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Abstract: Climate association between Groundwater Storage (GWS) and sea level changes have
been missing from the Intergovernmental Panel on Climate Change, demanding a requisite study
of their linkage and responses. Variability in the Hydrologic Unit Code—03 region, i.e., one of the
major U.S. watersheds in the southeast caused by Sea Surface Temperature (SST) variability in the
Pacific and Atlantic Ocean, was identified. Furthermore, the SST regions were identified to assess its
relationship with GWS, sea level, precipitation, and terrestrial water storage. Temporal and spatial
variability were obtained utilizing the singular value decomposition statistical method. A gridded
GWS anomaly from the Gravity Recovery and Climate Experiment (GRACE) was used to understand
the relationship with sea level and SST. The negative pockets of SST were negatively linked with
GWS. The identification of teleconnections with groundwater may substantiate temporal patterns
of groundwater variability. The results confirmed that the SST regions exhibited El Niño Southern
Oscillation patterns, resulting in GWS changes. Moreover, a positive correlation between GWS and
sea level was observed on the east coast in contrast to the southwestern United States. The findings
highlight the importance of climate-driven changes in groundwater attributing changes in sea level.
Therefore, SST could be a good predictor, possibly utilized for prior assessment of variabilities plus
groundwater forecasting.

Keywords: climate variability; sea surface temperature (SST); GRACE; groundwater variability;
singular value decomposition; sea level changes; ENSO

1. Introduction

Climate variability exhibits strong signals, mainly resulting from Sea Surface Temperature
(SST) variability in hydroclimatic variables, including precipitation, temperature, groundwater,
Terrestrial Water Storage (TWS), snow water equivalent, and streamflow. Hydroclimatic variables
are essential elements of climate-related studies, natural disasters [1], and play a key role in the
hydrological cycle [2,3]. These are documented to have a close association with low-frequency climate
variability—the El Niño Southern Oscillation (ENSO) that occurs in the equatorial Pacific Ocean [4–9].
Ocean–atmosphere oscillations are naturally occurring cycles that affect SST and precipitation [10].
In addition, precipitation and sea level are the driving factors that balance terrestrial water (groundwater,
soil moisture, rivers, lakes, and snow). The resulting volume of groundwater along the coast may
have a close association with the Pacific and Atlantic atmospheric phenomena directly. This may be
correlated with climatic response to ENSO, which drives groundwater dynamics.

Climatic variation leads to short-term fluctuations of which ENSO is the most common change in
the climate. It is one of the most important climate phenomena, which can influence global temperature
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and precipitation by altering the global atmospheric circulation. It is also an important factor that
influences groundwater dynamics. Groundwater dynamics are driven by climatic factors, including
precipitation, evaporation, and temperature, as well as human factors (irrigation, extraction, and
reservoir operation). Climate indices, such as Atlantic Multi-decadal Oscillation (AMO), Pacific
Decadal Oscillations (PDO), ENSO, North Atlantic Oscillation (NAO), Niño Regions 3 and 3.4 SST
Indices, are a good measure of the deviation from 30-year climatological normal/historical records
and are predefined indices of climate variability. These deviations are aggravated by climate-induced
effects of natural variability, such as ocean currents, volcanic eruptions, duration of sunshine, and earth
orbital changes. For instance, adjacent lands near the ocean are influenced by the ocean currents; warm
currents raise the temperatures of the coastal areas, whereas cold currents lower them. All these natural
variabilities govern the global climate system and result in hydroclimatic variability. The climate
phenomenon with global and regional influence is evaluated by different indices like ENSO, PDO,
AMO, and NAO. Different regions of the globe have exhibited different responses in groundwater as
an effect of ENSO [11] and PDO signals [12]. However, utilizing SST for the entire Pacific and Atlantic
region eliminates the spatial bias impacting hydrology, further aiding in forecasting the hydroclimatic
variables [8,13].

Comprehending the importance of linkage between climatic and natural variabilities that governs
the fluctuations in Groundwater Storage (GWS) is a challenging task. Comparatively, studies on
precipitation variability due to SST [14–18] and soil moisture variability [19,20] have high consideration,
whereas the analysis of the relationship between climate and groundwater variability is a focused
research domain. For instance, Velasco et al. [21] used groundwater level datasets to identify and
quantify quasi-periodic signals in precipitation and groundwater time series that are potentially
related to interannual to multidecadal modes of climate variability. Additionally, the GWS anomaly in
Rajasthan, India, calculated using the Gravity Recovery and Climate Experiment (GRACE) estimates,
showed an increasing trend in annual recharge [22]. GRACE is an advanced remote sensing product
that provides monthly TWS measurements and has proved to be an effective tool for hydrological
studies [23,24]. GRACE is being successively utilized for climate studies, quantification of hydrologic
processes, and large-scale GWS changes due to limited spatial and temporal in situ groundwater data.
Opie et al. [23] studied the correlation between GRACE GWS and precipitation for 37 large aquifer
systems of the world. Identifying the dominant hydroclimatic variables affecting GRACE-derived
groundwater variability using singular value decomposition (SVD) is a novel and the main motivation
of this study. Finding prevailing factors to understand long-term groundwater variability is crucial
whilst temporal fluctuation due to natural variability could not be neglected.

Estimates from the Intergovernmental Panel on Climate Change (IPCC) consider the effects of
thermal expansion, ice sheets melting, and anthropogenic cause of changes in land-water storage as
contributing to sea level rise. However, groundwater variability was neglected while estimating sea
level budgets. According to Wada et al. [25], groundwater depletion contributes to sea level rise whereas
Bjerklie et al. [26] assessed the effect of sea level rise on groundwater level under two hypothetical
scenarios (0.91 m sea level rise during 100 years and 0.91 m sea level rise plus a 12-percent increase
in recharge) and corroborated that water table rises with a rise in sea level and increase in recharge
could exacerbate high water table issues in the New Haven coastal area. Li et al. [27] corroborated
the interconnection between groundwater level and sea level changes up to the million-year scale sea
level oscillations. Groundwater level change depends on the precipitation-induced infiltration and the
soil-water condition, plus both are influenced by climate variability. In addition, sea level variability
has not been a major area of concern regarding groundwater rise or fall. Consequently, this study aims
to focus on assessing the relationship between groundwater, precipitation, and sea level over 15 years
from 2002 to 2017. Additionally, the study seeks to identify the influence of climate variability on these
variables to address a missing link between sea level and groundwater.

Dimension reduction is a very useful technique to manage complex data that represents the
overall dataset variance of each representative cluster. Maximum information can be extracted from
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multiple datasets while still accomplishing a manageable analysis. For a detailed analysis, hypothesis
testing can be done using statistical tools like N-way ANOVA, analysis of variance through scales,
multiple regression, multiple logistic regression, Principal Component Analysis (PCA), canonical
correlation analysis, and SVD. Several studies utilizing SVD to examine the relationship between
hydrologic variability and SST [13,28,29], as well as precipitation and groundwater level [30], have
been documented. Identifying the dominant variables affecting groundwater variability using SVD is
novel and the main motivation of this study. This is a comprehensive study using SVD in GWS for the
first time to assess the relationship between land–ocean and atmosphere variability.

SVD is a robust statistical tool [31] to examine the teleconnections among spatiotemporal climate
variables, precipitation, and groundwater volume, to identify the linkage with oceanic–atmospheric
variabilities. It is one of the common methods of PCA in studies related to hydrological variables.
It uses orthogonal transformation and decomposes one or more variables into linear combinations or
components into spatial and/or temporal patterns. All patterns are independent of one another. It also
uses eigenvectors and evaluates the cross-covariance matrix at different spatial and equal temporal
scales. SVD is a useful technique that can be used to generate alternative indices instead of relying on
the existing climate indices—ENSO and PDO. Utilizing the results from an SVD analysis in this way
can remove regional bias from predefined indices, as mentioned earlier [8,13]. SVD assumes linearity
and it is a domain-specific method.

The current study investigated the complex issues of groundwater response to Pacific and Atlantic
Ocean atmospheric circulation, like ENSO in the southeast U.S., concentrating on the HUC-03 region,
which also drives variability in precipitation and sea level. This study will address the following key
questions: (1) Does precipitation affect GWS variability? (2) Is variability in groundwater related to
Pacific and Atlantic Ocean variability? (3) How is sea level variability related to GWS variability? These
aforementioned research questions will assess the association and interactions among groundwater
variability, land water storage, and the ocean. The specific objectives are (1) to evaluate the effect of
precipitation on GWS in HUC-03; (2) to investigate the groundwater variability as a response of Pacific
and Atlantic climate variability; and (3) to evaluate the relationship between sea level and groundwater
variability across the contiguous United States.

The subsequent results from this study will help to determine interconnection amidst precipitation,
sea level, and climate indices, which can be useful for short-term groundwater management decisions.
Evaluating the correlation between the climate indices, precipitation, GWS, TWS, and sea level will
further help in the prediction and estimation of groundwater.

2. Materials and Methods

2.1. Study Area

The study area in the South Atlantic–Gulf region, i.e., the HUC-03 watershed, was considered to
evaluate the influence of precipitation and SST on groundwater response as it extends in the climatic
response in the Southeast U.S., Gulf of Mexico in the west part of the HUC-03 region, and the mountain
region in the northwest portion. The area covers Florida, Alabama, Georgia, North Carolina, South
Carolina, a few areas of Mississippi, and Virginia. The climate of the HUC-03 watershed is subtropical;
it is humid with hot summers and relatively warm but crisp winters in Virginia. The annual mean
temperature ranges from 14.3 ◦C to 19.78 ◦C and the average annual precipitation ranges from 94 to
142 cm. The average annual recharge ranges from 13 to 38 cm [32].

The study region (shown in Figure 1) consists of most of the Floridian aquifer systems and is
one of the world’s most productive aquifers [33]. The presence of varieties of texture, thickness, and
types of carbonated rocks has the corresponding variation in regional units and zones. The Floridian
aquifer system spans Southeast Georgia, Northeast and South Florida, as well as the Florida panhandle,
whilst few parts of Central and Southwest Peninsular Florida is overlaid by an upper confining unit
and underlain by a lower confining unit throughout the study region. The middle confining unit is
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a discontinuous layer that separates the Upper and Lower Floridian Aquifer. It contains confining,
leaky, or semi-confining units (rocks having similar hydraulic properties within both or the adjacent
aquifers) [33]. The water exchange phenomenon takes place in these units. The variability in climate,
wide range of watershed sizes, and its proximity to the ocean were the basic selection criteria. These
variables potentially help represent an influencing role in groundwater variability and to evaluate the
hydrologic response to climatic variations and sea level variability within the study area.

Hydrology 2020, 6, x FOR PEER REVIEW 4 of 28 

 

discontinuous layer that separates the Upper and Lower Floridian Aquifer. It contains confining, 
leaky, or semi-confining units (rocks having similar hydraulic properties within both or the adjacent 
aquifers) [33]. The water exchange phenomenon takes place in these units. The variability in climate, 
wide range of watershed sizes, and its proximity to the ocean were the basic selection criteria. These 
variables potentially help represent an influencing role in groundwater variability and to evaluate 
the hydrologic response to climatic variations and sea level variability within the study area. 

 
Figure 1. Study area, encompassing the HUC-03 watershed boundary, major cities, and elevation in 
meters. 

2.2. Data Acquisition and Pre-Processing 

The dataset used in the analysis was comprised of TWS from GRACE [34] data, Canopy Water 
Storage (CWS), Soil Moisture (SM), Snow-Water Equivalent (SWE) from the Global Land Data 
Assimilation System (GLDAS) [35], Sea Surface Temperature (SST) from the National Oceanic and 
Atmospheric Administration (NOAA) Physical Sciences Division [36], and monthly gridded 

Figure 1. Study area, encompassing the HUC-03 watershed boundary, major cities, and elevation
in meters.

2.2. Data Acquisition and Pre-Processing

The dataset used in the analysis was comprised of TWS from GRACE [34] data, Canopy
Water Storage (CWS), Soil Moisture (SM), Snow-Water Equivalent (SWE) from the Global Land
Data Assimilation System (GLDAS) [35], Sea Surface Temperature (SST) from the National Oceanic
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and Atmospheric Administration (NOAA) Physical Sciences Division [36], and monthly gridded
precipitation data from the NOAA Climate Prediction Center (CPC) [37]. A continuous time series was
used in this study (i.e., without missing values).

2.2.1. GRACE Dataset

GRACE, a joint U.S.–German satellite mission, measures TWS from three laboratories (i.e., Center
for Space Research (CSR), Helmholtz-Zentrum Potsdam (GFZ), and NASA Jet Propulsion Laboratory
(JPL)), and has a spatial resolution of 1◦ × 1◦. The monthly GRACE–TWS data were downloaded from
the GRACE FTP website [38] in NetCDF formats. Each product was multiplied by the Community
Land Model version 4 (CLM4) scaling factor to obtain the average TWS. TWS constitutes a vertically
integrated water storage system, including GWS, SM, SWE, and surface water.

The monthly TWS anomalies from 2002 to 2017 were extracted, which includes CWS, Ground
Water Storage (GWS), SWE, and SM. A terrestrial water balance approach is shown in Equation (1)
below:

TWS = GWS + SM + SWE + CWS (1)

2.2.2. GLDAS Dataset

GLDAS is a product of the Hydrological Sciences Laboratory, NASA. It provides a global dataset
at temporal resolution from 1948 and a good spatial resolution of 1◦ × 1◦ and 0.25◦ × 0.25◦ and is very
useful where data are limited [39,40]. It utilizes data assimilation to integrate observed and satellite
data in four Land Surface Models (LSMs)—Variable Infiltration Capacity (VIC), Noah (NOAH), Mosaic
(MOS), and Community Land Model (CLM). It is a widely used hydroclimatological dataset for climate
and water resources research [39,40]. In addition, past studies, including Syed et al. [41], Nie et al. [42],
and Moghim [43], confirmed that GLDAS TWS is consistent with GRACE TWS and is valid where it
lacks a hydroclimatological dataset. In this study, the monthly SM, SWE, and CWS gridded spatial
resolution of 1◦ × 1◦ grids from 2002 to 2017 were obtained from the four aforementioned LSMs
determined by GLDAS.

The soil moisture obtained from NOAH and VIC was extrapolated to calculate the soil moisture
depths to 3.4 m using simple linear extrapolation. The vertical layering structure of each model was
model-specific, as shown in Table 1. The average soil moisture is the depth-averaged amount of water
in the soil depth of all model soil layers. For robust analysis, as suggested by Skaskevych [44], Moore
and Fisher [45], and Xiao et al. [46], all four models were utilized to obtain the average of SM, SWE,
and CWS.

Table 1. Vertical layering structure of the four Land Surface Models (LSMs).

Model Layers Depths

CLM 2.0 10 0–0.018, 0.018–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 0.289–0.493,
0.493–0.829, 0.829–1.383, 1.383–2.296, and 2.296–3.433 m.

MOS 3 0–0.02,0.02–1.50, and 1.5–3.50 m

NOAH 4 0–0.1, 0.1–0.4, 0.4–1.0, and 1.0–2.0 m.

VIC 3 0–0.1, 0.1–1.6, and 1.6–1.9 m.

2.2.3. Anomaly Calculation to Obtain Groundwater Storage Anomaly (GWSA)

Monthly anomalies were obtained by differencing the January 2004 to December 2009 climatological
mean annual cycle, as shown in Equation (2).

∆PtA = Pt − P2004−2009 (2)
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where Pt represents GWS/SM/SWE/CWS for a particular time, t, and P2004−2009 represents the
corresponding average P from January 2004 to December 2009. The monthly anomalies of TWS,
SM, SWE, and CWS were obtained using Equation (2). The GWSA, as estimated by Rodell and
Famiglietti [47], includes the Terrestrial Water Storage Anomaly (TWSA), Snow Water Equivalent
Anomaly (SWEA), Soil Moisture Anomaly (SMA), and Canopy Water Storage Anomaly (CWSA). The
mass balance approach is shown in Equation (3).

GWSA = TWSA− SMA− SWEA−CWSA (3)

For the Atlantic and Pacific Analysis, the anomalies of SST, TWSA, GWSA, sea level, and
precipitation were estimated as the deviation of the GRACE period (2004–2009) averages. The
standardized anomalies of each dataset were used for SVD analysis by normalizing it by the
standard deviation.

2.2.4. Precipitation Dataset

Precipitation data were extracted from a gridded daily (0.5◦ × 0.5◦) precipitation database from
CPC in the NetCDF format and processed into a 1◦ × 1◦ spatial resolution using a spatial averaging
approach for comparison with the GRACE and GLDAS output on 1◦ × 1◦ grids. The average monthly
precipitation was computed for the study period of 2002–2017. The obtained dataset was standardized
before the analysis.

2.2.5. Sea Surface Temperature Dataset

The monthly SST dataset was extracted from NOAA available in 2◦ × 2◦ grid cells. The selected
area in the study extended from 100◦ E to 80◦ W longitude and 30◦ S to 70◦ N latitude over the Pacific
Ocean and 80◦ W to 20◦ W longitude and 30◦ S to 70◦ N latitude to represent the Atlantic Ocean. The
climatology was used based on the period 2002 to 2017. The obtained dataset was standardized before
the analysis.

2.2.6. Sea Level Anomaly

Monthly Sea Level Anomaly (SLA) from NOAA [48] for each month along the US coast and
monthly time series was extracted. The data were extracted from 2002 to 2017. A total of 59 stations
were used based on the available continuous data along the US coast. Each station has more than 30
years of sea level records. The obtained dataset was standardized before the analysis.

2.3. Methods

In this current study, each monthly precipitation (PPT), TWSA, GWSA, SLA value in the HUC-03
region, and monthly SST data of the Pacific and Atlantic Oceans were extracted to investigate the
lag–lead relationship of the SST and precipitation with the other selected variables. TWSA, GWSA,
and SLA will be mentioned as the HUC-03 variables hereafter. A separate analysis using SST and PPT
with HUC-03 variables was carried out to investigate the most influencing variable between SST and
PPT. Moreover, an SVD analysis was also utilized to study the heterogeneous relationship between the
aforementioned variables at a 90% confidence level.

Climate indices based on non-atmospheric parameters, monthly SST, raw monthly mean PPT,
monthly tide gauge data, monthly TWS, and monthly GWS for extended periods from 2002 to 2017
were used to investigate the association between large-scale climate effects and PPT with groundwater
variability in the HUC-03 region. PPT, TWSA, GWSA, and sea-level responses to the SST anomalies
were evaluated using SVD. The heterogeneous correlations were computed in hurricane months using
SVD. Through these spatiotemporal analyses, the land–ocean–atmosphere interaction can be effectively
studied to recognize the oscillation in climate variables. Spatial teleconnection indices were helpful to
investigate the connection among groundwater with PPT, sea level, and SST.



Hydrology 2020, 7, 71 7 of 28

2.3.1. Lead–Lag Relationship

The lag–lead relationship of SST with PPT, TWSA, GWSA, and SLA at each 1◦ × 1◦ grid cell was
calculated over the obtained time series (2002-2017) to evaluate the monthly lag using cross-correlation
analysis taking detrended SST or PPT as a reference signal and the HUC-03 variables grid cells as a
3D spatiotemporal dataset. The correlation values ranged from −1 to +1. The positive and negative
correlation was extracted from a lag–lead correlation. A positive correlation is attained when the SST
increases are teleconnected with increases in PPT (or TWSA, GWSA, and SLA). This can indicate that
the atmosphere is forced by SST [49]. A negative correlation demonstrated that the SST is inversely
teleconnected to the PPT (or TWSA, GWSA, and SLA). The magnitude of the minimum (maximum)
correlation signifies the intensity of the SST response (forcing). The corresponding lag (lead) time
denotes the response of SST (atmosphere) to atmospheric (SST) forcing [50]. The lag (months) and
corresponding correlation to lead/lag time were evaluated in each 1◦ × 1◦ grid cell of each HUC-03
region to determine the number of lag/lead months. The lag/lead months were obtained to further
compute the SVD analysis between the HUC-03 variables and SST/PPT. If a lag of 1 month was obtained,
then the SST values of June were used to obtain the co-variability with the PPT/GWSA/TWSA/SLA
values of July. Similarly, for the lag of two and five months, the June SST was used to obtain the
co-variability with August and November, respectively. Before computing the cross-correlation
analysis, the time series were detrended to remove the autocorrelation in the dataset.

2.3.2. Singular Value Decomposition

SVD is a robust statistical tool to analyze multivariate data that is commonly used to examine
spatiotemporal variability between multiple variables. SVD is also used to evaluate the lagged
relationship of primary variabilities at different spatial and equal temporal scales. It also uses
eigenvectors similar to a PCA, and evaluates a cross-covariance matrix using Equation (4) between
two fields (S and Q) and decomposes the matrix by SVD (Equation (5)) and determines the correlations
at different modes.

A =
S∗QT

N
(4)

Different modes of variation are obtained from the Squared Covariance Fraction (SCF), which is
calculated using Equation (6).

SVDA = USVT (5)

where UTU and VTV are equal to 1 and U and V are standardized matrices and S is a nonnegative
singular value matrix.

SCFi =
C2

i∑r
j=1 C2

i

(6)

where C is the singular value of the ith mode. Further, a linear correlation between two fields in all
grid points is explained by the Normalized Squared Covariance (NSC) that is calculated by using
Equation (7):

NSC =
C2

Ns ∗Ni
(7)

where C2 is the squared singular values sum, Ns is the number of grids, and Ni is the total number of
independent variable stations.

2.3.3. Statistical Approach

SVD was utilized to assess the spatio-temporal relationships between the HUC-03 variables and
Pacific plus Atlantic SST (or PPT). SVD was utilized to decompose the SST (or PPT) and monthly
HUC-03 variables. The significant regions at a 90% confidence level were examined by utilizing the
correlation values and the heterogeneous correlation maps were generated. Monthly SST and HUC-03
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variables were used from 2002 to 2017 for each hurricane month. SVD assumes linearity and is a
domain-specific method.

A matrix of standardized SST anomalies and standardized anomalies of each HUC-03 variable
were developed. Then, a cross-covariance was generated by computing for two spatio-temporal
matrices and SVD was applied to the cross-covariance matrix. Please note that an individual matrix
was created for each hurricane month. The SVD analysis of the cross-covariance matrix resulted in two
orthogonal matrices with singular vectors, referred to as the left and right matrix, and another one
matrix of singular values. The singular value matrix was ordered such that the first mode (i.e., first
singular value) was greater than the second mode, and so on. The modes corresponding to SCF greater
than 10% were considered and retained. The teleconnection relationship between the two fields was
obtained. SCF is a helpful measurement to compare the comparative significance of modes in the
decomposition [31].

The significant spatial relationships between the left singular vector (SST) matrix and right singular
vector (HUC-03 variables) matrix were evaluated by correlating the first mode or column of the left
matrix (right matrix) with a standardized HUC-03 variables (SST) anomalies matrix. This resulted
in the first temporal expansion series on the left and the right series. The left (right) heterogeneous
correlation figures for the first mode that explained the maximum variability were determined by
correlating the SST (HUC-03 variables) values of the left (right) matrix with the first temporal expansion
series of right (left) field. Statistically significant correlation values (i.e. at 90% confidence level) in
the heterogeneous matrices were then mapped. The temporal expansion series could represent a new
index of SST variability that has a physical meaning but is excluded in existing predefined indices.
This may be useful for groundwater forecasting by using high correlation values with the temporal
expansion series.

The capability of SVD to correlate spatio-temporal datasets has already been confirmed and tested
in surface water studies for regional assessment [13,28,29,51]. These studies were able to provide the
estimated climate signals. Bretherton et al. [31] compared four different techniques (PCA, CCA, SVD,
and single-field PCA) and Chitsaz et al. [52] compared SVD with PCA, and both concluded that SVD
was the easiest method to implement and superior to the other methods. It is easy to implement as it
untangles data into independent components that are easy to analyze. In addition, Wallace et al. [51]
concluded that SVD segregates the important modes of variability. In contrast to PCA, SVD can be
applied to non-square matrices, which is its main advantage. It is also an effective tool as it depends on
maximizing the covariance structure of the data and not only on the correlation between two variables.
It can also work well with two different spatiotemporal fields of different dimensions. SVD works well
if the unit of measurement is different and differences in covariance are important.

While SVD is a powerful and well-accepted statistical approach of two spatial-temporal fields,
some limitations do exist [53]. Therefore, caution must be taken while explaining the physical
relationship and it should be substantiated by the literature. It may not give reasonable results for a
strongly non-linear dataset, it is easy to misuse and/or misinterpret, and it has the potential to produce
spurious patterns and correlations. However, according to Newman and Sardeshmukh [53], SVD can
be applied if the first, second, and third mode explains the significant variance of the two fields to
evaluate the strength of the coupled variability.

3. Results

The SVD analysis was utilized to investigate the association of climatic effects on the HUC-03
variables. The section is organized into two sub-sections: (3.1) Lag–Lead Correlation Analysis and (3.2)
Co-Variability and Correlation Analysis using the SVD Technique.

3.1. Lag–Lead Correlation Analysis

The SST response time to PPT, TWSA, GWSA, and SLA was identified in the HUC-03 region.
The SST response time evaluation using 3D spatiotemporal cross-correlation analysis showed lag/lead
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months in both the Pacific and the Atlantic Ocean. The lag/lead correlation analysis was fundamental
for further assessment of the heterogeneous correlation using SVD analysis. The highest spatial average
of the forcing time of SST was found to lead TWSA by 5 months. The SST forcing with the highest
correlation of 0.5 was found to be near the southern part of Florida with the largest lead time of 5
months. The SST forcing was found to have a longer lag correlation in the western Atlantic Ocean and
the northern Gulf of Mexico than in the Pacific Ocean near north of Mexico while investigating with
TWSA, whereas the SST response had a shorter lag correlation in the northern Atlantic Ocean near
west of South America than in the Pacific Ocean near north of Mexico. The highest spatial average was
obtained where the SST led PPT by 2 months. The minimum correlation between SST and PPT was
observed in the west of the Gulf of Mexico. Further, SST showed a strong response on GWSA and
SLA with a lead by 1 month, as observed from the highest spatial average of the grid cells within the
study area, as shown in Figure 2. The maximum correlation shifts southward in GWSA. The minimum
correlation region was observed in the west of the Gulf of Mexico in SLA.
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Figure 2. (a) Lag/lead months in each grid and (b) maximum grid-point correlation of Sea Surface
Temperature (SST) with Groundwater Storage Anomaly (GWSA).

Similarly, the PPT response time to GWSA, TWSA, and SLA was also identified using lag–lead
correlation. PPT lead TWSA by 5 months, whereas a PPT showed a lag of one month with GWSA and
SLA. In addition, cross-correlation analysis was also carried out between GWSA and SLA, which was
found to have a lag of 1 month between them.

3.2. Covariability and Correlation Analysis Using the SVD Technique

3.2.1. TWSA Variability in the Atlantic and the Pacific Ocean

The first mode heterogeneous correlation maps were represented for each hurricane month (June
to November) between SST and TWSA lagged by 5 months. The modes corresponding to SCF greater
than 10% were considered. The first mode of SVD was considered, as it explained the maximum
variability. The maps depicting blue signify a negative correlation (cold phase), while red signifies
a positive correlation (warm phase) above a 90% confidence level (Figures 3–11). The maps also
represent the significant regions with “+” signs for increasing and represent the regions with “-” signs
for decreasing oceanic-atmospheric variabilities. Each significant region was given a number. The
numbers before the “+” and “-” signs (for example, 1(+), 2(-), and 4(+)) represent the first, second, and
fourth correlation group numbers, depicting the SST regions. The first region, 1(+) or 1(-), represents
the highest correlated region, 2 (+) and 2(-) represent the slightly less correlated regions, and so on,
depending on the correlation coefficient. The Squared Covariance Fraction (SCF) in the Pacific Ocean
ranged from 83% in Nov-SST and April-TWSA to 93% in June-SST and Nov-TWSA. The NSC was
found to range from 11% in Sept-SST and Feb-TWSA to 15% in June-SST and Nov-TWSA, as shown in
Table 2.
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Table 2. Squared Covariance Fraction (SCF) and Normalized Squared Covariance (NSC) values corresponding to the SST relationship with Terrestrial Water Storage
Anomaly (TWSA), GWSA, Sea Level Anomaly (SLA), and precipitation (PPT) (in %) of the Pacific and Atlantic Ocean for the HUC-03 region.

Climate
Variability SST–TWSA 1 SST–PPT 2 SST–GWSA 3 SST–SLA 4

5-Lag 2-Lag 1-Lag 1-Lag

TWSA PPT GWSA SLA

SCF (%) NSC (%) SCF (%) NSC (%) SCF (%) NSC (%) SCF (%) NSC (%)

Pacific

June–Nov June–Aug June–July June–July 93 15 63 7 55 8 59 7

July–Dec July–Sept July–Aug July–Aug 92 14 62 6 56 9 40 9

Aug–Jan Aug–Oct Aug–Sept Aug–Sept 89 11 63 4 55 9 58 10

Sept–Feb Sept–Nov Sept–Oct Sept–Oct 85 11 76 5 55 11 76 12

Oct–March Oct–Dec Oct–Nov Oct–Nov 87 11 93 11 65 11 67 9

Nov–April Nov–Jan Nov–Dec Nov–Dec 83 11 45 5 59 11 72 11

Atlantic

June–Nov June–Aug June–July June–July 92 12 70 6 40 8 50 7

July–Dec July–Sept July–Aug July–Aug 94 13 62 5 52 8 51 9

Aug–Jan Aug–Oct Aug–Sept Aug–Sept 88 9 70 6 57 8 57 9

Sept–Feb Sept–Nov Sept–Oct Sept–Oct 81 8 89 7 59 8 70 10

Oct–March Oct–Dec Oct–Nov Oct–Nov 90 12 89 10 66 10 60 9

Nov–April Nov–Jan Nov–Dec Nov–Dec 81 8 54 6 60 9 63 10
1 June–Nov refers to the SST of June with a lag of 5 months in TWSA (i.e., Nov month) and so on. 2 June–Aug refers to the SST of June with a lag of 2 months in PPT (i.e., Aug month) and
so on. 3 June–July refers to the SST of June with a lag of 1 month in GWSA (i.e., July month) and so on. 4 June–July refers to the SST of June with a lag of 1 month in SLA (i.e., July month)
and so on.
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Figure 4. Heterogeneous correlation patterns between (i) Atlantic Ocean SST and (ii) gridded TWSA
of the HUC-03 watershed region. (a) June-SST Nov-TWSA; (b) July-SST Dec-TWSA; (c) Aug-SST
Jan-TWSA; (d) Sept-SST Feb-TWSA; (e) Oct-SST March-TWSA; and (f) Nov-SST April-TWSA.

A distinct ENSO pattern in the Pacific Ocean was observed from June to July SST with a magnitude
of correlation values ranging from −0.8 to +0.8, but the ENSO-like pattern reduced after August SST
with a magnitude of correlation values ranging from −0.7 to +0.7 in different months. Thus, the ENSO
teleconnection pattern was observed and revealed to have a strong correlation with TWSA in the
Pacific region, as shown in Figure 3. Similar to the Pacific region, a strong positive SST region was
found in the Atlantic Region from June and July in the northern Atlantic Region and northern South
America. These regions are significant and positively correlated with TWSA (Figure 4).

From Aug to Nov cooling of SST was observed in almost all the SST regions while one warm SST
region was observed in the Pacific Ocean. The climate variable teleconnection resulted in a decrease in
TWSA in the HUC-03 region as shown in Figure 4. The SCF was found ranging from 81% in Sept-SST
and Feb-TWSA to 94% in July-SST and Dec-TWSA in the Atlantic region. The NSC was found to range
from 8% in Sept-SST and Feb-TWSA and Nov-SST and April-TWSA to 13% in July-SST and Dec-TWSA,
as shown in Table 2. The Atlantic climatic variables indicated a negative and positive correlation with
the HUC-03 region TWSA.
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3.2.2. Precipitation Variability in the Atlantic and the Pacific Ocean

The Pacific warming SST regions were detected in all the months from June to Nov with high
spatial coverage in Oct and July near tropical zone whereas one SST region was detected in the northern
Atlantic region. Furthermore, in Oct, the west coast of the United States, the southern part of Mexico
in the Pacific region and area in the Gulf of Mexico were observed to have a significant and positive
correlation with PPT. The SCF from the SVD analysis among SST and PPT were ranging from 45%
in Nov-SST and Jan-PPT to 93% in Oct-SST and Dec-PPT explaining the first mode of variability as
shown in Table 2. The correlation values obtained for a lag of 2 months SST on PPT in the HUC-03
region were from −0.7 to +0.7. The climate variable response that influence PPT had a limited region
in Nov, Sept, and Aug.

The decrease in the SST over the Pacific region was observed in Aug-SST and Oct-PPT over the
HUC-03 region whereas in May to July-SST and Sept to Oct-SST at a lag of 2 months on PPT (i.e., July
to Sept and Nov-Dec PPT respectively). The overall teleconnection showed mixed signals in different
months in the HUC-03 region as shown in Figure 5. Comparing the SCF and NSC in the Atlantic
Ocean, a higher value than the Pacific was observed. The SST variance of the first mode of SVD ranged
from 54% to 89% PPT variability as shown in Table 2. A positive and significant correlation in two
regions during Oct-SST and Dec-PPT across northern Atlantic and in the tropical region as shown in
Figure 6. Moreover, PPT with a negative and significant correlation in the western Tropical region
in July-SST and Sept-PPT. In general, it represents warming in June and Oct-SST with a lag of two
months (Aug and Dec, respectively) in PPT signifying increase or decrease in PPT.
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mode characterizing the El Niño–SST pattern in the eastern equatorial Pacific and a negative 
correlation in only a few pockets, as shown in Figure 9i. A strong association of SST has been 
characterized by sea level stations in the East Coast, as shown in Figure 10i. It indicates an increase 
in sea level with an increase in SST and vice-versa. During the warm phase, the temperature rises that 
warms the ocean water lead to an increase in the sea level. Figure 9i shows the first mode of SVD of 
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Figure 5. Heterogeneous correlation patterns between (i) Pacific Ocean SST and (ii) gridded PPT of the
HUC-03 watershed region. (a) June-SST Aug-PPT; (b) July-SST Sept-PPT; (c) Aug-SST Oct-PPT; (d)
Sept-SST Nov-PPT; (e) Oct-SST Dec-PPT; and (f) Nov-SST Jan-PPT.



Hydrology 2020, 7, 71 14 of 28
 Hydrology 2020, 6, x FOR PEER REVIEW 15 of 28 

 

 
Figure 6. Heterogeneous correlation plots patterns between (i) Atlantic Ocean SST and (ii) PPT of the 
HUC-03 watershed region. (a) June-SST Aug-PPT; (b) July-SST Sept-PPT; (c) Aug-SST Oct-PPT; (d) 
Sept-SST Nov-PPT; (e) Oct-SST Dec-PPT; and (f) Nov-SST Jan-PPT. 

Figure 6. Heterogeneous correlation plots patterns between (i) Atlantic Ocean SST and (ii) PPT of the
HUC-03 watershed region. (a) June-SST Aug-PPT; (b) July-SST Sept-PPT; (c) Aug-SST Oct-PPT; (d)
Sept-SST Nov-PPT; (e) Oct-SST Dec-PPT; and (f) Nov-SST Jan-PPT.

3.2.3. Groundwater Variability in the Atlantic and the Pacific Ocean

From Table 2, it can be noted that the range of SCF values are quite lower than the other variables,
from 55% in June-SST and July-GWSA to 65% in Oct-SST and Nov-GWSA. A lag of 1-month SST,
i.e., June, Sept, and Nov, with GWSA, i.e., July, Oct, and Dec: a large spatial extent extending from
east to west equatorial Pacific in the central area was observed. A significant negative correlation
in the respective regions was identified with a maximum of -0.8 correlation values (Figure 7). The
heterogeneous correlation maps showed the decrease in SST is linked with a decrease in GWS, mainly
in Florida. From the figure, most parts of Florida were negatively correlated with the SST regions.
In other words, the cooling of SST influenced lower GWS in the southeast HUC-03 region. The west
coast of the United States showed a teleconnection pattern with GWSA variability. In the Atlantic
Region, Northeast US, and Northeast South America showed a significant and high correlation in
July-SST and August-GWSA. Similar to the Pacific region, the SCF range was less, i.e., from 40% to
66% explained variability in GWSA by SST in the Atlantic region. Furthermore, in June-SST and
July-GWSA, limited SST regions were only observed and may have only little influence. A strong
positive correlation pattern in July-SST and Aug-GWSA was observed to increase GWSA due to an
increase in SST whereas in other months a decrease in GWSA was observed due to a decrease in SST as
illustrated in Figure 8.
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Figure 7. Heterogeneous correlation plots of the patterns between (i) Pacific Ocean SST and (ii) GWSA of the HUC-03 watershed region. (a) June-SST July-GWSA; (b)
July-SST Aug-GWSA; (c) Aug-SST Sept-GWSA; (d) Sept-SST Oct-GWSA; (e) Oct-SST Nov-GWSA; and (f) Nov-SST Dec-GWSA.
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July whereas other period showed negative correlation values. The SCF in July-SST and Aug-GWSA 
was 56% in the Pacific region, which is greater than Aug-PPT and July-GWSA (52%). The NSC is also 
greater with SST (9%) than PPT (6%). However, in July–June (PPT–GWSA), the NSC is higher with 
PPT (12%), as shown in Table 3. In all other months, SST has a higher influence on GWSA than that 
of PPT. The SCF value ranged from 45% June-PPT and May-SLA to 89% in Nov-PPT, and SLA-Oct, 
respectively. The NSC value ranged from 5% in three months to 9% in Sept-PPT and Aug-SLA. 

Figure 8. Heterogeneous correlation plots of the patterns between (i) Atlantic Ocean SST and (ii) GWSA
of the HUC-03 watershed region. (a) June-SST July-GWSA; (b) July-SST Aug-GWSA; (c) Aug-SST
Sept-GWSA; (d) Sept-SST Oct-GWSA; (e) Oct-SST Nov-GWSA; and (f) Nov-SST Dec-GWSA.

3.2.4. Sea Level Variability in the Atlantic and the Pacific Ocean

In the Pacific region, a strong positive correlation is observed, extending from the Eastern Pacific
to the Western Pacific and having major spatial coverage in the tropical regions. Throughout the study
period, except Nov- and July-SST and Dec- and Aug-SLA, all other months and had a strong warm SST,
depicting the warm ENSO phase on the west coast of the United States. A significant strong correlation
value of more than +0.8 was identified in the SST regions. Small pockets of positive correlations were
observed in July-SST and Aug-SLA, whereas strong negative correlations extending from west to east
were identified in Nov-SST and Dec-SLA.

From the SVD analysis, a range from 40% to 76% of the variability was elucidated by the first
mode characterizing the El Niño–SST pattern in the eastern equatorial Pacific and a negative correlation
in only a few pockets, as shown in Figure 9i. A strong association of SST has been characterized by
sea level stations in the East Coast, as shown in Figure 10i. It indicates an increase in sea level with
an increase in SST and vice-versa. During the warm phase, the temperature rises that warms the
ocean water lead to an increase in the sea level. Figure 9i shows the first mode of SVD of June-Nov
SST and sea level anomaly of July-Dec in the Atlantic region. Significant strong correlations were
evident in the northern part of South America and the northeast US, except in Oct–Nov, Nov–Dec, and
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Aug–Sept. Unlike the Pacific, the SCF ranges from 50% to 70%, suggesting sea levels are less closely
linked to Atlantic SST. As observed, two to three regions are well correlated with summer months. The
cooling SST phase is observed, exhibiting a close relationship to sea level stations over the US coast
(Figure 10ii). Areas in this region have had a correlation coefficient greater than ±0.65. Hydrology 2020, 6, x FOR PEER REVIEW 18 of 28 
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Figure 9. Heterogeneous correlation plots of the patterns between (i) Pacific and (ii) Atlantic Ocean
SST with the sea level anomaly along the US coast. (a) June-SST July-SLA; (b) July-SST Aug-SLA; (c)
Aug-SST Sept-SLA; (d) Sept-SST Oct-SLA; (e) Oct-SST Nov-SLA; and (f) Nov-SST Dec-SLA.



Hydrology 2020, 7, 71 18 of 28

 Hydrology 2020, 6, x FOR PEER REVIEW 19 of 28 
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July-SLA; (b) July-SST Aug-SLA; (c) Aug-SST Sept-SLA; (d) Sept-SST Oct-SLA; (e) Oct-SST Nov-SLA; 
(f) Nov-SST Dec-SLA. 

Figure 10. SVD plots showing station significance of the (i) Pacific Ocean sea level and (ii) Atlantic
Ocean sea level along the US coast. The significant stations (>90%) are indicated with red (positive
upward) and blue (negative downward) shading. The black dot represents no change. (a) June-SST
July-SLA; (b) July-SST Aug-SLA; (c) Aug-SST Sept-SLA; (d) Sept-SST Oct-SLA; (e) Oct-SST Nov-SLA;
(f) Nov-SST Dec-SLA.
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Figure 11. (i) Heterogeneous correlation plots showing regions associated with GWS in the 
contiguous United States and (ii) station significance of the tide gage along the US coast. The 
significant stations (>90%) are indicated with red (positive upward) and blue (negative downward) 
shading. The black dot represents no change. (a) June-GWSA July-SLA; (b) July-GWSA Aug-SLA; (c) 
Aug-GWSA Sept-SLA; (d) Sept-GWSA Oct-SLA; (e) Oct-GWSA Nov-SLA; (f) Nov-GWSA Dec-SLA. 

3.2.6. Relationship between Sea Level and Groundwater Storage within the Contiguous United 
States 

Figure 11. (i) Heterogeneous correlation plots showing regions associated with GWS in the contiguous
United States and (ii) station significance of the tide gage along the US coast. The significant stations
(>90%) are indicated with red (positive upward) and blue (negative downward) shading. The black dot
represents no change. (a) June-GWSA July-SLA; (b) July-GWSA Aug-SLA; (c) Aug-GWSA Sept-SLA;
(d) Sept-GWSA Oct-SLA; (e) Oct-GWSA Nov-SLA; (f) Nov-GWSA Dec-SLA.

3.2.5. Precipitation Relationship with Terrestrial Water and Groundwater Storage

The SVD analysis was carried out to evaluate the effect of PPT on terrestrial water and groundwater
variability. The core area of the study area, i.e., Florida, experiences monsoon season from May to
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October. A significant positive and negative correlation between SST and TWSA was identified
throughout the study period. However, the gridded TWSA showed no significant change due to PPT.
This may be due to the higher influence of SST than PPT. The SCF of those months was 85% and 95%,
explaining the maximum variability of the first mode, as shown in Table 3. The range resulted in a
minimum of 80% in July-PPT and Dec-TWSA and a maximum of 95% in Sept-PPT and Feb-TWSA.
A major component that governs GWS is PPT, the correlation values are positive in Aug-July whereas
other period showed negative correlation values. The SCF in July-SST and Aug-GWSA was 56% in the
Pacific region, which is greater than Aug-PPT and July-GWSA (52%). The NSC is also greater with SST
(9%) than PPT (6%). However, in July–June (PPT–GWSA), the NSC is higher with PPT (12%), as shown
in Table 3. In all other months, SST has a higher influence on GWSA than that of PPT. The SCF value
ranged from 45% June-PPT and May-SLA to 89% in Nov-PPT, and SLA-Oct, respectively. The NSC
value ranged from 5% in three months to 9% in Sept-PPT and Aug-SLA.

Table 3. SCF and NSC values corresponding to the PPT relationship with TWSA, GWSA, and SLA
(in %) for the HUC-03 region.

PPT–TWSA 1 PPT–GWSA 2 PPT–SLA 3
5-Lag 1-Lead 1-Lead

TWSA GWSA SLA

SCF (%) NSC (%) SCF (%) NSC (%) SCF (%) NSC (%)

June–Nov June–May June–May 85 2 60 5 45 5

July–Dec July–June July–June 80 8 77 12 57 6

Aug–Jan Aug–July Aug–July 92 5 52 6 73 5

Sept–Feb Sept–Aug Sept–Aug 95 8 56 5 70 9

Oct–March Oct–Sept Oct–Sept 94 6 82 7 75 5

Nov–April Nov–Oct Nov–Oct 88 5 90 7 89 7
1 June–Nov refers to the PPT of June with a lag of 5 months in TWSA (i.e., Nov month) and so on. 2 June–May refers
to the PPT of June with a lead of 1 month in GWSA (i.e., May month) and so on. 3 June–May refers to the PPT of
June with a lead of 1 month in SLA (i.e., May month) and so on.

3.2.6. Relationship between Sea Level and Groundwater Storage within the Contiguous United States

The heterogeneous relationship between the sea level and GWS was also evaluated using the SVD
technique. The highest SCF was found to be 79% in Nov–Dec and NSC 12% whereas the maximum
NSC resulted in 15% in Sept–Oct. The variability of GWS resulted in SCF values of 71%, 67%, 72%, 76%,
60%, and 79% for the first mode for the result of June–July, July–Aug, Aug–Sept, Sept–Oct, Oct–Nov,
and Nov–Dec, as shown in Table 4. Similarly, NSC values of 11%, 14%, 11%, 15%, 12%, and 12%
were obtained. Figure 11 illustrates the spatial and temporal relationship between sea level record
and GWS of the contiguous United States. It could be revealed that the East Coast GWS is positively
correlated with SLA at the stations in all hurricane months. Most of the stations on the East Coast
show a positive correlation with the GWS on the East Coast whereas a negative correlation with the
area near California, Mexico, Arizona, and New Mexico. One of the stations in the tide gauge showed
a negative correlation in all months whereas few SLA stations showed a non-significant relationship
with the GWSA (represented by black dots in Figure 11). In August and September, the tide gauge
showed that the increase in sea level record decreases GWS in the western United States. However,
the East Coast sea level rise increases GWS. This could be due to other influencing factors, such as
climate-induced variability, for instance, ENSO in the western US results in dry conditions, or also due
to anthropogenic changes in those areas, such as groundwater pumping and irrigation. The Midwest
did not show any significant relationship between sea level and groundwater in a few months.
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Table 4. SCF and NSC values corresponding to the GWSA and SLA relationship (in %) for the
HUC-03 region.

GWSA–SLA 1 1-Lag

SCF (%) NSC (%)

June–July 71 11
July–Aug 67 14
Aug–Sept 72 11
Sept–Oct 76 15
Oct–Nov 60 12
Nov–Dec 79 12

1 June–July refers to the GWSA of June with a lag of 1 month in SLA (i.e., July month) and so on.

4. Discussion

Physical climate variability was determined by using datasets such as TWS, sea level, GWS, and
PPT. Climate variability has implications on the sea level, groundwater variability, and terrestrial water
availability. In Figure 3, it was found that SST variabilities had a strong association with ENSO indices.
However, it cannot capture PDO and AMO signals as GRACE has only 15 years of data. During the
summer months, TWSA had high SCF and NSC values with SST (Table 2). From the SCF and NSC, it is
noteworthy to conclude that SST had a higher influence than PPT, and close association with GWSA
also influences sea level variability. Furthermore, a higher correlation was found between TWSA and
SST, which may be attributed to the greater influence of SST than PPT in TWSA variability (Tables 2
and 3). This confirms the discussion by Reager et al. [24] that the variation in land water storage for 12
years from 2002 to 2014 is attributed to climate-driven processes.

In addition, Engström and Waylen [54] found strong AMO and ENSO conditions that increase
water shortage in the southern U.S. Hanson [55] investigated the relationship among climate variability,
groundwater well levels, streamflow, tree-ring indices, and PPT in the southwestern region of the
United States and found that ENSO and PDO-like components exhibited cyclic hydrologic variability.
In addition, the Empirical Orthogonal Functions, computed from sea level reconstruction, showed a
pattern associated with PDO. However, the study by Hamlington et al. [56] corroborated its association
with common forcing rather than PDO and variability dynamics SVD analysis in this study also
confirms the teleconnection of the Atlantic and Pacific Region (perhaps like ENSO and PDO) with
GWS, sea level, and TWS, explaining the plausible increase in groundwater storage within HUC-03.

Sadeghi et al. [57] found a decrease in streamflow since 2000 due to five (2000, 2007, 2008, 2010,
and 2011) La Niña events. A strong El Niño SST pattern with a large positive correlation extending
from eastern to western Pacific was observed. Additionally, the warm (cold) ENSO phase showed a
direct relationship with positive (negative) TWSA in the HUC-03 region with a lag of five months,
as shown in Figure 3, and is also similar to what was observed by Linage et al. [58] for the Amazon
Basin. The consistent warming followed by the cooling of SST in the ENSO region can be one of the
most important phenomena that drive terrestrial water variability. During the warm phase, high
temperature leads to higher evaporation that might cause a decrease in terrestrial water within the
HUC-03 region. In Figure 3, warm SST regions were observed in June–July SST and Nov–Dec TWSA,
whereas cold SST regions were observed in Aug–Nov SST and Jan–April TWSA within the HUC-03
region. This result supports that a warming Pacific SST is linked to decreasing inland water in the
Pacific region.

In this study, TWS from GRACE was used to address the association of TWS with climatic and
sea level variability. TWS variability has a substantial effect on sea level variability, as found by
Hamlington et al. [56]. PDO further drives TWS variability that is interlinked with sea level changes.
Monitoring the relationships among these variables is important as it has a significant role in the
water cycle. The studies related to TWS, PPT, and sea level have been done in the past, but this
study incorporates a less focused research domain, the oceanic and atmospheric association with
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groundwater. A close association between the detrended Global Mean Sea Level (GMSL) record from
altimetry data and two ENSO events, El Niño and La Niña, is observed [59]. Furthermore, short-term
variation in GMSL was associated with global land-water storage that declines throughout the El Niño
event with the rise in GMSL, especially in tropical regions [60]. This can be attributed to high PPT
in oceans and less PPT in the land throughout the El Niño event and is also supported by Gu and
Adler [61]. In addition, La Niña leads to reduced GMSL [62].

Studies suggest that changes in wind forcing are the primary driver for decadal Pacific sea
level variability [63] as well as Rossby waves leading to variations near the coastal area (https:
//oceanservice.noaa.gov/facts/rossby-wave.html). Warming of the ocean increases easterly trade winds,
enhancing PPT and sea level rise. Winds are associated with climate modes, such as ENSO, PDO, and
AMO. It is essential to account for the ocean circulation to evaluate the spatial relationship with sea
level changes. Out of this study, a good correlation between sea level and SST, plus a close association
with ENSO and PDO, were revealed. Sea level variability is majorly driven by the temperature above
the ocean and atmospheric circulation [64].

Han et al. [65] emphasized understanding natural variability impacts on sea level variation so this
study was also focused on identifying regions correlated with SST regions. Reager et al. [24] found
a net sea level sink during 2002–2014 that could directly link with the increase in GWS or TWSA.
This could further be supported by our study that as GWS increases, the sea level also increases in
the East Coast; however, the subsurface catchment properties can act as a particularly strong filter
on climate variability [66]. The effects of catchment size on climate–hydrology relationships, the
degree of damping of climate signals related to hydrodynamic properties of the aquifer, as well as
the influence of human stresses must be taken into consideration. Therefore, climate variability plays
an influential role in GWS variability. GWS is further influenced by the changes in PPT driven by
climate variability. In the western United States, the groundwater showed cold regions (as shown
in Figure 11i); this can be due to ENSO-induced variability in the western states resulting in dry
conditions during La Nina events. The IPCC has included thermal expansion and ice melting as a
contributing factor of sea level change but has excluded the effects of groundwater variability on the
sea level budget [67]. Furthermore, studies also found that the quantity of current GWS is comparable
to a sea level differential of ~320 m to 330 ± 41 m. The change is significant if a certain amount
of water contributes to sea level change [27,68]. In addition, Wada et al. [69] also found that the
groundwater depletion contributes to sea level rise. Furthermore, Sahagian et al. [70] found that the
groundwater mining in Arabian and African aquifers can have implications for sea level rise in the 21st
century. In this study, higher NSC and SCF values between GWSA and SLA were observed to have
higher correlation values. The correlation values also substantiate that the variability of the first mode
primarily contributes to a close association between sea level and groundwater. From this, we can
conclude that groundwater variability has a substantial effect on sea level variability. Associating the
groundwater NSC during the study period with SST and PPT, it was evident that larger NSC values of
SST indicate the influential role of SST on groundwater variability rather than PPT within the HUC-03
region. The SCF values of the first mode of June–Nov SST clearly shows that PPT and groundwater
is the main regulator of hydroclimatic co-variability in the basin, especially in October. Almanaseer
and Sankarasubramanian [71] found that the July to September groundwater level is not statistically
significant with Nino 4.5 in the Southeast United States. Furthermore, they found groundwater and
streamflow were found to be the dominant factors driving hydroclimatic variability in winter.

The current study examined the response of GWS driven by PPT and SST anomalies during
hurricane months over the HUC-03 region. The hydroclimatic co-variability during the fall season
(Sept–Nov) was found to be stronger than the summer season (June–Aug), as indicated by the first
mode of high SCF values in Atlantic SST–GWSA (Table 2). During the fall season, El Niño events are at
their peak, and were found to be an important oscillation affecting hydroclimatic variability. The less
variability during summer primarily may be because of high SSTs. A high SST drives jet streams and
creates a pressure difference that can change the PPT pattern. In addition, the southeast region is linked
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with the East Asian Jet stream that leads to increased PPT in the western US [28]. Furthermore, the PPT
pattern was found to resemble El Niño events and the study by Hamlington et al. [56] corroborated
ocean–atmosphere interactions are related to decadal persistence. Moreover, it emphasized that
increased PPT is associated with ENSO, forming a movement of the water cycle from land to ocean.
In this study, during La Niña (El Niño), the PPT value tends to increase (decrease). The positive
relationship between PPT and TWSA leads to a decrease in terrestrial storage due to a decrease in PPT.
The NSC value of PPT–TWSA is low when compared with SST–TWSA, suggesting SST has higher
influence in the October and November months. In the Southeastern United States, climate variability
tends to have a higher influence on TWSA than PPT from previous studies and is also evident in
the current research. The weak PPT season may have a strong influence on climatic effects, further
influencing the groundwater variability. The GWSA–PPT relationship was found to be non-significant
at a 90% significance level in all the study period. This could be inferred to have a non-linear relationship
between them. Non-linearity may prevail uncertainties in climate-related forecast studies. However,
SVD is a linear method. Non-linearity may lead to altering short-term and long-term variability, which
needs to be studied in the future. In addition, this study does not include anthropogenic effects such
as groundwater pumping, withdrawal, irrigation, and cropping patterns. These could also affect
sea level. However, a study by Thomas and Famiglietti [72] showed that groundwater use does not
have much influence on HUC-03 groundwater storage. A further detailed study could be done for
additional understanding of groundwater use and the effects of climate variability. The long-term
and short-term variabilities in streamflow, precipitation, and temperature have been done but not yet
studied for groundwater. From this, we can conclude that SST has a large influence on the GWSA in the
HUC-03 region. Moreover, during La Niña (El Niño), the GWS value tends to increase (decrease) and
the negative relationship between PPT and GWSA leads to decreased GWS due to a decrease in PPT.
However, in the HUC-03 region, the SST is dominant in June, May, and October. The spatiotemporal
correlation maps showed positive and negative values in all the study periods.

Future work will require extended work on longer GWS time series data after it becomes available
in the future, which can give a better vision on the effect of the sea level variability record. This will
provide an additional understanding of the role of high- and low-frequency teleconnections. The
outcome of this study can further be utilized to predict the groundwater using climate forecasts over
the study region.

5. Conclusions

The current study focused on the contribution of climate to influence groundwater variability
within the HUC-03 utilizing the SVD technique. The analysis was based on monthly PPT and GWS data
to comprehend groundwater dynamics driven by PPT and climate processes. The monthly gridded
terrestrial water storage obtained from GRACE was correlated with the preceding 5 months of PPT
and SST. The highest spatial average of the SST forcing was found to lead PPT by 2 months and SST
showed a strong response on GWSA with a lead by 1 month.

The ENSO and PDO are associated with the variability in the Pacific and the Atlantic Ocean, and
through the use of correlation and temporal analyses of the first mode of SVD, their signals were
typically reflected in GWS, TWS, PPT, and sea level within the HUC-03 region. However, only a
few PDO patterns were recognized in the groundwater of the HUC-03 region. The available GRACE
dataset was only approximately 1.5 decades so the SST regions, including PDO and AMO, were
not well-captured in this study. The SVD analysis noticeably shows that climate variability is the
leading variable that influences the hydroclimatic variables in the HUC-03 region. Moreover, regions
with high NSC, indicating TWS, GWS, and sea level, are the primary drivers of the hydroclimatic
processes. In addition, the SCF during the summer season is lower than the fall season, signifying high
temperature decreases the recharge. From this study, the spatial–temporal relationship between sea
level and the response of GWS can be apprehended. The responses differ according to location, where
the Southeast Coast had groundwater changes with sea level change.
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The main conclusions drawn in this article are as follows.

1. The precipitation was found to have less influence on groundwater variability than SST.
2. The groundwater variability was found to have a significant relationship with the Pacific and

Atlantic Ocean variability.
3. The GWS in the east, south, and northwest coast of the United States were found to have a

positive relationship with sea level variability whereas a negative relationships between GWS
and SLA were observed in the western and southwestern United States, near California, Mexico,
Arizona, and New Mexico.

Prominent relationships between SST and groundwater may not be linear as assumed in the
current study. Moreover, the lagged relationship showed the potential of predicting groundwater prior
to the HUC-03 region. By and large, the key contributions of the current study are:

(1) Comprehensive analysis of the lag and the lead relationship between SST, PPT with groundwater,
and sea level anomaly.

(2) Evaluating the effect of climatic variability on groundwater and sea level.
(3) Identification of the influencing variable that drives sea level and groundwater variability.
(4) Categorizing SST regions that drive the groundwater and sea level in different parts of the

study region.
(5) Evaluating the robustness of SVD to assess the relationship between climate variability

and groundwater.

In the current study, the hydroclimatic co-variability identification helped to infer the climate
variability implications on water resources. Although new regions were obtained, climate
change-induced hydrological cycle complexities may have some uncertainties. A similar study
can also be done in other HUC regions. Furthermore, the teleconnected regions could be utilized
for forecasting. Future work may use a longer time period as it becomes available for wider insight.
In addition, groundwater forecasting model development could also be a potential future research
area in HUC regions.
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