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Abstract: Green stormwater infrastructure (GSI), a nature-inspired, engineered stormwater man-
agement approach, has been increasingly implemented and studied especially over the last two
decades. Though recent studies have elucidated the social benefits of GSI implementation in addition
to its environmental and economic benefits, the social factors that influence its implementation
remain under-explored thus, there remains a need to understand social barriers on decisions for
GSI. This review draws interdisciplinary research attention to the connections between such social
barriers and the potentially underlying cognitive biases that can influence rational decision making.
Subsequently, this study reviewed the agent-based modeling (ABM) approach in decision support
for promoting innovative strategies in water management for long-term resilience at an individual
level. It is suggested that a collaborative and simultaneous effort in governance transitioning, public
engagement, and adequate considerations of demographic constraints are crucial to successful GSI
acceptance and implementation in the US.

Keywords: stormwater management; social factors; green stormwater infrastructure

1. Introduction

Urbanization can affect the hydrologic functions of urban watersheds and precipi-
tation patterns [1–5]. The consequential increased use of impervious surfaces results in
substantial increments of stormwater runoff volume and peak flow [6]. Thus, the tran-
sition from the conventional approach into a more sustainable stormwater management
paradigm which includes green stormwater infrastructure (GSI), is indispensable to reduc-
ing substantial environmental, economic, and social damage [7–9]. Hence, there is also a
need to understand the hindrances and limitations in GSI implementation.

GSI offers a promising solution to stormwater management by mimicking natural
hydrological processes to reduce localized flooding events and water quality improvement
through decentralized natural or engineered processes to treat stormwater runoff at its
source [10]. In the US (United States), awareness of GSI has slowly increased over the
past two decades. Its historical progress in stormwater management and background
knowledge is documented in several in-depth publications [11–14]. Research teams across
nations have developed various GSI practices and in addition, retrofits and hybrid measures
on different spatial scales (such as watershed scale and site scale, etc.) with diverse primary
purposes have been developed [15–20]. The details on these practices are well documented
in the literature [21–28].

Numerous studies have evaluated the performance of GSI, particularly in economic
and technical aspects [14,29–32]. GSI provides extra benefits to the community, such
as raising property values, enriching life quality, and providing adaptable climate re-
silience [33–35]. Urban stormwater management has advanced gradually over the last
two decades, thus various terminologies are used to define new principles and practices,
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where the concepts behind them often overlap [14,36]. Using these different terms may
reduce effective communication in certain circumstances, such as when documenting all the
alternative stormwater practices used in the US to assess their performance in general [36].
To avoid confusion, the term GSI was used throughout this work in referring to all types of
multi-purpose structural stormwater management practices that involve natural processes
for runoff volume and water quality control.

Despite the progress, there are limited study efforts on non-technical factors, such
as public perceptions and knowledge, that could explain the slow advancement in the
wide adaptation of GSI to the desired level for stormwater management and sustainability
capacity building [37]. The contradiction between the low implementation rate of GSI
in major regions of the US and the actual demand to address climate change impacts
suggests that certain factors are hindering the relevant decision-making processes [38,39].
Furthermore, a study discovered the mismatch in the percentage of their survey partici-
pants that expressed an intention to support GSI and the number of those who actually
adopted GSI [40]. This result is in agreement with the findings in an exhaustive review [41].
Irrational decision-making behaviors in energy-related decisions have been interpreted
through the cognitive bias perspective [42,43], where cognitive biases can be defined as a
belief that hampers one’s ability to make rational decisions given the facts and evidence [44].
It has been supported by various studies that cognitive biases are influential in decision
making and planning [44]. Yet, little attention has been given to the potential influence
of cognitive biases in GSI implementation, despite numerous studies on perceptions of
various GSI stakeholder groups [45–47]. This study aims to bridge this knowledge gap.

Historically, quantitative decision support tools have been developed with the main
aim to maximize GSI performance to control runoff and water pollution and to be cost-
effective [48–52]. On the other hand, despite the extensive attempts made to expand the
assessment work to include the social aspect of decision support [17,48,53–64], they lack a
deeper understanding of the public perceptions and associated cognitive bias perspective
to resolve the implementation dilemma from a bottom-up approach [65] as examined in
other environmental issues [43,44]. This shortcoming can affect the expected outcomes en-
visioned by major decision-makers [42,66]. This study focuses on the barriers that could be
linked to biased perceptions due to social factors in GSI development and implementation.

This work was conducted to examine the relevant social factors through the lens
of cognitive biases, which may lead to implementation barriers during GSI adoption
processes. The scope of social factors can vary significantly as they are commonly assessed
in combination with factors from other dimensions, such as socio-ecological, social-cultural,
socio-economic, and socio-technical factors [10,67–70]. We use a concept adapted from
Gifford and Nilsson [71] to define social factors as the internal differences among people
and the contextual factors that define them in this study. This study aims to understand
the potential connections of cognitive biases with these barriers, and to recommend an
approach to analyze and address the associated problems. Studies have been conducted
to analyze cognitive biases with agent-based modeling (ABM) in various contexts [72–74].
However, no study has done a similar analysis in the context of GSI implementation. ABM
is a methodology that can incorporate the autonomy, heterogeneity, and adaptability of
individuals in a social system to study the resulting global patterns through a bottom-up
approach [75,76]. It is also an approach that can carry exploratory simulations for a deeper
understanding of the underlying adaptive behaviors and interactions that could lead to
the emergence of phenomena that was previously overlooked [40]. However, the models
developed solely based on social and physical science are usually fragmented in their fields,
rely on qualitative analysis, or are difficult to incorporate into quantitative models [77].
This work was conducted to answer the following questions:

1. What social factors have been identified as barriers to GSI implementation?
2. How do these social factors connect to cognitive biases?
3. How can ABM accommodate these cognitive biases for better quantitative decision

support?
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To address these research questions, we reviewed the literature on GSI implementation
barriers that arise from social aspects and on the connections between cognitive bias
with these barriers. Subsequently, we reviewed the literature to show and assess the
applicability of ABM in addressing the issue of social factors’ hindrances to GSI adoption
and implementation.

2. Materials and Methods

A literature review was conducted on two main topics in this study using a combi-
nation of platforms, including literature search engine Web of Science (WoS) and relevant
referenced articles in the papers collected through the means mentioned above. Firstly,
studies that were conducted to understand the restraints to wider/efficient/effective GSI
adoption were examined. Reported barriers to GSI implementation that may link to so-
cial factors in the literature were identified using the search terms: ‘social’, ‘barrier* OR
challenge* OR difficult*’, ‘stormwater OR storm water’, and ‘infrastructure’ as the primary
screening criteria. Only peer-reviewed papers written in English published between 1900
to 2020 were considered. Seven records were first excluded prior to the screening due to
lack of access to the full text. Four book chapters and 20 articles that were not directly
relevant to the social barriers in GSI were eliminated. Finally, because the social context
that could contribute to barriers that are dependent on local governmental regulations
and governance practices [48,64,78] and socio-ecological context [64,79], the records that
did not explicitly study the social barriers in the US were excluded from the final results.
As a result, the search within the scope of this study yielded 34 papers in total (Figure 1).
The final results are further divided into two groups, where one (20) is the collection of
empirical-based studies that examined the barriers, and another (14) is the collection of
studies that developed qualitative frameworks to incorporate social factors to reduce such
barriers as decision support tools (the works focused solely on qualitative post-construction
performance evaluations were excluded). Note that analytical simulation-based works
found through this search were rearranged to the second part of the review. These barriers
were reviewed through the concepts of cognitive biases proposed by Haselton, et al. [80]:
Biases resulted from heuristics, artifacts, and error management.

In their article, Bukszar Jr [81] provided strong evidence that failing to address cog-
nitive biases among decision-makers can cause strategic heuristics and biases, thus ham-
pering the strategy’s adaptability. They argued for the need for a higher capability to
accommodate such cognitive biases for greater strategy success. Thus, the second part of
this review was conducted using the same search platforms of records written in English
and published between 1900 and 2020 to evaluate the potential applicability of ABM in
addressing the issues studied in the first review topic. Due to the limited studies conducted
within stormwater management, research that analyzed innovation diffusion in water
infrastructure, in general, were also considered in this review. Thus, a total of 10 results
were finalized (Figure 2). The key search terms used were ‘agent based OR agent-based’,
‘infrastructure’, ‘perception* OR cogniti*’, ‘model*’, and ‘water’. This yielded 6 outcomes
with 11 additional articles from external references. Additionally, the Institute of Electrical
and Electronics Engineers (IEEE) was employed due to its particular research focus on
computational simulations using a combination of key search terms of ‘water’, ‘infras-
tructure’, ‘percept*’, ‘cogniti*’, and ‘agent-based’. It yielded 34 additional results. One
record was eliminated from the WoS results because it was a conference proceeding. A
total of 38 additional studies were excluded after abstract screening because they were not
directly relevant to the interpretation of cognitive biases or perceptions of innovative water
management strategies simulated through ABM. It was noted that all search outcomes
from IEEE were not within the scope of the search objectives for this review.
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Figure 1. Flow diagram of the search results of the first topic following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) protocol [82].
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3. Results and Discussion
3.1. Identified Social Barriers to GSI Implementation

The barriers to GSI have been studied by numerous international research teams,
ranging from individual perceptions and attitudes, financial burdens, resource allocations,
and governance rigidity to conflicts across institutions [45,67,79,83–86]. Barriers originating
from social factors may be harder to address, as the values of which are usually difficult to
quantify yet should not be overlooked [55,58,65]. Barriers primarily identified as associated
with social factors, in terms of their potential influence on the implementation of GSI, are
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attributed to three main categories from the literature. They mostly cover governance
discord, public participation, and demographic constraints (Table 1). Governance refers
to the inconsistent strategies among or within governance entities; public participation
refers to the involvement of the public in the decision-making of GSI regulations and
collaborations; and demographic constraints refers to the general demographic factors,
social norms, and perceived environmental concerns. However, there always is a possibility
of unrecognized social factors in the published studies. For example, though not directly
addressing the issues in stormwater management adaptation, a study brought forth the
dilemma in regenerating historical cities of which preserving the historical cores were
paramount [87]. It is thinkable that advancing GSI in such areas may encompass greater
complexities than others. Additionally, the underlying interrelations across infrastructure
sectors and even industries are also likely to influence sustainable decision-making in
general [88,89].

Table 1. Relevant social factors that could influence the implementation of GSI in the US.

Social Barriers Barrier Subcategories GSI Types Spatial Scales Location Stakeholder Study
Methods Source

Demographic
constraints &

public
engagement

Race, ownership status,
relevant knowledge of

GSI, knowledge
dissemination platform

Rainwater
harvesting,
pervious

paving, rain
gardens, lawn

depression

Sub-watershed

Two sub-
watersheds in
Chesapeake

Bay watershed

Private landowners

Knowledge,
attitude,

and
practice
question-

naire

[90]

Age, education,
homeownership, prior
experience of floods,

lack of awareness,
underuse of social

capital

Rain barrels,
rain gardens,

and permeable
pavement

Region Knoxville, TN Private landowners
(households) Survey [91]

Governance

Limited focus on the
multifactional of GSI to
respond to local needs,

lack of
interdepartmental
collaboration, and

private-public
partnership

Green alleys
with various
GSI features

Region
Various

locations in the
US

Government
agencies,

non-governmental
organizations

(NGOs),
community groups

Narrative
analysis [34]

Conflicting visions in
hydro-social relations GSI in general Region

Chicago, IL,
and Los

Angeles, CA

Government
entities, NGOs

Interviews,
participant

observa-
tion,

literature
review,
survey

[92]

Leadership in
transitioning

governance (informal,
multiorganizational)

GSI in general Region Ohio

Community NGOs,
environmental

NGOs/land trust,
federal

government, local
govern-

ment/regional
authority,
university

/contractor

Social
network
analysis
survey

[93]

Departmental silos
(stakeholders’ multiple
and competing social

perspectives)

GSI in general Region Chicago, IL
NGOs,

governmental
entities

Q-
methodology [94]

Tensions and
convergences among

different management
strategies

GSI in general Region Pittsburgh, PA

Community
organizations,
municipalities,

advocacy groups

Interviews,
participant

observa-
tion

[95]
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Table 1. Cont.

Social Barriers Barrier Subcategories GSI Types Spatial Scales Location Stakeholder Study
Methods Source

Conflicting perceptions,
implementation

priority, limited focus
on the

multifunctionality
during planning

GSI in general Region New York, NY

Agencies, city
departments,

national and local
nonprofits,

research
institutions

Spatial
analyses,
survey,

interview,
participant

observa-
tion

[78]

Inequity for
disadvantaged
communities

GSI in general Sub-watershed Los Angeles,
CA

Government
agencies,

non-profits,
community

organizations, and
others

Statistical
analyses [96]

Public
engagement

Failing to recognize the
values of social capitals

for long-term
productivity

Rain gardens,
rain barrels Household site Cincinnati, OH Landowners

Experimental
reverse
auction

[97]

Perception (status quo
bias)

Rain gardens,
bio-swales,
green alleys

with
permeable
pavement

Region
Cincinnati, OH,

and Seattle,
WA

Engineering
graduate students

Functional
near-

infrared
spec-

troscopy

[38,97]

Ineffective information
dissemination,

underuse of social
capital

Rain barrels,
rain gardens,
permeable
pavement

Region Washington
DC Homeowners

Voluntary
stormwa-
ter retrofit
program

with
statistical
analyses

[98]

Stormwater context
(perception of

neighborhood-level
challenges, town-level
stormwater regulation)

Rainwater
harvesting,

rain gardens,
permeable

pavers,
infiltration

trenches, and
tree box filters

Cross-scale Vermont Residents Statewide
survey [79]

Depreciation of
community

involvement (expertise,
education)

GSI in general Region Houston, TX Researchers,
community

Participatory
action

research
[99]

Governance &
public

engagement

Lack of awareness and
responsibility for

maintenance, education
programs not aligned
with local preferences

Stormwater
ponds Community Southwest

Florida

Homeowners,
governmental

entities

Survey,
interviews [100]

Lack of awareness,
ineffective regulation

enforcement

Stormwater
ponds Region Manatee

County, FL

Landscape
professionals,

residents,
government agents

Interviews,
surveys,

participant
observa-
tion, and
literature

review

[101]

Lack of awareness,
understanding, and

sense of responsibility;
geographic

disconnection between
watersheds and

governing entities;
fragmentation of

responsibility among
stakeholder groups

GSI in general Region
Cleveland, OH,

and
Milwaukee, WI

Practitioners
(regional sewer
districts, local
governments,
community

development
organizations)

Interviews [28]
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Table 1. Cont.

Social Barriers Barrier Subcategories GSI Types Spatial Scales Location Stakeholder Study
Methods Source

Lack of awareness and
adaptivity in policies to
prioritize GSI measures

to align with local
values

Bioswales,
green roofs,
street trees,

parks &
natural areas,
community

gardens, and
permeable

playgrounds

Region New York, NY

Residents and
practitioners
(individual

sprofessionally
engaged in the
siting, design,
maintenance,

public engagement,
and/or monitoring
of GSI programs)

Preference
assess-
ment

survey and
semi-

structured
interviews

[46]

Outdated regulatory
constructs, conflicted

views among gray and
green advocates,

jurisdictional overlap,
influences of social

media coverage,
leadership gaps or

influence of lobbying

GSI in general \ USA
Residents,

governmental
entities, engineers

Narrative
analysis [102]

The unclear distribution of responsibilities among stakeholders can impede the
decision-making processes associated with GSI implementation. Particularly, the gen-
eral public’s involvement is the fundamental building block that could be influential in
shaping the direction of GSI implementation [17,28,47]. Dhakal and Chevalier [83] stated
in their study that, above all challenges, cognitive barriers and socio-institutional factors
should be the primary issue to focus on. Furthermore, the multi-sector benefits will only
be nuanced if the public is not willing to implement GSI [103]. Similarly, one study stated
that sustainable GSI implementation would necessitate the need for structured public
participation and local partnerships. They emphasized that, in addition to putting more
reach effort onto comprehensive cost-benefit evaluations on GSI, such needed engagement
would fortress the networks of non-governmental organizations, county and state agencies,
municipal sewer districts, and federal research support, which could lead to a faster adap-
tation of GSI on larger scales [104]. Therefore, the barriers to the general public to accept
GSI are crucial to dissect these aforementioned disconnections and provide practical yet
effective decision support. To date, there is a limited number of conceptual frameworks
that capture social factors in GSI implementation processes (Table 2). Yet there still is a need
for quantitative analysis measures for better decision support for case-based GSI adop-
tion using standardized methods that could assist in horizontal comparison and further
knowledge transfer. The frameworks listed in Table 2 were categorized based on their main
purpose: Classification scheme (proposed to enhance terminology clarity), planning strat-
egy (suggesting new approaches to be adopted in current management regimes), process
conceptualization (promoting a better understanding of complex socio-infrastructure sys-
tems), and framework efficacy assessment (evaluating the existing frameworks’ usefulness
in promoting GSI implementation).
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Table 2. Conceptual frameworks that consider social factors in GSI implementation processes.

Framework
Nature Social Factors Sub-Categories Stakeholders Method Scale Source

Classification
Scheme

Governance,
stakeholder
engagement

Stakeholder
interactions,

governance, political
contexts

Individuals and
groups

involved in
rule-making

processes,
property
owners

Social-ecological
services framework

Cross-
scale [54]

Public
engagement,
governance

Policy instrument
assessment Citizens

Policy
instrumentations

scheme
Region [56]

Public
engagement,
governance

Ownership status,
political power

Governmental
entities Topology framework Region [64]

Planning
Strategy

Governance,
demographic

constraints

Equitable GSI
distribution, age,

income, education,
ownership status

Governmental
entities,

residents

Green infrastructure
equity index Region [60]

Public
engagement,
governance

Multifunctional
strategy,

multisectoral
communication

All involved in
decision-
making

processes

Millennium
ecosystem
assessment

classification-based
framework

Cross-
scale [105]

Governance,
public

engagement,
demographic

restraints

Adaptive
governance,
stakeholder

participation,
inclusion

Governance,
nongovernmen-

tal
organizations,
communities,

academia,
industry

Adaptive
socio-hydrology

framework

Cross-
scale [106]

Public
engagement

Interdisciplinary
collaboration,

university-
stakeholder
partnership,

institutional capacity

Universities

Integrated
framework
combining

social-ecological
dynamics,

knowledge to action
processes,

organizational
innovation

Region [63]

Process Concep-
tualization

Public
engagement

Community
participation in three

themes (context,
participation
processes and
outputs, and

implementation
results)

City, federal
government

agencies,
community

residents, and
community

NGOs

Public participation
conceptual model Watershed [61]

Public
engagement,
governance

Low stakeholder
buy-in,

discoordination in
management

objectives and goal
among stakeholders,

lack of awareness

Government
researchers,
stormwater

managers, and
community
organizers

Adaptive
management
framework

Site [62]
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Table 2. Cont.

Framework
Nature Social Factors Sub-Categories Stakeholders Method Scale Source

Governance,
public

engagement,
demographic

restraints

Stakeholder
interactions,

governance and
political contexts

All that are
involved in
stormwater

management

Integrated
structure-actor-water

framework

Cross-
scale [55]

Public
engagement,
governance

Hybrid governance
envisioning

(management and
monetary

responsibilities)

Regulatory
agencies,
residents

Multi-criteria
governance
framework

Cross-
scale [17]

Public
engagement,
governance

Perceptions,
stewardship,

human-environment
interactions

Residents
Coupled human and

natural systems
framework

Region [58]

Existing
Framework

Efficacy
Assessment

Governance

Governance, capacity,
urbanization rate,
burden of disease,

education rate,
political instability

Government
agencies, NGOs

City Blueprint®

Approach
Region [53]

Public
engagement,
governance

Community
education and

awareness campaign,
multifunctional

strategy

Residents,
governmental

entities

Socio-ecological
framework Watershed [107]

3.2. Interpretations through Cognitive Biases

Kahneman and Tversky [108] pointed out that human decision making can be sub-
jected to cognitive biases (or cognitive illusions) especially when under uncertainty, which
infers that an erroneous judgment may be formed subjectively (as judgmental heuristics). It
is particularly profound when forming judgment based on certainty and probability under
uncertainty [109]. Over the past several decades, research efforts have been made to study
cognitive biases and how they can influence decision making [41,44,66,110,111]. A deeper
understanding of cognitive biases can assist in effective debiasing and re-biasing measures
for better decision making [112–114]. Cognitive biases have been studied extensively in
the sociological and psychological fields, yet these intellectual outputs have rarely been
considered in other research domains [112], such as in the stormwater management sector.
In the context of governance strategy primarily for managing complex systems, such as
natural resources, hazards, and the environment, one review study pointed out that there
was a need to enhance participatory processes connecting scientists with stakeholders
and policy-makers to propel successful governance and policy enforcement, in which
biases, beliefs, heuristics, and values were the critical influencing factors [111]. The authors
believe that, despite being intrinsic to a certain extent [110], cognitive biases are shaped
by surrounding contextual factors, such as social factors. Hence, this work is an early
attempt to connect these two pieces in the context of GSI implementation with an envision
of advancing quantitative insights on the slow progress in GSI adoption in the majority
of the US territories. Only a limited number of studies have explored the social factors
involved in the decision-making process of stakeholders at various levels in the context of
stormwater management, and they tend to be based on simplified concepts to interpret the
information transfer tarnished by cognitive biases [40,115,116].

Historically, there has been an ongoing debate on the definition and categorization
of cognitive biases across different scientific domains. Furthermore, according to Cav-
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erni, et al. [117], cognitive biases is an evolving topic. Thus, this review is based on the
theory developed by Haselton, Nettle, and Murray [80] based on its wide acceptance among
scholars, how suitable it is to interpret social factors-related barriers to GSI implementation,
and its year of publication. Through a literature search of the social barriers mentioned in
the literature, three are salient in the context of stormwater management that may be asso-
ciated with cognitive biases (Table 1). However, the authors acknowledge the limitation
on the selection of the theory due to its novelty in the context of GSI adoption, particu-
larly the three biases chosen in this review. Furthermore, interdisciplinary discussions are
encouraged to strengthen research efforts in this topic for practical decision support.

3.2.1. Uncoordinated Regulations and Governance—Biases Resulted from Heuristics

People tend to rely on rules of thumb to simplify problems at hand that may deviate
from the optimum range of decisions, which can be considered heuristics [80]. The most
commonly studied bias based on heuristics is the status quo bias which can be seen in
regulation adaptation progresses. The status quo bias first received a greater level of
scientific attention through the work of Fernandez and Rodrik [118], which can be used
to explain the resistance to change within a group of people where the beneficiaries of
the status quo have a stronger influence than the other group, which they referred to as
the non-neutrality. This can be considered a bias due to human’s insensitivity to make
predictions under the influence of representative heuristics where people predict future
events based on the intuition under uncertainty [119,120]. Hu and Shealy [38] conducted a
study to illustrate how setting up GSI resolutions can overcome the status quo bias which
limits its adoption. They demonstrated that simple public engagement strategies using
factual endorsement in a municipal resolution by regulatory organizations could favor GSI
over conventional practices.

Status quo bias can also be observed among the key professionals whose preferences
may largely set the direction of the reform. One study identified five typical types of
decision-making patterns of students in civil engineering, which include risky, social,
conflicted, purchasing, and influenced by built-environment decision making [121]. By
carefully examining these thinking patterns, it could contribute to overcoming potential
cognitive biases among stormwater engineers. On the other hand, biases might be amplified
if the role of the GSI-related implementation processes is heavily played by one stakeholder
group, such as the contractor company, which takes the responsibility from the design to
the construction phase. This might limit their scopes, such as potential risks or alternatives.
Rather, they could distribute the workload to a third-party design company, allowing
further discussions on the optimal plan. A study found that professionals who had hands-
on experience favored GSI [39].

The general situation of stormwater management in the US has been depicted as
lacking clear guidance and regulation [12,83]. Stormwater management was not brought
into the National Pollutant Discharge Elimination System (NPDES) program until 1987 [13].
Further challenges lie in the adaption of drainage system management when facing climate
change and anthropogenic stressors, which has propelled the use of GSI [122]. Attempts
made through the established federal regulations often conflict with the existing rules set
on state and local levels, which have more discretions on primary goals and responsibility
distributions. This has resulted in the current dilemma that, even though private sources
count for a greater percentage of the flow generation or have a higher potential in fortifying
stormwater storage capacity, NPDES and municipalities cannot enforce regulations in these
areas [13,19]. In summary, the major weaknesses and gaps in these regulation-related
issues are poor coordination across institutions due to land use as private properties and
not prioritizing the control and storage capacity of the discharge volume [13]. Several other
studies listed in Table 1 have also observed such barriers.
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3.2.2. Low Public Engagement and Inefficient Knowledge Transferring—Biases Resulted
from Artifacts

Artifact biases intentionally form unrealistic conditions on which people make deci-
sions, for instance, framing and anchoring biases [80]. It could suggest that if the infor-
mation was not translated into a language that is appropriate to a specific audience, the
efficiency in the transfer of such knowledge could be reduced, even causing the generation
of erroneous interpretation. The framing effect occurs when a person changes their decision
based on how the information is presented [123]. A study has demonstrated that the biases
can be prevented in the early stage during education by using the sustainability-conscious
teaching approach to assist in decision making for sustainable infrastructure like GSI, such
as by using the Envision rating system [124]. On the other hand, it may lead to an anchoring
effect if the parameters used in said rating systems are not properly determined [42], where
a biased estimate toward the set arbitrary values will be formed even though they are far
from rational estimations [125].

Even though it can bring forth multi-sector benefits, GSI implementation still faces a
range of practical barriers, including the poorly perceived necessity of effective stormwater
management [126]. In addition, miscommunication due to terminology confusion or in-
effective knowledge transfer can also hinder the progression of GSI development to the
optimum level [36,127]. These miscommunications might link to the conservative mindset
about gray infrastructure, risk aversion attitude toward the related cost and performance
of GSI, confusion between GSI and the gray option, and fear of taking maintenance re-
sponsibility as identified in the literature [45,79,83–85]. It was also pointed out by the U.S.
Environmental Protection Agency (US EPA) that many of the barriers could be overcome
if sufficient efforts were made as the policies and regulations evolved on a need basis.
Given that, these aforementioned efforts need to be initiated first in order to achieve the
expected outcome. The results from a study demonstrated that solely relying on GSI
implementation was not adequate if public education and social learning were not enforced
at the same time [85]. The authors suggested the diversity of perspectives could not be
omitted to encourage the successful transitioning of this stormwater management regime.
To attract more financial support to advance and accelerate research on gathering reliable
GSI performance data, inadequate public (especially the major stakeholders’) awareness
needs to be appropriately addressed [128,129].

3.2.3. Perceived Demographic Constraints—Biases Resulted from Error Management

Error management bias occurs when people make decisions primarily to reduce
consequential losses [80]. The typical bias that falls into this category is risk (or loss)
aversion. As pointed out by Tversky and Kahneman [130], people tend to value any amount
of loss greater than the same amount of gain, which infers that losses (or disadvantages)
will be considered more than gains (or advantages). In the context of GSI implementation,
one factor that hinders the decision-making process is the lack of convincing empirical
data on multi-sector functionality in a life cycle [16,131,132]. This bias might emerge due
to unfamiliarity with long-term GSI performance and with the demand for capital cost and
maintenance fees, of which the payback has not been clearly quantified. A study found
that the most salient barrier to adopting innovations is the perception of risks [39]. The
authors suggested that extensive knowledge transfer in a combination of equal sharing of
contractual risk through team collaborations could contribute to easing such perceptual
barriers. Great progress has been made to minimize these barriers. Without enough
perceived incentives, it would be difficult for any major stakeholder to bring forth the
input, whereas other studies have shown some positive influence of GSI in the triple bottom
line (i.e., economic, social, and environmental) [14,15,133–135].

In a study performed by Di Matteo, et al. [136], their results suggested that being
able to review trade-offs among solutions can minimize biases at the decision-making
stage. According to Coleman’s finding [79], some private landowners favored small-
scale GSI practices over community-wide alternatives, as they were more focused on
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addressing local issues rather than collective actions. On the other hand, some GSI practices
are more likely to provide better performance if used in tandem [79,137], which could
further complicate the multi-sector performance monitoring processes. Of particular note
was that social performance was considered a critical factor for enhancing multi-sector
funding opportunities and the adoption of GSI [68,138]. Further studies are needed on
the influential social features that affect the development of GSI to resolve the knowledge
gaps among the public and to elucidate major social restraints (e.g., demographics and
ruling regulations). Demographic factors were regarded as the contextual background.
Policy enforcement and revision according to the current GSI implementation situation
were mainly the responsibility of governmental entities at federal, state, and county levels.
The field experts were considered the leading personnel responsible for designs based
on the built environment within the region and the outreach for knowledge diffusion.
Compared to the households that prioritize individual benefits, the local community tracks
the inter-connective components. Despite the efforts invested into understanding the
influence of the social environment on GSI implementation, only limited research studied
individual behaviors at the system level to identify the most potentially effective approach
to increase social acceptance at a regional scale [139].

3.3. Applied Agent-Based Modeling in Quantitative Decision Support

Tremendous research has addressed the hydraulic and hydrological and economic
uncertainties of GSI, yet social contextual factors remain under-studied given its complexity
and challenges in quantitative analysis. Our work reviews and analyzes the most identified
social barriers including governance inconsistency, low public participation, and demo-
graphic constraints from the consequential behavior patterns by incorporating knowledge
in cognitive biases. Table 2 presents the most relevant frameworks that qualitatively assist
in decision support for GSI implementation. They brought forth early attempts to solve the
social dilemma identified in Table 1 through various degrees of active public engagement,
collaborative governance regimes, and strengthened knowledge transfer among stakehold-
ers. A new conceptual framework (Figure 3) was proposed to take into consideration such
barriers on their potential impacts on the adoption of GSI.
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Policymakers are usually required to make science-based decisions and actions by
which they need to provide transparency in their prediction of the expected impacts of their
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decisions [111]. Hence, further efforts are needed to provide evidence-based quantitative
analysis to gain advanced insights on practical decision support. Existing quantitative
decision support tools used to simulate or evaluate GSI performance rely on the assumption
of rationality, omitting the potential interference to the outcomes due to cognitive biases.
For instance, several multi-criteria decision-making (MCDM) support systems made of
decision support tools (DSTs or DSSs) have gradually incorporated as many relevant factors
as possible [132].

Despite their capacity in being able to address multiple criteria, these decision support
tools for GSI implementations have limited considerations on the potential cognitive
biases, which could result in less effective strategies implementation. For instance, a study
indicated that individual bias has various effects on the organization’s objectivity in both
positive and negative directions and distort individuals’ process of creating, retaining,
and transferring knowledge. Their study results suggested that for a system with high
complexity, reducing individual bias may not necessarily enhance the objectivity of the
organization. Thus, it is wise to examine specific social systems when developing cost-
effective mediation strategies in case of simulating individual biases [74]. Psychological-
and sociological-based behavioral rules have been adopted in ABM by macroeconomics
since the 1960s [140]. As reviewed by Bharathy [77], the combination of an understanding
of human behaviors and systems thinking is crucial for successful decision-making. Their
study identified the research niche on human behavioral modeling with an emphasis on the
coordination among stakeholder groups in different fields. Despite being unable to truly
reflect on realistic situations, human behavioral models can still assist decision-makers in
the understanding of social systems. However, the models that are developed solely based
on social and physical science are usually fragmented in their fields, rely on qualitative
analysis, or are difficult to incorporate into quantitative models. For models with agents to
behave more realistically, one must expand their study scope to incorporate the models
developed in social sciences (such as psychological and cultural studies). Limited research
was able to accomplish this task [77].

In terms of complexity among available DST, ABM is more robust at detailed micro-
level simulation than qualitative studies, yet less dependent on sophisticated mathematical
logic than some quantitative models, such as system dynamics. This methodology can
simulate global emergent patterns/social consequences by setting up only individuals’ char-
acteristics and behaviors. ABM is better at capturing the non-linear interactions between
human behaviors based on various factors and the macro-environment through feedback
effects and at explaining the collective outcomes resulted from a given set of interactions
among individuals. So far, the primary use of ABM for policy decision support has primar-
ily been in the fields of sociology, epidemiology, and urban planning [75,114,141–143].

The theory of innovation diffusion was developed to conceptualize innovation adop-
tions through communication channels over time, which are determined by individuals’
personal and social characteristics in a social system, and the decision-making logic of indi-
viduals regarding the associated social changes [144]. ABM is advantageous at micro-level
simulations that can account for the heterogeneity and autonomy of individuals during the
innovation diffusion process to a greater extent in comparison to aggregate-level models.
Kiesling, et al. [145] conducted an extensive review on ABM applied in this theory, which
has been used for two main purposes: To advance the theoretical development, and to
forecast outcomes for decision support using empirical data. Similar to other simulation
models, ABM has its own limitations. To date, no ABM framework has been widely agreed
on for innovation diffusion due to the diverse selections of sub-theories, parameters, and
equations to interpret the adoption processes. The two major challenges are: The lack of
capability in capturing opinion changes as models generally assume a binary decision
switch from a non-adopter to an adopter with a presumption of global success as the final
outcome [115]. Therefore, there is a research need to continue extending and revising the
existing ABM framework to better simulate more realistic innovation diffusion, particu-
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larly water-related infrastructure due to the pressing issues highlighted in the background
section of this article.

Though different in prior aims, the use of ABM to assist in decision support for
diffusing innovative water-saving technologies shares similarity in the general concepts
with GSI technology diffusion in terms of the simulations and behavior rules. Therefore,
studies conducted on innovation diffusion of water conservation were reviewed in this
section as well (Table 3).

A few studies have applied ABM to analyze isolated influences of certain demo-
graphic, household, social, and external factors on water conservation technology adoption.
However, they failed to take into account the potential simultaneous influence of these
attributes on agents’ acceptance decision making. One empirical-data-driven study ar-
gued that ABM was favorable in simulating innovation diffusion than the Bass model
and cellular automata for its greater capacity in incorporating heterogeneity of agents and
explicit special relationships [146]. The statement was also supported by another study [40].
Another study discovered a research gap on the observed disagreement between the overall
numbers of the households that indicated their wills to adopt certain water conservation
technologies and the number of the populations that implemented said technologies. They
suggested it could be due to the additional costs and motivation required to install these
inventions into one’s household. They used ABM to simulate the innovation diffusion
process by the state transition approach as mentioned in the previous section. Their results
shed light on the importance to consider various characteristics of the communities when
developing intervention strategies for the effective adoption of water-saving technology by
households such as income growth, water pricing structure, the cost of rebated programs
compared to the affluence of the community, and social network connections [40].

One study based in Germany [146] adopted the integrated ABM approach to combine
the theoretical aspects of innovation diffusion, social psychology, sociology, and decision
theory to enhance the accuracy of realistic decision-making processes using an empirical
study of diffusion of water-saving technologies. This model contributed to an advanced
decision-making process during water-saving innovation diffusion. On a different aspect
during the adoption process, few researchers have developed ABM models that are capable
of incorporating the dynamics between public adoptions that are affected by changes
in demands for resources and services and infrastructure expansion. A study [115] ap-
proached the issue through an ABM framework, which simulated the perception changes
in risks/benefits of water reuse during the course of infrastructure expansion by incor-
porating the theory of risk publics to simulate the social networks. It overcomes several
limitations of cognitive models and diffusion of innovation models because the risk publics
theory is relatively more comprehensive in reflecting real decision making compared to
other existing theories in that it assumes definitive connections among agents who held
similar opinions about the risk/benefits of a technology based on a social psychology
approach. This work is one of the few that applied social psychology-based ABM in in-
novation diffusion for water reclamation among households and has the potential to be
adopted for decision support for GSI implementation.

Note that the review in this study is limited to the research works conducted solely
through ABM. However, there have been several studies that used hybrid simulation
models as a decision support tool in water infrastructure management. For instance,
Faust, et al. [147] developed a hybrid quantitative system dynamics-ABM framework to
investigate the water demand dynamics in shrinking cities. This type of hybrid model
showed its advantages in capturing the sophisticated socio-technical interactions within
the human-infrastructure system through feedback loops compared to using ABM. On
the other hand, simulations of cognitive biases using ABM have been explored on various
types of cognitive biases, such as risk aversion, confirmation bias, motivated reasoning,
cognitive filtering within social science, and economy domains [148–152]. These scholarly
contributions can be substantially beneficial in driving insightful decision support tools for
GSI implementation that reflect realistic public opinions and actions.
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Table 3. Innovative strategy diffusion in water management using ABM.

Simulation
Objectives Agents Behavior

Rules

Social
Net-

works

Time
Step Platform

Calibration,
Verifica-
tion &

Validation

Novelty/Advantages Limitations Location Source

Water con-
sumption
behaviors

Households

Reversible
stochastic
diffusion

of opinions,
Bass’

model of
innovation
diffusion

Random
graph

Three-
month

(10
years)

Java

Calibration
with

empirical
data, face
validation

Integrate
geographical,
cultural, and

socioeconomic
factors with ABM

for decision
support in water

demand

Requires
exhaustive efforts

into
interdisciplinary

empirical
validation,
demands
advanced

expertise and
computation

power to embed
GIS into ABM

Valladolid
(Spain) [153]

Flood risk
communi-

cation
strategies
effective-

ness

Households
Protection
motivation

theory

Stochastic
with pre-
defined
connec-

tion
rules

Yearly (7
years) NetLogo

Calibration
with

empirical
data and

sensitivity
analysis

Simulates
micro-level
diffusion of

information for
flood risk

communication

Requires sufficient
empirical data to

minimize
uncertainty

Rotterdam-
Rijnmond
(Nether-
lands)

[154]

Adoption
of water

reuse
measures

Households

Risk
publics
ABM

framework

Small-
World

Yearly
(30

years)

Not
specified

Calibration
with

historical
data and

sensitivity
analysis,

validation
through

comparing
results
from

another
model

Captures opinion
dynamics and

adoption
decisions on water
reuse innovations

under various
infrastructure

expansion
scenarios

Assumes several
parameters of
fixed values,

simulates at the
unitary household

level, limited
capacity in

capturing opinion
dynamic resulted

from external
factors

Town of
Cary, NC

[115,
155]

Innovation
processes
in urban

water
infrastruc-

ture
systems

Water
supplier,

water
consumers,

sewage
system

operator,
technical
compo-
nents

producer

Bounded
rationality
with utility
functions

Simplified
struc-
tured

models

Yearly
(50

years)

Not
specified

Not
specified

(theoretical
develop-

ment
only)

Captures the
transition patterns

of water supply
infrastructure
influenced by
interactions of

multiple
stakeholder

groups

Lacks of agent
heterogeneity of

simulated
stakeholder

groups, omits
some relevant

stakeholder
groups

Not
specified [156]

Spatiotemporal
emergence

of GSI

Residential
property
owners

Probability-
based GSI
adoption

rules

Simplified
struc-
tured

models

Monthly
(30

years)
NetLogo

Calibration
with

historical
data

Simulates
micro-level

spatiotemporal
adoption rates of
two GSI practices

determined by
physical

compatibility and
socio-economic

factors

Requires expertise
in collecting,

characterizing,
and modeling

with the relevant
data, the

behavioral rules
need further data

collection to
reflect the

decisions made
under various

constraints and
conditions

Philadelphia,
PA [139]

Effect of
various

factors on
residential
water con-
servation

technology
adoption

Households

Innovation
diffusion,
affordabil-
ity theory,
peer effect

Various
(random,
distance-

based,
ring

lattice,
small-
world,

and
scale-
free)

Yearly
(20

years)
AnyLogic

Calibration
with

historical
data,

internal
validation

with
sensitivity
analysis,
external

validation
through
compari-
son with
similar
studies’
results

Explored the
influence of

various social
factors, social
networks, and

water policies on
water

conservation
technology

adoption under

Fails to capture all
impactful

demographic
factors due to data

limitations and
potential feedback

mechanisms
through dynamic

factors

City of
Miami
Beach,

FL

[40]
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Table 3. Cont.

Simulation
Objectives Agents Behavior

Rules

Social
Net-

works

Time
Step Platform

Calibration,
Verifica-
tion &

Validation

Novelty/Advantages Limitations Location Source

Diffusion
of water-
saving
innova-

tions

Households

Innovation
characteris-
tics, Theory
of Planned
Behavior,
lifestyles,
decision
theory

Small-
World

Monthly
(14

years)
Java

Calibration
with

empirical
data,

validation
with inde-
pendent
empirical

data

Simulates the
diffusion of water

conservation
technology among

households
(heterogeneous

agents) based on
two decision

algorithms and
driven by

empirical data

Sensitive to the
values set to
categorize

households based
on lifestyles,

model accuracy
can be improved
by adding other
economic factors

Southern
Ger-

many
[146]

GSI
adoption
optimiza-

tion

Water
utility,
local

community
organiza-
tions, and
property
owners

Probability-
based
rules

\
Quarterly

(30
years)

NetLogo

Calibration
with

historical
data

Simulates
multi-agent

simulation of GSI
adoption based on

physical
compatibility and

socioeconomic
factors with
undergoing
synergistic

infrastructure
transitioning and

ownership
scenarios

Relies on
numerous yet

reasonable
assumptions

Pint
Breeze,

PA
[157]

Assessments
of the

long-term
resilience
of water
supply

infrastruc-
ture

Users,
agencies,

wells,
stressors,

wastewater
treatment

plant

Bounded
rationality
and regret
aversion,
stochastic
processes,

consequen-
tial impacts
of the other
two agents

\
Yearly
(100

years)
AnyLogic

Internal
verification

through
component
verification
assessment,

external
verification

through
tracing,

calibration
with

empirical
data, face
validation

Provides insights
on theoretical,
computational,
and practical

decision support
for water supply

infrastructure
resilience under

various scenarios
of sea-level rise
and adaptation

strategies

Omits the salinity
fluctuation caused
by overexploited

freshwater
aquafer, and other

adaption
solutions by
households

Miami-
Dade

County,
FL

[158,
159]

4. Conclusions and Recommendations

The burgeon urbanization and rapidly increased impervious surfaces have led to
the increment of runoff volumes and peak flows casting burdens on existing stormwater
management infrastructure. Conventional gray infrastructure utilizes a centralized manage-
ment approach to control stormwater through treatment facilities or direct discharge into
receiving water bodies bypassing the treatment process. It is environmentally inadequate
in modern societies as climate change has gradually intensified its impacts worldwide. On
the contrary, GSI exploits decentralized natural processes to treat stormwater runoff at its
source, which also provides additional benefits to the community contributing to urban
resilience and sustainability. However, it still faces various barriers to GSI implementation
in the US mainly due to existing presumptions that can lead to a lack of funding allocation.
Conceptual frameworks are directing tools that can be used to standardize GSI project
planning. There is an urgent need for inclusive decision support tools to better evaluate
the perceptions of private landowners (homeowners and renters) of GSI so as to devise
effective intervention strategies for encouraging GSI implementation. This can minimize
the erroneous perceptions of GSI of the stakeholders, compared to the existing gray infras-
tructure. This paper made the first attempt to bring forth the connections between such
social barriers to GSI implementation in the US and the potentially linked cognitive biases
that had hampered rational decision making, which few studies have set their research
efforts on. The authors acknowledge the limitation of this review regarding the connections
due to its novelty in relevant research fields applied in GSI adoption, particularly the
three biases chosen in this review. Further interdisciplinary discussions are encouraged to
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strengthen the research efforts on this topic to drive evidence-based local data analysis in
addition to systematic analyses of these cognitive biases among stakeholder groups.

On the other hand, despite their capacity in being able to address multiple criteria, the
existing decision support tools omitted some common cognitive biases which could result
in less effective strategy implementation as pointed out in an article [74]. Various scholarly
publications reached an agreement on ABM’s robusticity in simulating individual-level
decision-making processes. Thus, this paper reviewed quantitative analysis for decision
support to promote innovative strategies in water management for long-term resilience.
Yet there have been no ABM models developed to approach the well recognized social
factor-related biases in GSI adaptation using the social-psychological approach of innova-
tion diffusion. Thus, we proposed a conceptual framework to bridge this disconnection
as shown in Figure 3. In this framework, assumptions of the presence of biases could
be safely made if differences are recognized between the empirical data on households’
perceptions of GSI, thus the acceptance and adoption and simulated results using the
common mathematic theories in a multi-agent model. To further advance the realistic simu-
lation of socio-infrastructure systems such as GSI implementation processes, future efforts
should be made to incorporate the complex opinion dynamics due to cognitive biases into
advanced hybrid models to explore the interdisciplinary interactions on a broader scale
that have not yet been well examined for implementing innovative strategies of water
infrastructure systems.
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