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Abstract: This study seeks to advance the knowledge about the effect of the a priori parameters
on calibration using the Sacramento Soil Moisture accounting Model (SAC-SMA). We investigated
the catchment characteristics where calibration is most affected by the limitations in the a priori
parameters and we studied the effect on the modeled processes. The a priori parameters of SAC-
SMA model parameters were determined from soil-derived physical expressions that make use of
the soil’s physical properties. The study employed 63 catchments from the eastern United States
(US). The model calibration employed the Shuffle-Complex algorithm (SCE-UA) and used the a
priori parameters as default allowing for ±35% as a range of deviation. The model efficiency
after calibration was sensitive to the catchment landscape properties, particularly the soil texture
and topography. The highest efficiency was obtained in conditions of well-drained soils and flat
topography where the saturation excess overland flow is predominant. Most of the catchments
with smaller efficiency had poorly drained soils where mountainous and forested catchments of
predominant subsurface stormflow had the lowest efficiency. The current regional study shows
that improvements of SAC-SMA a priori parameters are crucial to foster their operational use for
calibration and prediction at ungauged catchments.

Keywords: a priori parameters; calibration; Sacramento model; model processes; soil physical
properties; subsurface stormflow

1. Introduction

There has always been a need to understand the hydrological behavior of catchments
at the regional scale because it drives the decisions of water resource planners and man-
agers [1]. The regional evaluation of runoff processes and streamflow pattern provides
some degree of predictability of the catchments’ behavior [2,3]. Streamflow analysis at a
regional scale entails the use of hydrological modeling. The uncertainty due to model cali-
bration and parameter estimation is among the challenges of hydrological modeling [4–8].

The technique of a priori parameter estimation was designed to facilitate the model
parameterization and calibration [9]. The a priori parameters derive values directly from
spatiotemporal data. The technique recourses to establishing “physical” or “conceptual”
correlations between measured watershed characteristics (e.g., geology, topography, soils,
and land cover, etc.) and the parameters to represent the hydrological processes of the
model [10].

The a priori parameters can be used to minimize the number of parameters to calibrate,
to estimate parameters when calibration is not possible (ungauged catchments conditions),
and to guide the model calibration in accordance with a parameter range [11]. While the
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estimate of a priori parameters is far from being perfect, it has been receiving increased
attention from hydrologists and water resources managers e.g., [9,12–15].

Though a priori parameters’ estimation was initiated decades ago, it remains available
only for few hydrological models, e.g., [9,16]. The authors of [17] developed empirical
equations to correlate the VIC-2LLSM parameters to basin features. In [12], the authors
correlated the parameters of the Simple Water Balance (SWB) model to catchments’ features
in the southeast of the United States (US). The authors of [18] related 16 parameters of the
conceptual Tank model to land use and soil types using multiple linear regressions. The
regressions had limited success. First, because the correlation between the catchment char-
acteristics (e.g., the soil hydraulic properties and the soil depth) and the model parameters
is indirect. Second, the calibrated parameters that were used to develop the regressions
induced uncertainty in the relationships, e.g., [11,19].

The authors in [9] employed geographically based information (topography, soil data,
land use/land cover data, etc.) to estimate spatially varied parameters of the GXM model
(spatially distributed Grid-Xinanjiang model).

In physically-based distributed models, the a priori parameters are often directly
measured. This strategy implies a lack of accuracy in situations of major inconsistencies
between the sampling spatial resolution and the size of the grid used to conduct the model
calibration [20,21]. It has always been questioned whether there is consistency between
what we can measure/observe in terms of parameters and whether this responds to the
model complexity [22]. Some parameters in models are difficult to measure. The lack of
consistency between what can be measured and what the model requires should not urge
us to opt for less complex models [23]. The Sacramento Soil Moisture Accounting Model
(SAC-SMA) is among the few lumped models that have soil-derived a priori parameters.
These parameters are the outcome of analytical and empirical equations [23]. The lumped
SAC-SMA model is well suited to conduct regional studies because (i) lumped models are
parsimonious [24], (ii) the a priori expressions of SAC-SMA parameters employ a physically
realistic technique that is applicable worldwide [6,23], and (iii) the spatially-explicit soil
data are widely available at resolutions appropriate for regional assessments.

One area worth investigating is the implications of a priori parameters on SAC-
SMA predictions and calibration. There will be a great gain of knowledge if a regional
framework is adopted as the analysis will benefit from the variability in hydrological and
physiographic characteristics of the catchments. The a priori parameters are derived from
a globally applicable approach. Therefore, the wider community will also gain insights
into the design of a priori parameters and the aspects leading to model deficiency.

Within the framework of the Model Parameter Experiment (MOPEX), the SAC-SMA a
priori parameters have been estimated in several catchments across the continental United
States [25]. All a priori parameters are soil derived and used the State Soil Geographic
Database (STATSGO) map to estimate θwlt (the water content at wilting point), θs (the
water content at saturation), θfld (the water content at field capacity), and Ks (the hydraulic
conductivity at saturation) [12,23]. In the eastern United States and using a small number of
catchments from the mid-latitudes, [23] found that flow simulation from a priori parameters
led to similar model efficiencies as the calibrated parameters. The use of a priori parameters
in calibration helps to retain physical consistency and reduce equifinality [13,23]. The study
by [26] obtained non-satisfactory predictions using a few geographically distant MOPEX
catchments in the US. The uncertainty in values of a priori parameters used to calibrate the
model would have been transferred to the calibrated parameters. The limited number of
catchments used in [23,26] are not sufficient to make a statement about the use of a priori
parameters in SAC-SMA calibration.

The SAC-SMA model efficiency might be closely dependent on catchments’ phys-
iography given that a priori parameters—used to conduct the calibration—are based on
the hydraulic properties of the soil. Whether the calibration based on a priori parameters
captures the effect of the changing terrain characteristics on the hydrological response
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is unknown. There is a need to identify the catchment conditions leading to low (high)
efficiency after SAC-SMA calibration.

Therefore, the objectives of the current study are:
(i) to reveal the effect of variation in terrain characteristics on SAC-SMA predictions,

using a priori parameters and calibrated parameters (ii) to understand the effect of SAC-
SMA a priori parameters on the modeled processes in conditions of varying physiography.
The study also explores and discusses the opportunities to improve the SAC-SMA predic-
tions after a priori parameters-based calibration.

This investigation remains a case study of the SAC-SMA model. Hence, it does not
intend to generalize the outcomes to all models for which a priori parameters had been
designed. Nonetheless, the study provides insights on how to better conceive and set a
priori parameters in order to improve hydrological modeling and storm flow forecasting.
Being a regional study, this investigation advances our understanding about the effect of
catchment characteristics on models’ performance. In addition, it underlines the aspects to
be cautious of when using the a priori parameters in hydrological modeling.

2. Database and Study Area Characteristics

The MOPEX database contains historical hydrometeorological data and land surface
characteristics for many hydrological basins in the US and in other countries [6]. MOPEX
research has been driven by a series of international workshops that brought together inter-
ested hydrologists and modelers to exchange knowledge and experience in developing and
applying model parameter estimation techniques. With its focus on parameter estimation,
MOPEX plays a major role in the context of international initiatives, such as Prediction
in Ungauged Basins (PUB) [27]. Our regional study used 63 MOPEX catchments in the
eastern United States where the mean annual precipitation (MAP) varies between 702 mm
and 2072 mm (Table 1). The catchments range in size from 67 km2 to 8052 km2 (Table 1)
(20% of the catchments have sizes above 4000 km2).

Table 1. Statistics of catchments’ descriptors used in this study.

Catchments’ Descriptors Maximum Minimum Median

Slope (%) 34 0.6 12.7
Mean Elevation (m) 1212 16.2 442.6
Land cover crop (%) 59 0 15.8

Land cover forest (%) 98 28.64 65.68
Land cover urban (%) 18.67 0 6.3

Catchments’ size (km2) 8052 67 1170.70
MAP 1 2072 982 1199

1 MAP: Mean Annual Precipitation.

Daily time series of streamflow, areal averaged precipitation, and potential evapo-
transpiration (PET) for all study catchments were provided by the MOPEX project [9].
The database is freely available and was retrieved from the following website: https:
//hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/Us_438_Daily/ (accessed on 10
May 2021). In MOPEX, the data available are precipitation, potential evapotranspiration,
flow, maximum air temperature, and minimum air temperature. The time step for the
MOPEX data is daily. There is a readme.txt file that provides a detailed description of the
data available. The list of the stations from this study can be found in the supplementary
excel file. The excel sheet name is “Study Stations”.

The precipitation was determined by means of weighted averaging using rain gages’
measurements and PRISM data [14]. The PET was estimated on the basis of the NOAA
Evaporation Atlas. The NOAA Atlas maps were derived by analysis of evaporation pan
data [14]. The perennial snow cover was absent for most catchments [28]. The mean
monthly depths of precipitation across the study catchments were comparable and had
limited fluctuations throughout the seasons [28]. However, the storm characteristics, in
particular, the storm intensity, had systematic seasonal variations [29]. The catchments

https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/Us_438_Daily/
https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/Us_438_Daily/
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within the study area were mostly forested and were minimally impacted by human
influences [28].

In the study region, the Appalachian Mountains created a contrast in the topography.
The catchments with low relief were primarily located on the east coast and in the State of
Georgia, while the interior catchments had higher relief. The maximum elevation across
the region was 2029 m.a.s.l. (meters above sea level) (Figure 1). The variation in soil texture
across the study catchments affects the soil hydrologic characteristics [30]. Figure 1 shows
the spatial change in the main hydrologic groups: HGB (soil with medium infiltration
rate) and HGC (soil with slow infiltration rate). There is a gradual decrease in HGB soils
from south to north. In mid-latitudes, the soil is a combination of HGB and HGC, while
in the northeast it is predominantly the HGC group. The soil group HGA (soil with high
infiltration rate) is also present in eastern United States primarily in the state of West
Virginia.
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3. Materials and Methods

Given the regional aspect of the study, the criterion of homogeneity in the hydrologic
response was considered through the use of homogeneous regions in eastern US [31]. The
idea behind working in homogeneous regions was to allow for model efficiency comparison
between the regions and within the same region. The criteria of homogeneity facilitated the
study of a priori parameter effect on model performance and on calibration. The analysis
used the regionalization of [32]. Within each region, each MOPEX catchment had a set
of a priori parameters that was used to make a first prediction. This first prediction used
the same record length as that used to conduct the model calibration (1948–1963). This
prediction was denoted as the APRIORI phase (step 1 in Figure 2). The model was then
calibrated using the SCE-UA algorithm (record length 1948–1963). The a priori parameters
were the starting values to conduct the calibration (step 2 in Figure 2). This phase was
denoted as CAL and generated a set of calibrated parameters (step 3 in Figure 2). CAL
and APRIORI both used the same record length for consistency. Each catchment of the
same region had a set of a priori parameters and a set of calibrated parameters. The model
efficiency was measured in each region using the a priori and calibrated parameters applied
on the same MOPEX data during the calibration period (1948–1963) and the validation
period (1964–2000) (please check Section 3.2.2 for more about calibration, validation, and
model efficiency metrics) (step 4 in Figure 2).

The value of each parameter varied among catchments of the same region. The vari-
ability of each a priori parameter among catchments of the same region was quantified.
After calibration, the variability of the same parameter was also quantified. The level of
variability of the model parameters was compared between the APRIORI and CAL phases
(step 5 in Figure 2). If the variability of one specific parameter from APRIORI to CAL in-
creased in one region, then the calibration better mimicked the variability of that parameter
value among the catchments of the same region. The parameter was then considered among
the parameters most influential on the prediction. The criteria of increased variability was
previously used in [23,26]. The physical meaning of each parameter having an increase in
variability from APRIORI to CAL tells about the hydrological processes mostly driving the
runoff prediction. If the parameter variability is stable between APRIORI to CAL, then the
calibrated parameters barely changed from the a priori values after calibration.

The topographic index (TI) distribution at the catchment scale in eastern United States,
analyzed in [33], was used to determine the dominant runoff generation mechanisms in
each catchment for this study. The dominant runoff generation mechanisms, the prediction
efficiency, the parameters’ physical meaning and nuances in their variability between
APRIORI and CAL allowed the exploration of the a priori parameters’ performance and
their implication on SAC-SMA calibration (step 6 in Figure 2).

3.1. Catchment Classification

According to [30], a classification should be physically meaningful and provide a
means to assess the dominant controls on the streamflow patterns [34]. Ideally, it reveals
some understanding of the catchment’s hydrologic partition function (interception, in-
filtration, and percolation) and the storage function (vegetation, depression, retention,
groundwater, and snowpack) [30]. In this paper, we used the catchment classification
of [31], which subdivides the study region into four regions with similar hydrologic re-
sponses. This classification disclosed the dominant runoff processes in each region using
six hydrologic signatures: the baseflow index, runoff ratio, slope of FDC (Flow Duration
Curve), streamflow elasticity to precipitation, hydrograph rising limb, and snow day ratio.
The novelty of the classification in [31] is not in the signatures themselves but in their
combination to quantify the hydrologic function and, therefore, the hydrologic similarity
between the catchments. For the purposes of this study, we refer to Southern Appalachian
as S.AP., Northeast as NE, Northern Appalachian as N.AP., and Southeast as SE.
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3.2. SAC-SMA Model Structure and Calibration
3.2.1. Model Parameters and Physical Meaning

The SAC-SMA model has been applied worldwide, particularly in the different hydro-
climate regimes of the United States [23].

The SAC-SMA conceptual model allows for detailed flow simulations dealing with
runoff components, i.e., the direct runoff, surface runoff, interflow, and baseflow [35]. The
model has a two-soil-layer structure (Figure 3). Each layer is made of tension and free
water storages that interact to simulate soil moisture and five runoff components [23,26].
The tension water storages simulate the evapotranspiration (ET). The daily average PET
from MOPEX data is one of the inputs necessary for ET simulations. The free water storage
of the lower layer has two sub-storages that simulate supplemental (fast) and primary
(slow) groundwater flows (Figure 3).
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The storage in the tension and free water of the upper zone partitions the rainfall into
surface runoff and infiltration into the lower zone storage. The model had 13 parameters
in total that are explicitly described in Table 2.
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Table 2. SAC-SMA model parameter description.

Model
Parameter Physical Meaning

UZTWM The upper layer tension water capacity (mm)
UZFWM The upper layer free water capacity (mm)

UZK Interflow depletion rate from the upper layer free water storage (day−1)
ZPERC Ratio of maximum and minimum percolation rates
REXP Shape parameter of the percolation curve

LZTWM The lower layer tension water capacity (mm)
LZFSM The lower layer supplemental free water
LZFPM The lower layer primary free water capacity (mm)
LZSK Depletion rate of the lower layer supplemental free water storage (day−1)
LZPK Depletion rate of the lower layer primary free water storage (day−1)
PFREE Percolation fraction that goes directly to the lower layer free water storages
PCTIM Permanent impervious area fraction
ADIMP Maximum fraction of an additional impervious area due to saturation

The excess from the tension water capacity of the upper zone (UZTWM) becomes
the excess rainfall, and the excess from above the free water capacity (UZFWM) generates
the surface runoff. At saturation of the upper zone storages, the runoff rate is influenced
by deficiencies in the lower zone reservoirs, the tension water, LZTWM, and the free
water, LZFSM and LZFPM, capacities. The runoff is generated at each free water reservoir
depending on the depletion coefficients, namely, the UZK coefficient in the upper zone and
LZSK and LZPK in the lower zone (see Figure 3). The percolation rate into the lower zone is
a nonlinear function of the deficiencies of the lower and upper reservoirs and includes two
parameters: the maximum rate of percolation, ZPERC, and an exponent value, REXP [24].
The water from the deep percolation divides into three storages. The PFREE parameter
determines the fractional split between the tension and free water storages. The parameters
not estimated by the a priori expressions are ADIMP and PCTIM because they are not
soil-derived [24].

3.2.2. SAC-SMA Calibration and Validation
SAC-SMA Calibration

We calibrated the thirteen SAC-SMA model parameters using the Shuffle Complex
algorithm (SCE-UA) with 10,000 iterations [36]. The calibration period used flow data and
precipitation from 1948–1963. The SCE-UAE algorithm is extensively used as an optimiza-
tion approach that identifies global optimums. The SCE-UA algorithm helped achieve
different research goals, such as studying model parameter transferability (e.g., [26,32])
and building a large database for the continental United States (e.g., [37]).

Calibration within the Bayesian framework through the Monte Carlo (MCMC) ap-
proach is also popular in hydrological modeling. It provides a probabilistic framework that
addresses model and parameter uncertainties [38]. However, convergence of the method
may be problematic in the case of inappropriate selection of the posterior distribution to
quantify the parameters. The calibration may be trapped in local posterior modes [39].
There are efforts to solve—to some extent—the issues of “global” and “local” posterior
modes within the Bayesian framework [40]. For the current study, we did not use the
Bayesian framework but rather we opted for an optimization approach that is well suited
for the SAC-SMA model, as shown recently in [37]. In SCE-UA, the search space for the
parameters set is made of complexes. The criteria of dependence between the parameters
of the same set is implicit in the search [41]. The population of points are spread over
complexes where each evolve independently into an improvement direction. Shuffles are
repeatedly performed and the points are reassigned to complexes. As the search progresses,
there is convergence toward the global optimum [42].

Similar to [23,26], we used a constrained range of parameters centered on the a priori
estimates to maintain physical consistency and to reduce equifinality after calibration. So,



Hydrology 2021, 8, 78 9 of 20

the starting value to conduct the calibration was the a priori value of each parameter. We set
±35% as the range of deviations allowed from the default parameters (a priori parameters).
This range was larger than the range used in [23] (i.e., ±25%). We set this range in order to
allow for more parameters’ variability—around the a priori values—that is used by the
SCE-UA algorithm to find the global optimum. The model was calibrated for the period
1948–1963. The objective function minimized RMSE (Root Mean Square Error) between
daily observed and simulated discharges.

RMSE =
√ n

∑
i=1

(Pi−Oi)2

n
(1)

i: Variable i, I = 1, ..., n;
P: Predicted value of the discharge;
O: Observed value of the discharge;
n: The total number of observations during the simulation period.
There are growing concerns regarding the suitability of performance metrics to meet

particular goals in rainfall–runoff modeling and their ability to describe the overall model
performance (e.g., [43–45]). The RMSE (absolute differences between observed and mod-
eled values in their original unit) is regarded as one of the metrics that well describes the
performance of rainfall–runoff modeling ([45,46]). The lower the RMSE the better is the fit.
For further evaluation and performance illustration, we used the Nash–Sutcliffe coefficient
(NS) [46] and the percentage bias (PBIAS) in mean flow [47]. A better fit is associated with
a lower PBIAS and a larger NS. In order to allow for comparison, we used the same metrics
to evaluate the efficiency during the calibration phase using the a priori parameters.

SAC-SMA Validation

Once the model calibration was accomplished and the values of calibrated parameters
were obtained, the model predictions were further tested during the validation period. The
major concern about validation is the approach used by the modeler to conduct this test of
the model efficiency. Usually, in hydrological modeling we use either the cross validation
method or the split sample method [48]. In the former approach (cross validation), the
model validation is alternated with the calibration via a machine learning tool (i.e., MCMC
approach). In the split sample approach, the total length of the flow data are split into
two periods; (i) the calibration period, which is a period of the flow record that is used
to run the calibration algorithm in order to determine the model parameters that lead to
a best fit (lower RMSE, lower PBIAS, and larger NS), (ii) the validation period employs
the rest of the flow data to test the model prediction using the same metrics (RMSE,
PBIAS, NS) for consistency. Usually, the flow record employed in the validation phase is
longer. In this study, the validation period spanned over 1964–2000.The efficiency from
the prediction using a priori parameters was also quantified during the validation period.
The efficiency metrics helped to compare between the predictions using the a priori and
calibrated parameters. The validation phase allowed testing the efficiency of the calibrated
and a priori parameters during a different period of the flow record. The split sample
approach is intensively used in hydrological modeling and is called [48].

4. Results
4.1. Model Performance Using A Priori and Calibrated Parameters

The study regions are presented in Figure 4a, and the results of model calibration
are summarized in Figures 4 and 5. The cumulative distribution function (CDF) of the
NS coefficients showed that the best performance at calibration was in SE and S.AP. The
catchments with the poorest performance were in N.AP. and NE (Figure 4b). According
to Figure 4, the major improvements from APRIORI to CAL simulations were observed
in S.AP., NE, and SE Figure 4c,d,f, respectively). The same pattern of improvement was
observed in the validation phase as well.
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Figure 4. (a) Catchments regionalization according to Sawicz et al. (2011) and DEM, (b) comparison of Nash–Sutcliffe
coefficients (NS) between regions in the calibration period using the cumulative distribution functions (CDFs), (c) CDFs of
NS coefficients using a priori and calibrated parameters in S.AP., (d) in NE, (e) in N.AP. and (f) in SE. NE stands for north
east, N.AP. stands for North Appalachian, S.AP. stands for south Appalachian, SE stands for south east. The NS coefficient
was calculated at each study station using the observed and simulated discharges.
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parameters. NE stands for north east, N.AP. stands for North Appalachian, S.AP. stands for south
Appalachian, SE stands for south east.

The RMSE as specified in Equation (1) measures the errors in simulations using
observed and predicted discharges at each study station. In Figure 5, we present the results
of RMSE per region and per simulation period; panel (a) provides results for the calibration
period (1948–1963). Panel (b) presents results for the validation period (1964–2000). In each
simulation period the efficiency was evaluated using the a priori parameters (boxplots
(i)) and the calibrated parameters (boxplots (ii)). The criteria of a better fit entails that the
lower the RMSE, the higher is the model performance. The RMSE decreased the most
during calibration period for S.AP., NE, and SE (Figure 5a). For the validation period,
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the RMSE in these regions remained lower than the values obtained using the a priori
parameters during the same test period (Figure 5b). It is worth noting that in NE, at
validation, the RMSE did not differ much between the a priori and calibrated parameters
(Figure 5b). The NS of the calibration and validation periods in N.AP. barely improved
compared with the a priori parameters (Figure 4e). The RMSE did not remarkably decrease
between the a priori and calibrated parameters (Figure 5 for N.AP. region). Nonetheless,
the calibration assured the maintenance of the model efficiency higher than 0.5 after the
validation though the simulations using a priori parameters dropped to 0.2 in one study
catchment (see Figure 4e).

4.2. Analysis of Predictions from A Priori Parameters and Calibration: The Catchment Land Scape
Properties and Runoff Processes

In NE and N.AP., the soils are poorly drained and have a steep topography, whereas, in
SE, the catchments have well-drained soils and are located at lower elevations (Figure 4a).
In Figure 6, large differences were observed in the spatial patterns of the soil hydrologic
groups. The CDFs of HGB showed that it was predominant in SE and S.AP. (Figure 6a).
The proportion of HGA soils was small across regions (soils with high infiltration, Wood
et al. 1984 [30]), except in N.AP. (Figure 6b). Meanwhile, HGC soils (slow infiltration rate)
were prominent in N.AP. and NE (Figure 6c).Hydrology 2021, 8, x FOR PEER REVIEW  13  of  21 
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groups across the study regions (a) CDFs of HGB, (b) CDFs of HGA, (c) CDFs of HGC. NE stands for
north east, N.AP. stands for North Appalachian, S.AP. stands for south Appalachian, SE stands for
south east.
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The CDFs of HGB showed that it was predominant in SE and S.AP. (Figure 6a). The
proportion of HGA soils was small across regions (soils with high infiltration, Wood et al.,
1984), except for N.AP. (Figure 6b). Meanwhile, HGC soils (slow infiltration rate) were
large in proportions in N.AP. and NE (Figure 6c).

According to Table 3, in S.AP. as the percent of the HGB soils rose, the model efficiency
in each catchment improved for APRIORI and CAL simulations. The increase in fine soil
textures proportions (HGC and HGBD (slow infiltration rate according to Wood et al., 1984))
affected the model efficiency in APRIORI and CAL. The correlations of the NS coefficient
with the different soil hydrologic groups were statistically significant (p-value < 0.05).

Table 3. The correlation between NS and predominant soil hydrologic groups (PHSHP) in the study
regions.

Region PHSHP 1 r R 2 p-Value

CAL 3

S.AP.
HGB 0.7 0.5 <0.001

HGBD 2 −0.678 0.46 <0.001
HGC −0.63 0.4 <0.001

NE
HGA 0.387 0.15 0.18
HGB 0.36 0.13 0.223
HGC −0.632 0.4 0.018

N.AP.
HGA −0.67082 0.45 0.0082
HGB 0.44721 0.2 0.1743
HGC −0.1414 0.02 0.59

SE
HGA −0.755 0.57 0.01773
HGB 0.6403 0.41 0.06148
HGC −0.55 0.31 0.0819

APRIORI 4

S.AP.
HGB 0.5916 0.35 0.0005

HGBD 2 −0.589 0.34 0.0006
HGC −0.547 0.3 0.0018

NE
HGA 0.424 0.18 <0.001
HGB 0.282 0.08 <0.001
HGC −0.63 0.4 <0.001

N.AP.
HGA −0.7 0.49 <0.001
HGB 0.519615 0.27 0.28
HGC −0.13416 0.018 0.64

SE
HGA −0.44721 0.2 0.2293
HGB 0.72111 0.52 0.02701
HGC −0.72111 0.52 0.02699

1 PHSHP: proportion of soil hydrologic properties.2 HGBD: very slow soil infiltration rate. 3 CAL: simulation
using calibrated parameters. 4 APRIORI: simulations using a priori parameters.

At calibration, in S.AP., the main improvements were associated with an increase
in variability of deep percolation parameters (ZPERC, REXP in Figure 7a) and depletion
from free water storage in the upper layer (UZK, Figure 7a), which implied additional
water leakages from the interflow and improved infiltration toward the lower layers were
achieved after calibration. The increase in LZTWM variability (see Section 3.2.1 for physical
meaning) suggested that the deep percolation permitted for additional evapotranspiration
from the lower layer.
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In NE region and according to Table 3, the increase in the HGA and HGB soil
proportions increased the model efficiency. This effect was not statistically significant
(p-value > 0.05). However, the increase in the HGC soils decreased the NS coefficients in
APRIORI and CAL (p-value < 0.05). After calibration, the effect of the fine soil texture on
the model performance was adjusted by increasing the variability of the deep percolation
parameters (UZK and REXP in Figure 6b). Therefore, additional water was needed to move
downwards to increase the evapotranspiration from the deep soils (more variable LZTWM
after calibration in Figure 7b).

As for N.AP., the results of the correlations in Table 3 indicated that the model
performance improved in APRIORI and CAL as the amount of HGA soils decreased
(p-value < 0.05). The effect of HGC and HGB soils was not statistically significant (p-value > 0.05).
In Figure 6c, the depletion coefficient from the lower layer (LZPK) was the most variable
parameter in both simulations. The variability of the drainage parameter from the upper
layer and its depletion coefficient (UZFWM and UZK, respectively) slightly increased after
calibration.

In SE (located in the State of Georgia), APRIORI was affected by HGA soils but more
significantly by HGB and HGC soils (p-value < 0.05 in Table 3). The model efficiency
improved as the HGB soils increased (p-value < 0.05). After calibration, the parameters
responsible for the subsurface processes increased in variability, e.g., UZK, ZPERC, and
REXP (Figure 7d). In addition, the baseflow contribution was enhanced due to an increase
in the LZFPM and LZSK variability (the lower layer depletion coefficients in Figure 7d).

In S.AP., SE and in most catchments from NE, the saturation excess is predominant,
according to Chouaib et al. (2018) (see Figure 6 in this manuscript). This was where the
parameters simulating the model processes of deep percolation had the highest variabil-
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ity (particularly in S.AP. and NE) and those responsible of baseflow, particularly in SE,
increased in variability after calibration. In N.AP., all the catchments are at high altitudes
in the Appalachians (Figure 7). In N.AP. the catchments were dominated by the subsurface
stormflow. In these catchments, the parameters responsible for interflow had the highest
variability after calibration.

5. Discussion

This regional study evaluated the use of a priori parameters to facilitate the SAC-SMA
model calibration and predictions. It also examined the effect of a priori parameters—when
used either for prediction or calibration—on the modeled processes. The analysis revealed
the catchment characteristics for which the predictions were less efficient.

The results demonstrated that CAL efficiency was low in catchments with poorly
drained soils. The highest efficiency using a priori parameters without calibration was
in SE (in Georgia). After calibration (CAL), the efficiency from catchments in S.AP. and
NE was less important than in SE (Figure 4c,d,f, respectively). The poorest efficiency after
calibration was found in NE and N.AP. NE and N.AP are regions with slow infiltration
rates (large proportions of HGC soils, Figure 1). The differences in efficiency across
the regions suggested that in catchments with finer soil texture, the flow simulation is
challenging. The a priori parameters of SAC-SMA guided the calibration. Therefore, some
of the uncertainty in the a priori parameters may have been transferred to the calibrated
parameters. Lower efficiency of APRIORI and CAL phases found in S.AP., NE, and N.AP
entails that the uncertainty of a priori parameter was pronounced in poorly drained soils
of the eastern US.

The physiographic characteristics of catchments in SE, primarily low relief and well-
drained soils were an indication of large water infiltration. In SE (Georgia), the increase
in the variability of all parameters after calibration (Figure 7d) pointed to improved rep-
resentation of the differences in soil properties among the catchments of the same region
compared to a priori parameters results (see the average NS coefficients in SE for APRIORI
and CAL). Remarkably, the groundwater processes were prevalent in SE due to relatively
large variability in LZFPM (a parameter responsible for drainage from the lower layer to
baseflow). The prevalent groundwater processes agreed with results from [32] with regard
to topographic index (TI) in SE; the saturation excess overland flow was predominant in
this region (see Figure 11 in [32]). In SE, the increase in LZFPM variability after calibration
referred to a better representation of the differences in groundwater effect between the
catchments. The lower layer a priori parameters did not have the same level of variability,
which hints at an increased uncertainty. This is of particular interest to catchments with
deep groundwater, such as those of SE. The soil information from STATSGO used to cal-
culate the a priori values do not exceed 2.5 m depth. The higher values of NS coefficients
after calibration suggest that some of the uncertainty was reduced.

The lower efficiency of S.AP. and NE compared to SE and S.AP. can be explained by
differences in landscape properties (the topography and soil in Figure 1). In S.AP. and
NE, the catchments had either steep or subdued topography with lower soil drainage
conditions compared to SE. It appears that, in addition to the limitation of the STATSGO
spatial resolution, the finer soil textures resulted in even more uncertain estimates of each of
the soil physical properties (θwlt, θs, θfld, and Ks). In S.AP. and NE, the a priori parameters
mostly affected by these uncertainties were LZPK (baseflow), ZPERC, and REXP (deep
percolation), given their increased variability after calibration compared to APRIORI. In
S.AP. and NE, the relatively poorly-drained soils would be the reason for less accurate
values of a priori parameters, particularly, those related to deep percolation (REXP and
ZPERC). The predominant saturation excess overland flow (Figure 11 in [32]) required
more accurate baseflow depletion coefficient (LZPK) than those suggested by the a priori
values. The increase in the LZPK variability after calibration suggested some improvement
in S.AP. and NE. The LZPK, ZPERC, and REXP had the highest variability after calibration
compared to a priori parameters in studies by [23,26]. The consistency in results with
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previous studies demonstrates that in SAC-SMA, major uncertainty of SAC-SMA a priori
parameters resides in deep percolation and groundwater processes. The free water drainage
at the upper layer (UZK) was also highly variable between catchments in S.AP. and NE,
which agreed with subsurface processes being dominant in some catchments from these
regions (Figure 11 in [32]). The θwlt used to estimate UZK (see the UZK equation in [23]
on page 252) should require improved estimates in catchments from S.AP. and NE.

According to [23], the limitation in STATSGO resolution is generated by interpolations
that downscale soil data to a grid size of 1 km × 1 km. The lack of soil sampling (once per
100 or 200 km2) in some regions would be responsible for increased uncertainty associated
with spatial interpolation, which reduces the reliability of a priori parameters [23]. The
steeper topography in S.AP. and NE could have resulted in larger heterogeneity in the
catchment soil characteristics than in conditions of flat topography (SE). Therefore, most
likely in mountainous catchments of fine soil texture (S.AP. and NE) the lower performance
after calibration is due to (i) uncertainty of measured physical properties in poorly drained
soils, and (ii) lack of soil sampling. Less dense sampling increases the uncertainty from
spatial interpolations in STATSGO. Both levels of uncertainty affect a priori parameters’
values and propagate to calibration.

In N.AP. (West Virginia), the region with poorest model efficiency, the increase in HGA
(soil with high infiltration rate) reduced model performance. This finding was in contrast
with results from other regions. The most variable parameters in N.AP. were LZPK (the
primary baseflow depletion coefficient) and UZK (the depletion coefficient from the upper
layer) (Figure 7c). This was consistent with subsurface stormflow being the dominant runoff
process. LZPK simulates the baseflow and is computed from an exponential equation that
involves the hydraulic conductivity (Ks) and other variables [23]. According to [48], Ks is
one of the most difficult hydraulic properties to assess, particularly in forested soils. The
main responsible factors are the non-uniformity of the soil porosity with depth as a result
of the biological activity and macropores. In N.AP., all catchments were mountainous
and forested [31]. The soils were poorly drained (Figure 1) The catchments in N.AP. lies
over steep slopes at high altitudes of the Appalachian. Lateral preferential flow was
likely taking place under these physiographic conditions. The predominant subsurface
stormflow in N.AP. could increase the likelihood of lateral preferential flow (Figure 11
in [32]). The hypothesis of lateral preferential flow would also be applicable for the few
highland catchments in S.AP. The lateral preferential flow is among the most relevant
mechanisms in highland forested catchments ([49–51]). The transient process of infiltration
via macropores enables large volumes of water to be quickly delivered to stream channels
([50,51]). This mechanism is usually neglected in most conceptual and physically-based
hydrologic models ([51,52]).

Using another model to capture nonlinearity of lateral preferential flow, specifically
in catchments from N.AP., is worth testing. Many research studies are attempting to
understand the particularity of lateral preferential flow and to develop more convenient
model structures for accurate predictions ([53,54]).

Precipitation data is another source of uncertainty. Although a minimum of rain
gauges density had been met in MOPEX catchments [8], precipitation depths were difficult
to estimate in mountainous catchments, particularly, in S.AP., NE and N.AP.

Despite the limitations of a priori parameters, the calibration helped to obtain satisfac-
tory predictions in most of the study catchments. This finding showed that the soil-derived
a priori parameters can represent, to some extent, the spatial heterogeneity of land surface
characteristic. The calibrated parameters issued from calibration of a priori parameters
were physically consistent and led to predictions that were helpful in regional assessment
of the flow response.

The use of soil properties to estimate a priori parameters has been promising in other
studies. For example, the approach to determine a priori parameters in [55] allowed to
reach reasonable efficiency when soil properties were used (e.g., soil texture, soil physical
properties, soil depth). Ref. [56] emphasized the advantage of physically measurable pa-
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rameters to run physically-based models. A study by [16] provided promising results using
SSURGO soil map (Soil Survey Geographic Database) instead of STATSGO to determine
SAC-SMA a priori parameters. However, the SSURGO is limited to a small number of catch-
ments in the United States. It appears that future venues to improve a priori parameters is
about improving measurable catchment properties (e.g., the soil physical properties).

The current study pointed to the need of adjusting a priori parameter in highland
catchments of fine soil texture. The physiographic features are complex there and have
great impact on the flow processes. More attention should be given to subsurface pro-
cesses, particularly, the uncertainty in lower layer parameters primarily dependent on soil
hydraulic properties. Remote sensing (e.g., LIDAR) delivers more dense data of soil and
topography. This data can be used to reduce uncertainty from the spatial interpolation of
the terrain information in STATSGO. As such, the a priori values of the parameters can be
re-evaluated to reflect the real conditions of the terrain (i.e., [57]). Better data coverage will
subsequently improve SAC-SMA model predictions using the a priori parameters. As a
future recommendation, we suggest to the use of digital mapping to estimate SAC-SMA a
priori parameters and to test their effects on predictions and calibration. One should not
undermine the uncertainty that may emerge from the digital mapping of soil data. The
opportunity to improve SAC-SMA a priori parameters is far-reaching.

6. Conclusions

The need to evaluate SAC-SMA a priori parameters and their effect on the calibration
while gaining more advanced knowledge from conducting the analysis at a regional
scale motivated the objective of this paper. The study used 63 catchments from the eastern
United States. The prediction from calibration and a priori parameters have lower efficiency
in catchments with fine soil texture and high relief/steep slopes. Predictions of higher
efficiency are obtained in catchments with well-drained soils, flatter topography and
predominant saturation excess overland flow. The results suggested that soil physical
properties obtained from the STATSGO soil map in conditions of poorly-drained soils
require adjustments; particularly those parameters responsible for simulating subsurface
processes (e.g., saturated hydraulic conductivity). The estimate of saturated hydraulic
conductivity should be further refined in mountainous forested catchments with dominant
subsurface stormflow and poorly drained soils (predominantly HGC or a combination of
HGC and HGB). The likelihood of lateral preferential flow in these specific conditions of
the catchment would increase the uncertainty of the lower zone parameters values. Similar
to most of the hydrologic models, the SAC-SMA structure does not account for the lateral
preferential flow in the simulated runoff processes. The a priori parameters’ limitations
and their implications on the modeled processes, as shown in the current study, suggest we
focus more research on enhancing the existing globally applicable technique of SAC-SMA
a priori parameters estimation. Main modifications may consider the use of remote sensing
tools of soil digital mapping. The present regional investigations is an initial step towards
improving the operational use of SAC-SMA a priori parameters. Being a regional study,
this investigation advances our understanding about the effect of catchment characteristics
on models’ performance. It also provides insights on how to improve runoff predictions
and storm flow forecasting when dealing with hydrological modelling.
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