRPS Rainfall Data Comparison

Figure 6 shows the results for a comparison between the CHIRPS gridded rainfall data and
KE0863 station data at an annual scale for 1981 to 2017. The percentage bias (PBIAS) indicated an
overestimation of the rainfall data at the station (2.4%), which is acceptable since it is within the range
of ± 25). The Pearson correlation coefficient (r) value was 0.67, which is fulfills the requirement of
r > 0.5 [58]. The results agreed with Ayugi et al.’s study [38], in which CHIRPS data overestimated
precipitation in both a low-altitude, humid climate and in arid and semi-arid land (ASAL) for annual
analysis. A high correlation was also seen when comparing the annual patterns of CHIRPS data with
ground-based observation stations for all the regions, with the value of (r) being greater than 0.91.
The mean annual rainfall was 1029 mm and 1059 mm for the observed data at the station and the
gridded CHIRPS data, respectively. In general, the observed statistical results for the comparison
between CHIRPS data and observed data at the station showed a high agreement, and therefore the
gridded data were used for further analysis.Hydrology 2019, 6, x 12 of 24 
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3.1.2. Standardized Precipitation Index (SPI) and Standardized Precipitation Standardized
Precipitation Evaporation Index (SPEI)

The results of both SPI and SPEI indices for the five subcatchments in Lake Nakuru Basin are as
shown in Figure 7a–e and summarized in Table 5. The results in Table 5 are from 1981 to 2018, with an
emphasis on the 10-year period from 2009 to 2018. The results are very similar, with a higher frequency
of wetter periods than drier periods being observed at Ngosur, Larmudiac, Makalia, and Nderit stations
from 1981 to 2018. Egerton station (KE0863) recorded an equal distribution of wet and dry periods,
with 50.00% positive anomalies and 50.00% negative anomalies. Ngosur station recorded 57.89%
positive anomalies and 42.11% negative anomalies, while Nderit station recorded 55.26% wet periods
and 44.74% dry periods. Larmudiac and Makalia stations experienced similar results, with 55.26%
positive anomalies versus 44.74% negative anomalies. An analysis was also done for the last 10 years,
which yielded similar recordings of the higher frequency of wet periods compared to dry periods.
Egerton, Ngosur, Larmudiac, and Nderit stations recorded 70.00% wet periods and 30.00% dry periods,
while Makalia station recorded 60.00% wet and 40.00% dry. The years 1984 and 2000 were seen as
severely dry (SPI/SPEI < −2.00), while 2018 was observed to be severely wet (SPI/SPEI > 2.00) for the
Ngosur, Nderit, Makalia, and Larmudiac subcatchments. The year 2010 was a severely wet year for
Egerton University station. From the SPEI and SPI results shown in Figure 7, 2010 to 2018 represented
a period of wetter than normal rainfall and is the longest continuous wet period in the history of the
data analyzed.

Table 5. Distribution of wet and dry periods for 12-month SPI for Lake Nakuru catchment from 1981 to
2018 and from 2009 to 2018.

Period 1981–2018 (38 Years) 2009–2018 (10 Years)

Stations
Wet Periods Dry Periods Wet Periods Dry Periods

Frequency Percent Frequency Percent Frequency Percent Frequency Percent

Egerton
(KE0863) 19 50.00 19 50.00 7 70.00 3 30.00

Ngosur 22 57.89 16 42.11 7 70.00 3 30.00
Larmudiac 21 55.26 17 44.74 7 70.00 3 30.00
Makalia 21 55.26 17 44.74 6 60.00 4 40.00
Nderit 21 55.26 17 44.74 7 70.00 3 30.00
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3.2. Model Performance

The model performance as shown in Figure 8a–c was considered satisfactory for both calibration
and validation period since the values of R2 fullfilled the requirement of R2 > 0.5 and NSE > 0.5 [41,52]
The values of R2 for the two periods indicated that there was a good correlation between the observed
and simulated flow as shown in Figure 9. The NSE and R2 values were 0.58 for the calibration period
and 0.52 and 0.67, respectively, for the validation period in the daily time series, as given in Table 6.

The generated streamflow from each subcatchment was used for the calculations of the streamflow
drought index (SDI).

Table 6. Model performance assessment based on daily river discharge, as guided by Moriasi et al. [52].

Calibration Validation Reference

Statistic Value Performance Value Performance

NSE 0.58 Satisfactory 0.52 Satisfactory Moriasi et al. [52]
R2 0.58 good 0.67 good Moriasi et al. [52]
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Figure 8. (a) Observed and simulated daily discharge for River Njoro (2FCO5) during the calibration
period 1984–1996, (b) a section of observed and simulated daily flow for the calibration period 1989–1993,
and (c) a section of observed and simulated flow for the validation period 2001–2005.
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Figure 9. Correlation between observed and simulated daily river discharge for Njoro River at 2FC05
station for the calibration period (1984–1996) and the validation period (1997–2007).

3.3. Long-Term Water Balance of Lake Nakuru Catchment from 1981 to 2018

Figure 10 represent the annual averages for the Lake Nakuru watershed for the daily simulation
period, 1981 to 2018, carried out with SWAT model. Results show that actual evapotranspiration (ET)
dominates the water balance, with a percentage of 73.75% of the average annual precipitation received
in the watershed. The total water yield simulated by the SWAT model as the sum of surface runoff and
the net contribution of groundwater and lateral flow was 21.62% of the average annual precipitation.
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3.4. The Streamflow Drought Index (SDI)

The temporal variation of the 12-month SDI, implying a long-term drought, is shown in Figure 11
from 1981 to 2018 for the five streams in the catchment. Table 7 summarizes the frequency of dry
years in comparison to wet years from 1981 to 2018 and emphasizes the 10-year results from 2009 to
2018. The results for Njoro River give 47.37% positive anomalies in comparison with 52.63% negative
anomalies. Ngosur and Nderit Rivers have similar results, with 44.74% wet periods in comparison to
55.26% dry periods. Makalia River records an equal distribution of wet and dry periods at 50.00%,
while Larmudiac River has a higher frequency of wet years (52.63%) than dry years (47.37%). The years
1984 and 2000 experienced the most severe long-term drought with SDI < −2.00. A prolonged dry
period was experienced from 1981 to 1987, as indicated in Figure 11. The period between 1988 and
1996 received streamflow at a normal threshold, which alternated between wet and dry periods except
for 1993 for Ngosur River, which was a moderately dry year. The observations made from 2009
to 2018 show a higher frequency of wet periods compared to dry periods, with more than 60.00%
positive anomalies.Hydrology 2019, 6, x 17 of 24 
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Table 7. Distribution of wet and dry periods for 12-month SDI for Lake Nakuru catchment from 1981
to 2018 and from 2009 to 2018.

Period 1981–2018 (38 Years) 2009–2018 (10 Years)

Wet Periods Dry Periods Wet Periods Dry Periods

Streams Frequency Percent Frequency Percent Frequency Percent Frequency Percent

Njoro 18 47.37 20 52.63 9 90.00 1 10.00
Ngosur 17 44.74 21 55.26 7 70.00 3 30.00
Larmudiac 20 52.63 18 47.37 9 90.00 1 10.00
Makalia 19 50.00 19 50.00 9 90.00 1 10.00
Nderit 17 44.74 21 55.26 7 70.00 3 30.00

3.5. Comparison between 12-Month SPI and SDI at the Catchment Scale and in Individual Subcatchments

The results for the temporal variation of the SPI and SDI at the catchment scale and for the five
individual subcatchments indicate that the drought events identified by the 12-month SPI are almost
all identified by the 12-month SDI. There is thus a relationship between the hydrological drought
indices and the meteorological indices.

The temporal variation for the 12-month SPI and SDI is shown in Figure 12 and summarized in
Table 8. The period from 1981 to 2018 is subdivided into four sections for the analysis. A prolonged
dry period is experienced from 1981 to 1987, with the SDI values for all subcatchments having 100.00%
negative anomalies. Unlike Ngosur subcatchment, which observed 57.14% positive anomalies and
42.86% negative anomalies for SPI, the frequency of wet periods is less than 45.00% compared with the
frequency for dry periods for Njoro, Larmudiac, Makalia, and Nderit subcatchments. For 1988 to 1996,
the observations made for Ngosur and Nderit subcatchments are similar for both SPI and SDI, with the
frequency of wet periods being 44.44% while that for dry periods was 55.56%. Njoro subcatchment
observed 33.33% positive anomalies versus 66.67% negative anomalies for both SPI and SDI. An equal
distribution of wet and dry periods was observed at 55.56% and 44.44%, respectively, for SPI and SDI
for Larmudiac and Makalia subcatchments.

For the period between 1997 and 2009, an equal distribution of positive anomalies and negative
anomalies was observed at 53.85% and 46.15%, respectively, for SPI and 46.15% and 53.85% for SDI
for Njoro, Ngosur, and Nderit subcatchments. Larmudiac subcatchment observed 46.15% positive
anomalies and 53.85% negative anomalies for SPI and 38.46% positive anomalies and 61.54% negative
anomalies for SDI. Makalia subcatchment observed 53.85% and 46.15% positive and negative anomalies,
respectively, for SPI, and a 38.46% and 61.54% frequency of wet and dry periods, respectively, for SDI.

The period 2010 to 2018 saw a higher frequency of wet periods compared to dry periods for all
subcatchments, with Njoro, Larmudiac, and Makalia subcatchments having 100.00% positive anomalies
for the SDI. Unlike Makalia subcatchment, which observed 66.67% positive anomalies and 33.33%
negative anomalies for the SPI indices, the other four subcatchments observed a 77.78% frequency
of wet periods and 22.22% frequency of dry periods. Nderit and Ngosur subcatchments recorded a
higher frequency of wet periods compared with dry periods at 77.78% and 22.22%, respectively, for SDI.
The years 1984 and 2004 experienced severe drought (SPI and SDI < −2), while 2010 was very wet for
Njoro subcatchment (SPI and SDI > 2). The year 2018 was very wet (SPI and SDI > 2) for Makalia,
Ngosur, Nderit, and Larmudiac subcatchments.
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Table 8. Distribution of wet and dry periods for 12-month SDI and SPI for Lake Nakuru subcatchments and the entire catchment.

Period 1981–1987 1988–1996

Wet Periods Dry Periods Wet Periods Dry Periods

Sub-Catchments Frequency Percent Frequency Percent Frequency Percent Frequency Percent

Njoro
SPI 2 28.57 5 71.43 3 33.33 6 66.67
SDI 0 0 7 100.00 3 33.33 6 66.67
Ngosur
SPI 4 57.14 3 42.86 4 44.44 5 55.56
SDI 0 0 7 100.00 4 44.44 5 55.56
Larmudiac
SPI 3 42.86 4 57.14 5 55.56 4 44.44
SDI 0 0 7 100.00 6 66.67 3 33.33
Makalia
SPI 3 42.86 4 57.14 4 44.44 5 55.56
SDI 0 0 7 100.00 5 55.56 4 44.44
Nderit
SPI 3 42.86 4 57.14 4 44.44 5 55.56
SDI 0 0 7 100.00 4 44.44 5 55.56
Catchment Scale
SPI 3 42.86 4 57.14 3 33.33 6 66.67
SDI 0 0 7 100.00 4 44.44 5 55.56
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Table 8. Cont.

Period 1997–2009 2010–2018

Wet Periods Dry Periods Wet Periods Dry Periods

Sub-Catchments Frequency Percent Frequency Percent Frequency Percent Frequency Percent

Njoro
SPI 7 53.85 6 46.15 7 77.78 2 22.22
SDI 6 46.15 7 53.85 9 100.00 0 0
Ngosur
SPI 7 53.85 6 46.15 7 77.78 2 22.22
SDI 6 46.15 7 53.85 7 77.78 2 22.22
Larmudiac
SPI 6 46.15 7 53.85 7 77.78 2 22.22
SDI 5 38.46 8 61.54 9 100.00 0 0
Makalia
SPI 7 53.85 6 46.15 6 66.67 3 33.33
SDI 5 38.46 8 61.54 9 100.00 0 0
Nderit
SPI 7 53.85 6 46.15 7 77.78 2 22.22
SDI 6 46.15 7 53.85 7 77.78 2 22.22
Catchment Scale
SPI 7 53.85 6 46.15 6 66.67 3 33.33
SDI 5 38.46 8 61.54 9 100.00 0 0
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4. Conclusions

In this study, the temporal variability of rainfall and discharges into Lake Nakuru was analyzed
using meteorological (SPI and SPEI) and hydrological (SDI) drought indices for a 38-year study
period (1981–2018) and for a 10-year study period (2009–2018) for five subcatchments of Lake Nakuru.
The major findings and conclusion were as follows:

(1) Gridded CHIRPS precipitation data showed high agreement with the observed data for Egerton
station (KE0863) and were therefore used for the calculation of the meteorological drought indices
(SPEI and SPI) for the four subcatchments without recorded data.

(2) The results showed that the SWAT model can be applied for the simulation of streamflow for
the gauged and ungauged subcatchments for the study area, with satisfactory performance for both
the calibration and the validation period. The results were used for the calculation of the hydrological
drought index (SDI) for the study area.

(3) The results of temporal variation of the SPI and SDI at the catchment scale and for the five
individual subcatchments indicate that there is a relationship between the hydrological drought
indices and meteorological indices. The temporal variation for the 12-month SPI and SDI for all the
subcatchments shows a higher frequency of prolonged dry periods from 1981 to 1996. A prolonged
wet period was also experienced from 2010 to 2018. Severe drought was experienced in 1984 and
2000 while 2018 was a very wet year for the Larmudiac, Nderit, Ngosur, and Nderit subcatchments.
The year 2010 was a very wet year for Njoro subcatchment.

(4) The results are similar to those obtained by Coppock et al. [32]; in their study, the lake
experienced prolonged drying and falling water levels from the mid-1980s through 1996, along with
an associated increases in water salinity. According to the study, the lake dried up completely
in 1995 and 1996, resulting in most birds disappearing and tourism being greatly diminished.
From Figure 12, its observed that the SPI and SDI indices for 1995 and 1996 are below the normal
threshold (–0.5 < SPI/SDI < 0.5) and agree with the study. However, in 1997, a positive anomaly was
observed for both the SPI and SDI indices (SPI/SDI > 0.5) for all the subcatchments, which could be a
result of the El Niño-driven flooding in 1997 and 1998, during which the lake levels rebounded [32].
The results of the SPI, SPEI, and SDI indices indicate that, from 2010 to 2018, there was a higher
frequency of wet periods than dry periods, which could be why the lake has shown increasing levels
since 2011, according to Onywere et al. [33].

The results of the variability in rainfall and streamflow indices presented in this research provide
a useful baseline for additional work on the impacts of climate change and climate variability on
rainfall and stream flows for Lake Nakuru Basin. This will help with preparedness in planning for the
infrastructure around the lake to avoid further losses caused by flooding.

In the future, it is recommended that research be conducted on the possible causes of the
variability in Lake Nakuru’s water levels, which could be as a result of climate change, groundwater
recharge, increased sedimentation, hydrological forcing, or tectonic uplifting of the Rift Valley floor.
Coppock et al. [32] calibrated a monthly water balance using available data for Lake Nakuru Basin
from 1958 to 1976. The results indicated that rainfall was the largest source of water for the lake,
followed by tributary inflows and then groundwater seepage. It is recommended that a lake water
balance model be developed from 1980 to the present using the latest bathymetry survey to investigate
whether hydrometeorological data can fully explain the variability in lake levels.
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