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Abstract: On a global basis, there is trend that a majority of reservoirs are sized using a draft of 75% of
the mean annual flow (0.75 MAF). The reservoir volumes based on the proposed drought magnitude
(DM) method and the sequent peak algorithm (SPA) at 0.75 MAF draft were compared at the annual,
monthly and weekly scales using the flow sequences of 25 Canadian rivers. In our assessment, the
monthly scale is adequate for such analyses. The DM method, although capable of using flow data
at any time scale, has been demonstrated using monthly standardized hydrological index (SHI)
sequences. The moving average (MA) smoothing of the monthly SHI sequences formed the basis in
the DM method for estimating the reservoir volume through the use of the extreme number theorem,
and the hypothesis that drought magnitude is equal to the product of the drought intensity and
drought length. The truncation level in the SHI sequences was found as SHIo [ = (0.75 - 1) µo/σo],
where µo and σo are the overall mean and standard deviation of the monthly flows. The DM-based
estimates for the deficit volumes and the SPA-based reservoir volumes were found comparable
within an error margin of ±18%.

Keywords: drought magnitude; draft level; extreme number theorem; Markov chain; moving average
smoothing; standardized hydrological index; sequent peak algorithm; reservoir volume

1. Introduction

The flows from a river can be analyzed using annual, monthly or weekly scales for
estimating the reservoir volume (VR) corresponding to a certain draft level. The draft
levels are expressed as the ratio to the mean annual flow (MAF), such as 100% (1 µa),
90% (0.9 µa), 75% (0.75 µa), 60% (0.60 µa), etc., where µa is the mean of the annual flow
sequences under consideration. The ratio is denoted as ‘α’ in the ensuing text with the
values 1, 0.90, 0.80, 0.75, etc. The mean flow would turn out to be nearly the same at all
scales, though the variance and autocorrelation structure would differ significantly from
each other at respective scales. For brevity, in the ensuing text, the terms mean, standard
deviation, coefficient of variation, and lag-1 autocorrelation are referred to as µ, σ, cv and $,
respectively, whereas for the specific cases a suffix is attached to these symbols, such as µa
and σa for the annual flows; µo and σo for the monthly flows; and other symbols with the
meaning explained therein. As one moves from annual to monthly and further to weekly
scales, the σ and $ of the flow sequences will increase warranting a greater storage volume
of the reservoir. The sequent peak algorithm (SPA) can be touted as the universal method
for sizing a reservoir because of its popularity and wide familiarity. The method first
developed by Thomas and Burden [1] is documented in hydrological and water resources
books [2–6], and journal papers [7–10], among others. The river flow data, primarily, at the
annual and monthly scales are used at a proposed site of a dam for estimating a design
value of the reservoir size.

The hydrological drought analyses have been the subject of considerable investi-
gations from the decade of the 1970s, and the pioneering models are well documented
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in Yevjevich [11,12]. Two main parameters of the hydrological drought viz., duration
(length, L) and magnitude (M, also termed as severity), have been the subject of study. The
drought modelling activity has been focused on the drought lengths, with a less noticeable
thrust towards the drought magnitude, which, in a true sense, is of greater importance
in terms of the management of waters, and consequently for the sizing and operation
of reservoirs that are built across rivers. The research work on modeling the drought
magnitude was enhanced by notable researchers [13–25]. In the recent past, Sharma and
Panu [24] have suggested a simple model for predicting the drought magnitude by cou-
pling it with the drought length through a third parameter, namely, drought intensity,
i.e., magnitude (M) = intensity (Id) × duration (L). They have carried out analyses by stan-
dardizing the flow sequences in the respective scales (annual, month and week), which
are named SHI (standardized hydrological index) sequences. In brief, the SHI is an entity
with µ = 0 and σ = 1, while retaining the probabilistic structure/character of the flow
sequence under consideration. The SHI has performed well in the modelling of drought
lengths and magnitudes on Canadian river flow sequences at annual, monthly and weekly
scales [23,24].

Recently, Sharma and Panu [26] have endeavored to link the deficit volume (DT) using
the drought magnitude (DM)-based methodology to the reservoir volume (VR) based on
the SPA. They also demonstrated that at annual and monthly scales, the draft equivalent
to 0.90 to 1 µa indeed can be construed to be high drafts for the design and operation of
reservoirs. For pragmatic reasons, a majority of reservoirs are designed and operated at
a 0.75 µa level of the draft [27]; therefore, there is a need to examine/assess the drought
magnitude-based analysis at the above draft level. The estimation of the deficit volume
based on the DM-based methodology at the annual time scale is fairly straightforward.
However, at monthly and weekly scales, the estimation of the deficit volume presents some
challenges, which form the main focus of this investigation. The DM-based deficit volumes
are being compared with the estimates of the reservoir volume from the conventional SPA.
The scope of this paper includes the assessment of the efficacy of the DM-based methods
of reservoir sizing to the popular SPA, and to demonstrate that the proposed method is not
only comparable but also possesses significant advantages, such as the ability to assign a
return period and evaluate the associated risk in the design of reservoirs.

2. Sequent Peak Algorithm (SPA) and Drought Magnitude (DM)-Based Procedures

The sequent peak algorithm (SPA), currently, is the most familiar procedure for the
estimation of reservoir volume (VR). The SPA requires historical or synthesized river
flow data as inflows, drafts as outflows, and data are analyzed without stationarization.
A distinction is made between the terms stationarization and standardization using the
monthly flows as an example. The monthly flows are regarded as nonstationary because
of the periodicity imbued in them. The flow sequences, when standardized month-by-
month are rendered stationary with µ = 0 and σ = 1 in the resultant sequences. Such
an operation to stationarize the data is referred to as standardization in the ensuing
text. The nonstationary monthly flows can be standardized (not by month-by-month
standardization but rather flatly using an overall µ, σ (denoted respectively as µo and σo)
of the entire monthly flow sequences). For example, in the Bow River case, the overall
µo = 38.96 m3/s and σo = 40.85 m3/s (Table 1) and shall still retain the nonstationary
character of flows. Such standardization is referred to as flat standardization in the ensuing
text. The flat standardized sequence shall also have µ = 0 and σ = 1. The annual flow
sequences are generally perceived to be stationary and their standardization is tantamount
to flat standardization.
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Table 1. Summary of statistical parameters of annual and monthly flow sequences of the Bow River.

Parameter
Months

Remarks
1 2 3 4 5 6 7 8 9 10 11 12

µ 9.05 8.21 7.77 10.54 50.10 124.68 104.74 64.69 38.83 23.82 14.52 10.59 Overall µ = µo =
38.96 †

σ 1.22 1.15 0.92 3.15 20.35 30.71 26.28 13.15 7.44 4.72 2.61 1.55 σav = 9.44, σo = 40.85
† σmax = 30.71

cv 0.14 0.14 0.12 0.30 0.41 0.25 0.25 0.20 0.19 0.20 0.18 0.15 cvo = 1.05

SHIx −1.85 −1.78 −2.11 −0.84 −0.62 −1.11 1.00 −1.23 −1.30 −1.26 −1.39 −1.39

α’ 0.97 0.97 0.97 0.93 0.90 0.94 0.94 0.95 0.95 0.95 0.96 0.97 Mean of α’ = 0.95

Notation (†) stands for the values based on the nonstationary monthly flows. Annual statistics: µa = 38.96 m3/s; σa = 5.22 m3/s; cva = 0.134;
‘SHIo’ = −1.87 at 0.75µa, i.e., α = 0.75. At the monthly scale µo = 38.96 m3/s; σav = 9.44; SHIav = (0.75 − 1) × 38.96/9.44 = −1.03; and
likewise, SHIm = (0.75 − 1) × 38.96/30.71 = −0.32. These numbers in bold and italic have been referred in the text.

The computations using SPA are amenable to the nonstationary monthly and weekly
flow sequences, the stationary annual flow sequences, and the standardized monthly,
weekly and annual flow sequences alike. The calculations are conducted numerically
using the mass curve or the residual mass curve methods involving inflows and drafts
to assess the reservoir volume (VR). The procedure is fully acquiescent to computerized
computations to arrive at the required VR for a given situation. The aforesaid methods
for computations of reservoir size using the SPA are well documented in hydrologic
textbooks [3,5]. Although the SPA offers the advantage of treating the stationary and
non-stationary flow data in a likewise manner, it suffers from the shortcoming that no
return period can be attached to the VR estimates. For instance, in a dataset of the annual
flows of the Bow River (Table 2) for 106 years (1911–2016), the VR at a 0.75 MAF level of
the draft was computed as 4.18 × 107 m3, whereas the estimate based on 53 years of the
sample (1911–1963) turned out to be 6.01 × 107 m3. Although, this discrepancy can be
attributed to differing estimates of µ, σ, and $ from these samples, yet attaching a return
period (T = 106 or 53) to these estimates is not devoid of uncertainty. Similar to the SPA, the
non-stationary flow sequences can be truncated (or chopped) at a constant draft level and
the runs of the flow deficiency can be observed. The deficiency in the largest run can be
computed numerically. This deficiency is denoted as ‘DT-o in the ensuing text. The reservoir
volumes thus have two estimates, one based on the SPA and another by counting the flow
deficiency below a truncation level. For example, in the Bow River case (1911–2016), at the
monthly scale VR was computed to be 4.01 × 108 m3, whereas ‘DT-o was computed to be
3.99 × 108 m3 (Table 3). These estimates of the volumes may slightly differ from each other,
though may turn out to be equal under specific draft conditions.

It is imperative that in the DM-based procedure, the flow sequences must be stationary.
Therefore, standardization of the annual, monthly and weekly sequences is achieved and
the resultant sequences are known as SHI sequences, which turn out to be weakly stationary
(i.e., second-order stationarity). At the annual time scale, the draft is set at the levels 1 µa,
0.9 µa, 0.8 µa, 0.75 µa, etc. The SHI sequences are truncated at these draft levels to carry
out analyses in the DM-based procedure. For example, in the Bow River case at the annual
time scale (Table 1: µa = 38.96 m3/s and cva = 0.13; the suffix “a” stands for annual) with
the draft = 1 µa, the truncation (SHIx) level in the SHI sequence can be determined by
the relationship, SHIx = (αµa − µa)/σa = (α − 1)/cva = (1 − 1)/0.134 = 0. At the draft of
0.75 µa (α = 0.75), the truncation level (SHIx) shall turn out to be (0.75−1)/0.134 = −1.87.
Because of a single value of SHIx, the analysis is tractable at the annual scale for all the
draft levels (i.e., 1µa, 0.90 µa, and 0.75 µa).
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Table 2. Summary of statistical properties of annual and monthly flow sequences of the rivers across Canada used for
reservoir volume analysis.

Name, Location, and the Numeric Identifier
of the River in Figure 1

Years of Data
(Period)

Mean
(m3/s) cva, cvav, cvm, cvo, cvow $a, $ma1, $ma2

1. Fraser at Shelley, BC08KB001 67 (1951–17) 808.89 0.14, 0.28, 0.65, 0.84, 0.89 −0.04,0.50, 0.75
(54◦00′13” N, 122◦37′29” W), 32,400 km2

2. Athabasca River at Athabasca, AB07BE001 67 (1952–18) 426.21 0.23, 0.35, 0.80, 0.90, 0.97 0.19, 0.60, 0.83
(54◦43′20”N, 113◦17′10” W), 74,600 km2

3. Bow at Banff, AB05BB001 106 (1911–16) 38.96 0.13, 0.24, 0.79, 1.05, 1.11 0.07, 0.50, 0.76
(51◦10′30” N, 115◦34′10” W), 2210 km2

4. South Saskatchewan, AB05JA001 59 (1960–18) 167.64 0.35, 0.52, 1.85, 1.07, 1.16 0.20, 0.64, 0.83
(50◦03′00” N, 110◦40′00” W), 56,369 km2

5. English River, ON05QA002 97 (1922–18) 58.6 0.32, 0.51, 0.95, 0.74, 0.77 0.21, 0.76, 0.88
(49◦52’ 30”’ N, 91◦27’30” W), 6230 km2

6. Pipestone at Karl Lake, ON04DA001 50 (1967–16) 54.4 0.40, 0.56, 1.17, 0.95, 1.05 0.32, 0.58, 0.79
(52◦34′50” N, 90◦11′12” W), 5960 km2

7. Neebing at Thunder Bay, ON02AB008 64 (1954–17) 1.62 0.37, 0.81, 2.14, 1.48, 1.87 0.24, 0.43, 0.73
(48◦23′00” N, 89◦18′23” W), 187 km2

8. Pic River near Marathon, ON02BB003 50 (1968–17) 22.2 0.20, 0.56, 1.22, 1.02, 1.24 0.02, 0.41, 0.71
(48◦46′26” N, 86◦17′49” W), 4270 km2

9. Pagwachaun at highway#11, ON04JD005 51 (1968–18) 24.6 0.22, 0.62, 1.47, 1.17, 1.44 0.08, 0.36, 0.69
(49◦46′00” N, 85◦14′00” W), 2020 km2

10. Nagagami at highway#11, ON04JC002 51 (1968–18) 23.05 0.25, 0.48, 1.07, 1.01,1.11 0.06, 0.49, 0.74
(49◦46′44” N, 84◦31′48” W), 2410 km2

11. Batchwana at Batchwana, ON02BF001 48 (1971–18) 50.21 0.24, 0.55, 1.35, 1.05, 1.11 0.13, 0.28, 0.65
(49◦59′36” N, 84◦31′31” W), 1190 km2

12. Shekak at highway #11, ON04JC003 36 (1951–86) 35.94 0.18, 0.43, 1.22, 1.07, 1.20 −0.10, 0.45, 0.73
(49◦49′47” N, 84◦30′33” W), 3290 km2

13. Goulis near Searchmont, ON02BF002 50 (1968–17) 18.16 0.22, 0.58, 1.32, 1.05, 1.32 0.06, 0.32, 0.66
(46◦51′37” N, 83◦38′18” W), 1160 km2

14. Whitson at Chelmsford, ON02CF007 58 (1961–18) 2.98 0.27, 0.54, 1.58, 1.19, 1.50 0.13, 0.39, 0.70
(46◦34′56” N, 81◦11′59” W) 243 km2

15. North French near Mouth, ON04MF001 51 (1967–18) 95.51 0.21, 0.55, 1.30, 1.05, 1.29 −0.04, 0.34, 0.66
(51◦05′00” N, 80◦46′00” W), 6680 km2

16. Commanda at Commanda, ON02DD015 44 (1975–18) 1.76 0.23, 0.53, 1.02, 0.95, 1.21 −0.12, 0.34, 0.70
(45◦56′55” N, 79◦36′24” W), 106 km2

17. North Magnetwan, ON02EA010 51(1968–18) 2.85 0.24, 0.54, 0.99, 0.93,1.25 0.10, 0.29, 0.69
(45◦42′13” N, 79◦18′31” W), 155 km2

18. Becancour A Lyster QC02PL001 46 (1923–68) 30.6 0.20, 0.62, 1.27, 1.08, 1.32 0.03, 0.26, 0.65
(46◦22′08” N, 71◦37′21” W), 1410 km2

19. Beaurivage Sainte Entiene, QC02PJ007 75 (1926–00) 14.19 0.26, 0.62, 1.32, 1.19, 1.47 0.19, 0.24, 0.64
(46◦39′33” N, 71◦17′19” W), 709 km2

20. Lepreau River at Lepreau, NB01AQ001 100 (1919–18) 7.41 0.22, 0.59, 0.78, 0.81, 1.08 0.10, 0.23, 0.62
(45◦10′11” N, 66◦28′05” W), 239 km2

21. Carruther at Saint Anthony, PE01CA003 56 (1962–17) 0.97 0.21, 0.57, 1.27, 1.05, 1.34 0.04, 0.22, 0.62
(46◦44′44” N, 64◦10′39” W), 46.8 km2

22. Bevearbank at Kinsac, NS01DG003 96 (1922–17) 3.04 0.19, 0.60, 0.74, 0.80, 1.10 −0.20, 0.13, 0.55
(44◦51′04” N, 63◦39′50” W), 97 km2

23. North Margaree, NS01FB001 90 (1929–18) 17.03 0.14, 0.48, 1.00, 0.76, 0.96 0.17, 0.17, 0.56
(46◦22′08” N, 60◦58′31” W, 368 km2

24. Upper Humber, NF02YL001 65 (1953–17) 79.72 0.12, 0.44, 0.85, 0.87, 1.07 0.16, 0.13, 0.56
(49◦14′34” N, 57◦21′36” W), 2210 km2

25. Torrent at Bristol pool, NF02YC001 59 (1960–18) 24.81 0.15, 0.44, 1.15, 0.88, 1.07 0.18, 0.16, 0.59
(50◦36′26” N, 57◦09′05” W), 624 km2

Note: $a (annual), $ma1 (MA1 smoothed monthly SHI sequences) and ρma2 (MA2 smoothed monthly SHI sequences) show lag-1 auto-
correlation. The notation cva denotes the values of coefficient of variation at the annual scale, cvav average of 12 monthly values of cv’s,
which is computed as the ratio of averaged out (σav) of 12 values to overall mean µo, cvm stands for the maximum value among monthly
12 values of cv computed as the ratio of σmax (maximum value of standard deviation) to µo. cvo stands for coefficient of variation in the
non-stationary monthly sequence, i.e., the ratio of overall monthly σo to µo, likewise cvow stands for the ratio of the overall weekly standard
deviation to µo.
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Table 3. Comparison of VR and DT-o at the draft level of 0.75µo: annual, monthly and weekly scales.

River No.

Time Scale of the Analysis

Increase in VR (%)Annual Monthly Weekly

SHIo VR (m3) ‘DT-o(m3) SHIo VR(m3) ‘DT-o(m3) SHIo VR (m3) ‘DT-o(m3)

1 2 3 4 5 6 7 8 9 10 Month
(%)

Week
(%)

1. −1.87 1.33 × 109 1.33 × 109 −0.30 7.21 × 109 7.21 × 109 −0.28 7.75 × 109 7.34 × 109 483 * 7.5 **
2. −1.10 2.59 × 109 2.59 × 109 −0.28 6.15 × 109 4.17 × 109 −0.26 6.27 × 109 4.41 × 109 137 1.9
3. −1.87 4.18 × 107 4.18 × 107 −0.24 4.01 × 108 3.99 × 108 −0.23 4.25 × 108 4.25 × 108 854 6.0
4. −0.70 5.89 × 109 4.06 × 109 −0.24 6.75 × 109 4.45 × 109 −0.22 6.88 × 109 2.48 × 109 15 1.9
5. −0.77 1.54 × 109 1.54 × 109 −0.34 2.04 × 109 1.36 × 109 −0.32 2.07 × 109 1.39 × 109 33 1.5
6. −0.79 1.25 × 109 1.25 × 109 −0.26 1.61 × 109 0.71 × 109 −0.24 1.68 × 109 0.73 × 109 29 4.3
7. −0.68 3.61 × 107 3.61 × 107 −0.17 5.69 × 107 3.57 × 107 −0.13 5.81 × 107 3.70 × 107 58 2.1
8. −1.05 5.39 × 108 5.39 × 108 −0.25 8.39 × 108 7.38 × 108 −0.20 8.71 × 108 7.60 × 108 56 3.8
9. −1.00 2.23 × 108 2.23 × 108 −0.21 4.63 × 108 3.65 × 108 −0.17 4.92 × 108 3.70 × 108 107 6.3
10. −1.14 2.44 × 108 2.44 × 108 −0.25 3.44 × 108 3.40 × 108 −0.19 3.65 × 108 3.40 × 108 41 6.1
11. −1.25 0.74 × 108 0.74 × 108 −0.24 3.37 × 108 2.92 × 108 −0.21 3.44 × 109 3.04 × 109 355 2.1
12. −1.41 1.22 × 108 1.22 × 108 −0.24 4.78 × 108 3.75 × 108 −0.20 4.95 × 108 4.95 × 108 292 3.6
13. −1.17 1.31 × 108 1.31 × 108 −0.24 2.61 × 108 2.61 × 108 −0.19 2.70 × 108 2.70 × 108 161 3.5
14. −1.07 2.96 × 107 2.96 × 107 −0.21 6.57 × 107 3.53 × 107 −0.17 6.70 × 107 4.31 × 107 122 2.1
15. −1.21 1.09 × 109 1.09 × 109 −0.24 1.72 × 109 1.17 × 109 −0.23 1.79 × 109 0.88 × 109 58 4.1
16. −1.10 0.58 × 107 0.58 × 107 −0.26 2.45 × 107 2.21 × 107 −0.19 2.51 × 107 2.01 × 107 287 2.5
17. −1.06 1.37 × 107 1.37 × 107 −0.27 3.76 × 107 3.31 × 107 −0.23 3.80 × 107 3.55 × 107 174 1.1
18. −1.22 0.80 × 108 0.80 × 108 −0.23 3.95 × 108 3.95 × 108 −0.26 4.10 × 108 3.01 × 108 393 1.0
19. −0.98 1.17 × 108 1.17 × 108 −0.21 2.42 × 108 1.90 × 108 −0.24 2.41 × 108 1.88 × 108 107 0.0
20. −1.12 0.58 × 108 0.58 × 108 −0.31 1.16 × 108 0.77 × 108 −0.23 1.21 × 108 0.79 × 108 100 4.3
21. −1.20 0.75 × 107 0.75 × 107 −0.24 1.38 × 107 1.15 × 107 −0.19 1.44 × 107 1.21 × 107 84 4.3
22. −1.34 1.92 × 107 1.92 × 107 −0.31 3.52 × 107 3.09 × 107 −0.23 3.66 × 107 3.38 × 107 83 4.0
23. −1.74 0 storage 0 volume −0.33 1.28 × 108 1.28 × 108 −0.26 1.33 × 108 1.05 × 108 – 3.9
24. −2.03 0 storage 0 volume −0.29 8.74 × 108 8.74 × 108 −0.23 9.28 × 108 5.38 × 108 – 6.2
25. −1.70 0.38 × 108 3.80 × 107 −0.29 2.49 × 108 2.49 × 108 −0.23 2.56 × 108 2.09 × 108 555 2.8

Mean 199% 3.3%

Asterisk (*) denotes the percentage increase in monthly value compared to the annual value. Asterisk (**) denotes the percentage increase
in the weekly value of VR compared to the monthly value, and – means no values were evaluated for the VR and DT-o because both were
zero at the annual scale. These Bold numbers in the coulumns 3, 6, and 9 are SPA based numbers for comaparative purposes.

Hydrology 2021, 8, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 1. Map of Canada showing the hydrometric gauging stations (source: Environment Can-

ada). 

Table 3. Comparison of VR and DT-o at the draft level of 0.75µ o: annual, monthly and weekly scales. 

River 

No. 

Time Scale of the Analysis 

Increase in VR (%) Annual  Monthly  Weekly  

SHIo VR (m3) ‘DT-o(m3) SHIo VR(m3) ‘DT-o(m3) SHIo VR (m3) ‘DT-o(m3) 

1 2 3 4 5 6 7 8 9 10 
Month 

(%) 

Week 

(%) 

1. −1.87 1.33 × 109 1.33 × 109 −0.30 7.21 × 109 7.21 × 109 −0.28 7.75 × 109 7.34 × 109 483 * 7.5 ** 

2. −1.10 2.59 × 109 2.59 × 109 −0.28 6.15 × 109 4.17 × 109 −0.26 6.27 × 109 4.41 × 109 137 1.9 

3. −1.87 4.18 × 107 4.18 × 107 −0.24 4.01 × 108 3.99 × 108 −0.23 4.25 × 108 4.25 × 108 854 6.0 

4. −0.70 5.89 × 109 4.06 × 109 −0.24 6.75 × 109 4.45 × 109 −0.22 6.88 × 109 2.48 × 109 15 1.9 

5. −0.77 1.54 × 109 1.54 × 109 −0.34 2.04 × 109 1.36 × 109 −0.32 2.07 × 109 1.39 × 109 33 1.5 

6. −0.79 1.25 × 109 1.25 × 109 −0.26 1.61 × 109 0.71 × 109 −0.24 1.68 × 109 0.73 × 109 29 4.3 

7. −0.68 3.61 × 107 3.61 × 107 −0.17 5.69 × 107 3.57 × 107 −0.13 5.81 × 107 3.70 × 107 58 2.1 

8. −1.05 5.39 × 108 5.39 × 108 −0.25 8.39 × 108 7.38 × 108 −0.20 8.71 × 108 7.60 × 108 56 3.8 

9. −1.00 2.23 × 108 2.23 × 108 −0.21 4.63 × 108 3.65 × 108 −0.17 4.92 × 108 3.70 × 108 107 6.3 

10. −1.14 2.44 × 108 2.44 × 108 −0.25 3.44 × 108 3.40 × 108 −0.19 3.65 × 108 3.40 × 108 41 6.1 

11. −1.25 0.74 × 108 0.74 × 108 −0.24 3.37 × 108 2.92 × 108 −0.21 3.44 × 109 3.04 × 109 355 2.1 

12. −1.41 1.22 × 108 1.22 × 108 −0.24 4.78 × 108 3.75 × 108 −0.20 4.95 × 108 4.95 × 108 292 3.6 

13. −1.17 1.31 × 108 1.31 × 108 −0.24 2.61 × 108 2.61 × 108 −0.19 2.70 × 108 2.70 × 108 161 3.5 

14. −1.07 2.96 × 107 2.96 × 107 −0.21 6.57 × 107 3.53 × 107 −0.17 6.70 × 107 4.31 × 107 122 2.1 

15. −1.21 1.09 × 109 1.09 × 109 −0.24 1.72 × 109 1.17 × 109 −0.23 1.79 × 109 0.88 × 109 58 4.1 

16. −1.10 0.58 × 107 0.58 × 107 −0.26 2.45 × 107 2.21 × 107 −0.19 2.51 × 107 2.01 × 107 287 2.5 

17. −1.06 1.37 × 107 1.37 × 107 −0.27 3.76 × 107 3.31 × 107 −0.23 3.80 × 107 3.55 × 107 174 1.1 

18. −1.22 0.80 × 108 0.80 × 108 −0.23 3.95 × 108 3.95 × 108 −0.26 4.10 × 108 3.01 × 108 393 1.0 

19. −0.98 1.17 × 108 1.17 × 108 −0.21 2.42 × 108 1.90 × 108 −0.24 2.41 × 108 1.88 × 108 107 0.0 

20. −1.12 0.58 × 108 0.58 × 108 −0.31 1.16 × 108 0.77 × 108 −0.23 1.21 × 108 0.79 × 108 100 4.3 

21. −1.20 0.75 × 107 0.75 × 107 −0.24 1.38 × 107 1.15 × 107 −0.19 1.44 × 107 1.21 × 107 84 4.3 

22. −1.34 1.92 × 107 1.92 × 107 −0.31 3.52 × 107 3.09 × 107 −0.23 3.66 × 107 3.38 × 107 83 4.0 

23. −1.74 0 storage 0 volume −0.33 1.28 × 108 1.28 × 108 −0.26 1.33 × 108 1.05 × 108 -- 3.9 

24. −2.03 0 storage 0 volume −0.29 8.74 × 108 8.74 × 108 −0.23 9.28 × 108 5.38 × 108 -- 6.2 

25. −1.70 0.38 × 108 3.80 × 107 −0.29 2.49 × 108 2.49 × 108 −0.23 2.56 × 108 2.09 × 108 555 2.8 

Figure 1. Map of Canada showing the hydrometric gauging stations (source: Environment Canada).

At the monthly scale with a draft level of 1 µa (=1 µo), the SHI sequences are truncated
at SHIx = 0 to correspond to the variable monthly means. It should also be realized
that µa (annual mean) = µo (overall monthly mean) and thus, these terms can be used
interchangeably. The SHI sequence obtained has uniform µ = 0 and σ = 1 across the months.
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The sequence is construed as stationary and is tractable using the known methods of
stochastic analysis. However, at 0.75 µo, there shall emerge 12 values of SHIx to truncate the
SHI sequence. For example, in the Bow River case at the draft level of 0.75 µo, the 12 values
of cv vary from 0.12 to 0.41 with the corresponding SHIx values ranging from −2.11 to
−0.62 (Table 1). Thus, the SHI sequence needs to be truncated by variable SHIx values (or
a curve rather than a horizontal line), which presents a complex scenario requiring some
procedures such that known methods of statistical analysis for the estimation of drought
magnitude can be applied. The above description can be extended to weekly flows and
corresponding SHI sequences.

2.1. Strategies for Truncating the Non-Stationary (Monthly) Flow Sequences

At draft levels less than 1µo, such as 0.75µo, one way of conducting the DM-based
analysis is through selecting varying values of “α” with respect to each month in order to
render the SHIX = (α1 − 1)/cv1 = (α2 − 1)/cv2 = (α3 − 1)/cv3 = (α4 − 1)/cv4 — = (α12
− 1)/cv12 = ‘SHIo’ (say). It is noted that cv1 is defined herein as the ratio of σ1 (standard
deviation of month 1) to µ1 (mean of month 1), and likewise for the rest of the months.
The value of ‘SHIo’ thus obtained is representative of the flat standardized value of 0.75µo
of the monthly flow sequence with the overall µo = 38.96 m3/s and σo = 40.85 m3/s, and
consequently cvo = 1.05 (italicized value in the last column (labelled as remarks) shown in
Table 1) for the Bow River. There is a difference between the overall σo (=40.85 m3/s) and
σav (=9.44 m3/s). The value σav (=9.44 m3/s) is the arithmetic average of 12 values of σ’s
corresponding to their respective months. Hence, one value of ‘SHIo’ is obtained by the
flat standardization of the 0.75 µo viz., ‘SHIo’ = (0.75 µo − µo)/σo = (0.75 − 1)/cvo = −0.24
with cvo = 1.05 (also indicated earlier). In the case of the monthly SHI sequences for the
Bow River, at ‘SHIo’ = −0.24 the values of “α” (say: α1, α2, α3, . . . α12) are obtained as
0.97 (= –0.24 × cv1 + 1), 0.97, 0.97, 0.93, 0.90, 0.94, 0.94, 0.95, 0.95, 0.95, 0.96 and 0.96. These
values of “α” (denoted as α’) are varying from 0.90 to 0.97 with a mean value of 0.95. In
other words, at the draft of 0.75 µo, the monthly flows are being truncated at the aforesaid
α’ levels of the respective monthly means, which still maintain a horizontal straight line
across the months.

Other considerations for obtaining values of the ‘SHIo’ could be as follows: (1) the
average of 12 monthly values of SHIx (denoted as SHIav), (2) the maximum of 12 SHIx
values (denoted as SHIm), or (3) any other combination of these 12 values. Thus, the
quantity “SHIav

” is defined to be equal to “(α − 1) × µo/σav”, and likewise the quantity
“SHIm” to be equal to “(α − 1) × µo/σmax” (where σmax is the maximum value among
12 monthly values of standard deviations). The above analogy can also be extended to
the weekly flows, where there are 52 values of α’. The hypothesis proposed in the paper
is that the ‘SHIx’ = ‘SHIo’ (a flat standardized value), and the use of SHIm or SHIav for
truncating the SHI sequences provides a reasonable procedure to evaluate the drought
magnitude as an estimator for the reservoir volume at the draft of 0.75 µo. The best estimate
from the above combinations can be assessed by comparing the DM-based results with the
SPA-based outputs.

2.2. Computation of Drought Magnitude (MT-o) by the DM-Based Counting Method

In the DM-based counting method, the SHI sequence is truncated at the level SHIx.
The values of the SHI below the truncation level (SHIx level) are referred to as the drought
(dubbed as ‘d’); whereas, the values of the SHI above the truncation level are referred to as
the wet (dubbed as ‘w’). Initially, at each time scale, the value of SHIx is set = ‘SHIo’. In a
historical record of N (=T) years, there could emerge several spells of drought (or dry) and
wet conditions, only the length of the longest drought spell (denoted as LT-o) is counted.
The absolute values of the drought intensities in the longest drought spell are added to
represent the largest drought magnitude (MT-o). The largest deficit volume (DT-o) during
a drought spell is computed as DT-o = σ × MT-o for the annual and DT-o = σav ×MT-o
for the monthly flow sequences. It should be noted that the subscript ‘o’ stands for the
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observed, that is, DT-o and MT-o, respectively, are the observed entities. Likewise, when
these entities are estimated analytically, the subscript ‘e’ is used such as MT-e and DT-e.
All the calculations are done in terms of MT-o (MT-e), or drought magnitude, which are
converted to DT-o (DT-e), i.e., deficiency volume by the aforesaid linkage relationship.

2.3. Estimation of Drought Magnitude (MT-e) by the DM-Based Analytical Method

For a given return period (T), the longest drought period (LT), and the corresponding
drought magnitude (MT), can be estimated using the drought magnitude-based analytical
method for which the parameters are derived from the historical flow data (or regional
patterns of these parameters). In the DM-based analytical method, the probabilistic relation-
ship for MT can be obtained by applying the extreme number theorem [28] and utilizing the
linkage relationship. The following applies: drought magnitude (M) = drought intensity
(Id) × characteristic drought length (Lc). The drought intensity (Id) can be assumed to
follow a truncated normal probability density function (pdf) and the drought magnitude
(M) to obey the normal pdf because this quantity represents the summation of the drought
intensity spikes. The mean and variance of “Id” are evaluated using the truncated normal
pdf. The longest drought duration (LT) is estimated by the Markov chain (MC)-based
relationship, which is shown as Equation (A9) in Appendix A. From the above linkage
relationship, the terms MT and LT are related and thus, for design purposes over a time
period (T), it is imperative to obtain the longest drought duration (LT) for the estimation
of the term MT. On the monthly basis, the MC1 (Markov chain order 1) is a reasonable
predictor (or estimator) of LT. In the MC1-based relationship, the four input parameters are
conditional probabilities (qq, qp), plotting position factor (F), and return period (T) which
is normally assumed to be equal to the sample size. The conditional probabilities qq (i.e.,
present period is drought given that the past period was also drought) and qp (i.e., present
period is drought given that the past period was wet) are estimated based on the analytical
relationship due to Cramer and Leadbetter [29]. In the present analysis, the relationship
F = 1.33(1 + 0.25/T), developed for Canadian rivers by Adamowski [30], was used. The
MC-based value of LT can be reduced to the characteristic drought length (Lc) by using a
simple weighing parameter Φ (ranging from 0 to 1), which can also be obtained through
an optimization procedure.

Based on the above notions for the estimation of MT, the following probability-based
relationship can be deduced (see: Appendix A for detail).

E(MT) =
n1

∑
j=0

(
Yj+1 + Yj

)
2

[
P
(
MT ≤ Yj+1

)
− P

(
MT ≤ Yj

)]
. (1)

Equation (1) is a discrete version of evaluating the mean from the first principles, and
the following applies: [µ = E(x) = ∑x p(x), where x is a value of the random variable with
the occurrence probability = p(x)]. The notation P (.) stands for the cumulative probability
and p (.) stands for the simple probability. Since MT is a continuous random variable, and
thus possesses a continuous pdf such that p (MT = Yj) can be evaluated as P (MT ≤ Y j+1)–P
(MT ≤ Yj) with MT = Yj replaced by the mean value (Yj+1 +Yj)/2. It is noted that the upper
limit of summation (n1) will vary from the annual to monthly scales. For the annual scale,
the maximum value of Y = 30 was found to be sufficient, whereas for the monthly scale,
the maximum value of Y = 150 was found to be adequate. For integration purposes, the
Y is discretized into small intervals with a step (∆) of 0.05, such that n1 becomes equal to
600 (=30/0.05) at the annual scale, and likewise equal to 3000 for the monthly scale. For
purposes of numerical integration, thus, these Yj’s shall take on the values as 0, 0.05, 0.10,
0.15, etc., up to 150 at the monthly scale and up to 30 at the annual scale.

A simplified version for the estimation of E (MT) can be developed based only on the
mean of the drought intensity (µd) as follows:

E(MT) = µd LT. (2)
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It should be borne in mind that Equation (1) involves implicitly both the mean and
variance of drought intensity (Id) for the estimation of E (MT). Relevant detail on the
derivation of Equations (1) and (2) is provided in Appendix A.

At the monthly and weekly scales, the SHI sequences of Canadian rivers have been
reported by Sharma and Panu [23] to follow a gamma pdf vis-à-vis the normal pdf for
the annual SHI sequences. In such a situation, firstly the gamma-distributed SHI value at
the desired truncation level (denoted as SHIx) is transformed into an equivalent standard
normal number z0 using the following Wilson–Hilferty transformation, as documented in
Viessman and Lewis [31]:

z0 =

(
3

cv

)
[(cv SHIx + 1)0.333 − 1] + 0.333 cv. (3)

A corresponding value of the drought probability (q) can be obtained from the follow-
ing polynomial equation [32]:

B = 0.5
[
1 + 0.196854|z0|+ 0.115194|z0|2 + 0.000344|z0|3 + 0.019527|z0|4

]−4
. (4)

where, B = q for z0 < 0; and q = (1 − B) for z0 ≥ 0 and the term |z0| represents the
absolute value of z0. The error evaluated by this formula is less than 0.00025 and ex-
actly the same value is obtained from a standard normal probability table for z0 = 0 (i.e.,
q = B = (1 − 0.5) = 0.5).

As an illustrative example, consider the Bow River, which obeys the gamma pdf with
cvav = 0.24 at the monthly scale (Table 1) for a value of SHIx = −0.24. The corresponding
z0 = −0.16 was obtained using the Wilson–Hilferty transformation given in Equation (3).
Substituting z0 = −0.16 in Equation (4), the value of q would result to be 0.45. It is reported
earlier in the text that monthly flow sequences in Canadian rivers tend to follow the gamma
pdf, and for this reason, the gamma pdf has been used in this example.

In the DM-based procedure, DT-e (or DT-o) should correspond to VR obtained from the
SPA, in turn, such an expectation forms the criterion for perfecting the DM-based estimates.
Once the DM-based estimates for an appropriate LT and MT are evaluated (either by
the counting or analytical methods), then these quantities are used for the estimation of
reservoir volumes. Analytically derived E (MT) is denoted as MT-e and correspondingly,
DT-e = σav ×MT-e (subscript “e” stands for analytically estimated).

3. Data Set and Computations of Reservoir Volumes by the SPA and
DM-Based Methods

Twenty-five rivers from Western to Atlantic Canada (Figure 1, Table 2) were involved
in the analysis. The rivers encompassed drainage areas ranging from 46 to 74,600 km2 with
the data bank spanning from 36 to 106 years. The monthly and annual flow data for these
25 rivers were extracted from the Canadian hydrological database [33]. The weekly flows
were collated using the daily flow data for the above gauging stations. The values of the
statistical parameters µ, σ, cv, and $ for these rivers at annual, monthly and weekly scales
were computed and are summarized in Table 2. Since cv = σ/µ, therefore instead of σ, the
values of cv are summarized (Table 2) for the sake of brevity and ease of comprehension.
In the case of the monthly and weekly flow sequences, there are 12 and 52 values of cv
(or σ) that were used in respective standardization. The cvav was computed as the ratio
of σav (arithmetic average of 12 monthly values) to µo (overall monthly mean or MAF, µa)
and similar calculations also apply to the weekly scale. The first step in the analysis was to
compute the statistics viz., µo and σo of the monthly sequences for the flat standardization
of these sequences. Likewise, these statistics were computed for the weekly flow sequences.
The flat standardized values of cv at monthly and weekly scales are denoted as cvo and
cvow. The flat standardized values of ‘SHIo’ were computed at the 0.75µo level of cutoff
using the overall µ (=µo) and σ (=σo or σow) of the non-stationary monthly and weekly
flow sequences, and are shown in Table 3.
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3.1. Inter-Comparison of Reservoir (VR) and Deficit (‘DT-o) Volumes for the Draft of 0.75 µo at
Varying Time Scales

The analysis commenced with the computing of VR and ‘DT-o at the annual, monthly
and weekly scales and the results for 25 rivers are summarized in Table 3. It is reiterated
here that VR (m3, SPA) and ‘DT-o (m3, counted as the deficiency volume) are the entities
that were computed from the non-standardized annual, monthly and weekly sequences
for the draft equal to 0.75 MAF (=µa). A distinction is made between ‘DT-o and DT-o, in
which both the entities stand for the deficit volume, but the former one is counted directly
from the non-standardized flow data (without involving standard deviation) and the latter
one is computed from the relationship DT-o = σ ×MT-o involving the SHI sequences. At
the annual scale, ‘DT-o = DT-o because of a single value of σ. On the monthly scale, a
discrepancy may erupt between ‘DT-o and DT-o because of a selection of the representative
value of σ among the 12 monthly σ’s. The best estimator for this purpose was found as
σav, i.e., an arithmetic average of the 12 monthly σ values [24]. However, ‘DT-o is the true
estimate of the deficiency volume and that is why it has been used for comparing with
VR in the present analysis. The cutoff level is taken = (0.75 − 1) µa/σa for the annual,
(0.75 − 1) µo/σo for the monthly and (0.75 − 1) µo/σow for the weekly flow sequences.
Since the computational process for ‘DT-o does not require any standardization, there was
no need to obtain the SHI sequences. The most striking observation (Table 3) is that at
the monthly and weekly scales, the VR values are much larger than those at the annual
scale. The VR values at the monthly scale were found to be almost 200% (average = 199%
in Table 3) compared to the annual scale, but at the weekly scale the increase was found to
be marginal (3.3%) concerning the monthly values.

At each time scale, the values of ‘DT-o were found to be less than VR. However, in
general, a parallel trend in the values of ‘DT-o being similar to VR is apparent, although
such values tend to increase from the annual to monthly scale. However, an increase in
the ‘DT-o values at the weekly scale is not consistent because of random occurrences of a
marginal decreases in values, which can be ascribed to sampling variations. At the annual
scale, the VR and ‘DT-o values are almost equal, though at times they turned out to be
zero, for example, 2 rivers (#23 North Margaree and #24 Upper Humber in Table 2). For
these two rivers, there appears to be no need for storage at the draft of 0.75 µa based on
the annual flow analysis. This finding seemingly is less convincing as there are long dry
periods rendering the presence of low flows in these rivers, requiring compensating flow
releases from storage. Therefore, the aforesaid analysis at the annual scale provides fewer
functional estimates of the reservoir and the corresponding deficiency volumes at the draft
level of 0.75 µa. However, more functional estimates are obtained by analyzing at the
monthly and weekly scales. At these scales, to meet the draft of 0.75 µa, storage is required
in the form of reservoirs across the above rivers, as evinced by significant storage values
(Table 3). Another point to be noted is that the cutoff level ‘SHIo’ at the annual scale shows
large variability (range −0.68 to −2.03) compared to the monthly and weekly scale, where
variability is contained within a small range (from −0.17 to −0.34).

The aforesaid analysis thus points out that the monthly based VR values are drasti-
cally different from those obtained at the annual scale. The weekly based estimates are
marginally higher than the monthly based, so monthly analysis seems to be adequate.
Further, at the monthly and weekly scales, ‘SHIo’ is varying within a close range and thus,
either of the time scales can be considered for further analysis, weighing the choice to
the monthly scale because of its affable tractability in terms of statistical analysis. The
monthly values are easy to procure and/or synthesize. The monthly SHI (standardized
flow) sequences fit well within the MC1 dependence structure, which is better amenable for
analysis using stochastic methods. Because of the above observations, the detailed analysis
for computing VR, DT-o and DT-e has been done on the monthly flow and SHI sequences,
and the methods of analysis are presented below.
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3.2. Implementation of the DM-Based Counting and Estimation Methods

In the DM-based methods, the first step was to form the moving average (MA)
smoothed sequences from the monthly SHI sequences. In the present paper, the SHI
sequence by itself is taken as the MA1 (moving average 1) smoothing with µ = 0 and σ = 1.
In the MA2 smoothing, 2 consecutive values of SHI were averaged out, and a running
smooth sequence of MA2 was formed with µ = 0 and σ (designated as σm2), which turned
out to be smaller (<1) than the case of MA1. Intuitively, a higher degree of smoothing leads
to a higher dependence and that is why $ (denoted as $m2) for the MA2 case will be greater
than that ($m1) for the MA1 case. The MA2 sequence was again standardized using µ = 0
and a new value of σ (denoted as σm2) for further analysis.

In the counting process, the SHI sequence was truncated at the level of SHIx (i.e.,
SHIx = SHIo, SHIx = SHIm, and SHIx = SHIav) in both the cases of the MA1 and MA2
sequences. The values of the above three SHIx at the monthly scale are summarized in
Table 4. There will be two values of MT-o based on the MA1 and MA2 sequences, which, in
turn, will be converted into DT-o values by the relationship DT-o = σav ×MT-o. It should be
noted that the unit of DT-o is the same as that of σav as MT-o because being a standardized
quantity is a dimensionless entity. At each smoothing, the multiplier will be σav with MT-o.

Table 4. Comparison of MT-o and MT-e with VR’ at the draft level of 0.75 µa using varying cutoff levels in the SHI sequences:
monthly analysis.

River SHIx VR’, $m1

Counting Method Analytical Method

MT-o
MA1

MT-o
MA2

MT-e MA1
Equation

(2)

MT-e
MA2

Equation
(2)

MT-e
MA1
Φ = 0

MT-e
MA1

Φ = 0.5

MT-e
MA1

(mix Φ =
0, 0.5)

MT-e
MA2
Φ = 0

MT-e
MA2

Φ = 0.5

MT-e
Φ = 0.5

(mix MA1,
MA2)

1 2 3 4 5 6 7 8 9 10 11 12 13

Cutoff (SHIx) = SHIo

3. −0.24 16.39, 0.50 17.22 20.25 9.58 13.95 19.05 12.85 19.05 29.94 19.99 19.99
5. −0.32 26.36, 0.76 35.13 38.20 13.53 18.37 29.21 19.52 29.21 41.65 27.55 27.55
8. −0.25 11.42, 0.41 10.85 13.61 8.58 12.38 15.95 10.90 10.90 24.86 16.87 16.87
11. −0.24 10.65, 0.28 11.04 17.09 7.82 11.53 14.18 9.69 9.69 22.78 15.46 9.69
20. −0.31 10.26, 0.23 5.69 8.35 7.65 11.51 14.22 9.65 9.65 23.45 15.76 9.65
25. −0.29 8.84, 0.16 9.53 12.15 6.47 9.81 11.76 8.08 8.08 19.56 13.28 8.08

NSE (%) 59.44 53.83 42.95 45.77 76.11 61.72 79.82 71.79 79.42 78.12
MER (%) −1.41 15.18 −32.09 −0.19 26.87 −13.69 −1.03 99.23 34.61 −0.30

Mean of the relative difference between MT-e and VR’ (%) 0.77% mean 1.52%
Standard error of the relative difference between MT-e and VR’ (%) 17.11% standard error 18.36%

Cutoff (SHIx) = SHIm

3. −0.32 16.39, 0.50 16.03 19.04 8.65 12.73 17.51 11.84 17.51 27.73 18.52 18.52
5. −0.27 26.36, 0.50 35.74 40.69 14.79 19.94 31.46 21.02 31.46 44.68 29.57 29.57
8. −0.21 11.42, 0.41 11.41 14.13 9.10 13.09 26.02 16.73 16.73 26.02 17.65 16.73
11. −0.24 10.65, 0.28 11.56 17.97 8.46 12.42 15.11 10.30 10.30 24.18 16.40 10.30
20. −0.32 10.26, 0.23 5.59 8.25 7.51 11.32 14.00 9.51 9.51 23.13 15.55 9.51
25. −0.22 8.84, 0.16 10.27 12.82 7.15 10.75 12.77 8.73 8.73 21.08 14.03 8.73

NSE (%) 51.92 45.72 50.32 58.81 80.95 67.77 85.44 81.10 78.29 85.89
MER (%) −7.62 20.52 −29.84 2.17 12.86 −4.48 2.26 106.15 89.05 2.84

Mean of the relative difference between MT-e and VR’ (%) 3.75% mean 4.36%
Standard error of the relative difference between MT-e and VR’ (%) 16.49% standard error 17.00%

Cutoff (SHIx) = SHIav

3. −1.03 16.39, 0.50 6.46 8.94 4.15 8.35 9.15 6.33 9.15 17.74 12.20 12.20
5. −0.49 26.36, 0.76 29.84 32.83 11.32 19.89 25.03 16.74 25.03 24.05 15.80 15.80
8. −0.44 11.42, 0.41 8.40 11.04 6.41 9.50 12.53 8.63 8.63 19.89 13.52 8.63
11. −0.45 10.65, 0.28 8.88 10.90 5.64 8.60 10.83 7.49 7.49 17.81 12.13 7.49
20. −0.43 10.26, 0.23 4.74 7.20 6.36 9.77 12.23 8.36 8.36 20.48 13.79 8.36
25. −0.57 8.84, 0.16 6.41 9.31 4.24 6.85 8.28 5.80 5.80 14.38 9.83 5.80

NSE (%) 55.70 38.89 32.24 41.70 58.70 47.80 76.39 62.96 58.01 79.74
MER (%) −41.81 −17.32 −51.97 −26.62 −4.52 −34.38 −25.49 55.25 5.24 −23.28

Mean of the relative difference between MT-e and VR’ (%) −23.78% mean −21.90%
Standard error of the relative difference between MT-e and VR’ (%) 14.25% standard error 13.99%

Note: These numbers in Bold have been referred in the text.
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On the other hand, in the analytical procedure, the values of LT-e, MT-e and DT-e were
evaluated by involving Equations (1) to (4), and other relevant equations (Appendix A),
with the parameters (cvav, σav, $m1 and $m2) estimated from the observed flows and SHI
sequences. A value of Φ in determining the characteristic length LC was needed, which
required a calibration, though the initial values are available from the investigations of
Sharma and Panu [26]. Such values have been further affirmed through an evaluation
using the Nash–Sutcliffe efficiency (NSE) and the mean error (MER) criterion. To convert
MT-e into DT-e, the original value of σav was used as a multiplier similar to the case of the
counting method.

4. Results and Discussion
4.1. Comparison of VR’ and MT-o at Monthly Scale with SHIo as Cutoff: By Counting Method

It must be reiterated that the DM-based method is applied to the SHI sequences.
For comparative analysis, VR, DT-o (by the counting method), and DT-e (by the analytical
estimation) were made non-dimensional, and thus homogeneous, by dividing each of them
by the same value of σav for their respective rivers. Thus, the terms VR, DT-o, and DT-e
were transformed into VR’, MT-o, and MT-e for all the comparisons and are summarized
in Table 4. For brevity, all the rivers are not listed in Table 4, rather included are two
typical and representative rivers from each of the three regions. The selection criterion for
choosing a river was the persistence characteristics represented by the lag-1 autocorrelation
($m1). The first set of two rivers (#3 and #5) are located in the Prairies and Western Ontario
with $m1 ≥ 0.5; the second set of rivers (#8 and #11) are from Northern Ontario with
0.25 < $m1 < 0.5; and the third set of rivers (#20 and #25) are from Atlantic Canada with a
modest autocorrelation (i.e., $m1 < 0.25). However, it should be noted that the performance
statistics (NSE and MER) reported in Table 4 and all graphical displays are based on all
the 25 rivers, and accordingly, the results are discussed. For comparative analysis of any
pair on a 1:1 basis, the performance statistics (NSE and MER) were used. For an acceptable
quality of parity in the entities in a pair, one should expect the value of NSE to be greater
than 75% along with the value of MER to be within ±5% [23].

Based on the results of the analyses, it was found that MT-o in terms of the MA1
sequences underestimated VR’ (MER ≈ −14%) whereas, it was overestimated (≈15%) in
the MA2 sequences with an NSE of less than 60% (Table 4, columns 4 and 5). These values,
therefore, suggest that the counting-based procedure for evaluating DT-o to match VR can be
interpreted as unsatisfactory. This discrepancy necessitated an alternative method to evolve
estimates for deficiency volumes (DT) comparable to SPA-based (VR) values. Therefore,
recourse was taken to an analytical method in which the probability-based relationships
(Equations (1) and (2)) formed the basis for the evaluation of the needed entities.

4.2. Comparison of VR’ and MT-e (Equation (2)) at the Monthly Scale with SHIo as Cutoff

The simple procedure in the ambit of estimation methods is the use of Equation (2), in
which MT-e = µd LT. Therefore, the MT-e values for the MA1 and MA2 smoothed sequences
were computed by evaluating the terms µd and LT. The comparison of the MA1 sequences
based on MT-e resulted in underestimation with MER (≈−32%) and an NSE of 43% (Table 4,
columns 6). The MT-e estimates (Table 4, column 7) based on the MA2 sequences seemed
better with MER ≈ 0, but the NSE was low (≈46%). Such values appear to be stoic and
allude to the modest potential of the simple equation to provide acceptable estimates for
the reservoir volumes. Similar behavior of Equation (2) at the draft of 0.95 to 1 MAF has
been reported [25], where a substantial underestimation was observed. Because of the
foregoing observations, it is imperative to extend to a step higher model (Equation (1)),
which involves both the mean and variance of drought intensity for the estimation of MT-e.

4.3. Comparison of VR’ and MT-e (Equation (1)) at Monthly Scale with SHIo as Cutoff

In the analytical method using Equation (1), the crucial parameter is Φ because it
controls the value of the characteristic drought length, Lc. The experience of authors on
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Canadian rivers suggests that two values of Φ, viz. 0 and 0.5, be considered for use in
Equation (1). The values of MT-e were estimated based on the MA1 and MA2 smoothed
sequences along with Φ = 0 and 0.5, and the results are summarized in Table 4.

The values of MT-e were computed by involving only MA1 sequences along with
Φ = 0 and the results are presented in Table 4, column 8. It is apparent that the MT-e values
in column 8 are generally larger than VR’ (column 3), thus indicating an overestimation.
This fact is also reflected in MER ≈ 27%, though the value of NSE was reasonable (≈76%).
Therefore, a value of Φ = 0.5 was attempted on the MA1 sequences, which resulted in the
underestimation (MER ≈ −14%) and a low value of NSE ≈ 62% (Table 4, column 9). Since
the results based on the MA1 sequences turned out to be less than encouraging, it was
considered appropriate to estimate MT-e using the MA2 sequences with values of Φ = 0 and
0.5, and the results thus obtained are exhibited in columns 11 and 12 (Table 4). A striking
feature on the MA2-based computations is the significant overestimation (MER ≈ 99% for
Φ = 0; and MER ≈ 35% for Φ = 0.5).

With the use of Φ = 0.5 on the MA1 sequences, major discrepancies were noted in the
rivers lying in Prairies and Western Ontario (#1 to #6) in which $m1 was ≥0.5, whereas
the rivers from #6 to #25 tended to show reasonable correspondence. It can, thus, be
conjectured that the same value of Φ is not applicable uniformly in all the rivers. Therefore,
the following two groups of rivers were formed: group 1 was river #1 to #6 and group 2
was river #6 to #25. The discrepancy in group 1 was ameliorated with the use of Φ = 0,
while retaining Φ = 0.5 for the rivers in group 2. Likewise with Φ = 0.5 on the MA2
sequences in the group 1 rivers, but Φ = 0.5 on the MA1 sequences in the group 2 rivers
tended to improve the matching. This mooted the idea of mixing Φ’s (0 or 0.5) on the
MA1 sequences (named as combination-A) or mixing the MA1 and MA2 sequences with
Φ = 0.5 (named as combination-B). Based on the use of differential values of Φ on the
MA1 sequences in combination-A, the resultant MT-e values are arranged in column 10
(Table 4). The combination-A-based values of MT-e compared satisfactorily with VR’ as
shown in Figure 2A (MER ≈ −1% and NSE ≈ 80%). Likewise, in combination-B the MT-e
values with differential MA (MA1 or MA2 sequences) with a uniform value of Φ = 0.5 are
arranged in column 13 (Table 4). The combination-B resulted in NSE = 78% with negligible
overestimation of 1.5% (Figure 2B).
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Figure 2. Comparison of MT-e to SPA-based standardized reservoir volume with cutoff = SHIo:
(A,B) respectively, represent Combination-A and Combination-B.

Although, the estimated values of MT-e under both combinations (i.e., A and B) do
not appear significantly different but one would be inclined to use combination-A with
the use of differential values of Φ on the MA1 sequences for estimation purposes of MT-e.
This is because working on the MA1 (which is the SHI itself) sequences is easier and
convenient as the Φ values can be easily plugged in the desired equations. A worthy
point to note is that the combination-B involves the MA2 sequences, thus warrants making
another sequence (extra effort) based on the SHI sequences and also evolving a new set of
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parameters, viz. $m2 (lag-1 autocorrelation of MA2 sequences) and σm2 (standard deviation
of MA2 sequences), which is not devoid of uncertainty and errors.

4.4. Comparison of VR’ and MT-e (Equation (1)) at Monthly Scale with SHIm and SHIav as Cutoff

Although SHIo seemed reasonably satisfactory as a cutoff for the MA1 sequences, there
is still a noticeable divergence in the higher range of values of these entities (Figure 2A,B)
between VR’ and MT-e. Should this divergence be mitigated, the NSE would improve,
alluding to a better fit. Since VR’ is already a fixed entity, the divergence can be reduced by
improving the values of MT-e. Therefore, two versions of SHIx were contemplated, namely,
SHIm and SHIav. SHIm is computed as = (0.75 − 1)/cvm and SHIav = (0.75 − 1)/cvav, where
cvm = σmax/µo, cvav = σav/µo, and σmax is the maximum value among 12 monthly σ’s,
whereas σav is the arithmetic average of these 12 monthly values. The new values of SHIx
as SHIm and SHIav are shown in Table 4 (in the mid and lower portion of column 2) for the
rivers under consideration. These cutoff levels were applied on the MA1 and MA2 sequences
in the same manner as was conducted with cutoff = SHIo while using Φ = 0 and 0.5. The
results based on the new values of SHIx (=SHIm) for MT-e are shown in Table 4 (columns 8
to 13). With the SHIm as the cutoff, the fit has improved yielding the NSE value ≈ 85%
(combination-A, mixing of Φ values) and ≈ 86% (combination-B, mixing MA1 and MA2).
The MER also remained within 3% suggesting an acceptable overestimation.

The new values of MT-e against VR’ are shown in Figure 3A,B, where the points fall
closer to the 1:1 line vis- à-vis Figure 2A,B, where they lie farther from the 1:1 line. At a
first glance, the plots further suggest that SHIm can be construed to be a better cutoff level
compared to the SHIo, though only marginally. A further attempt was made to engage
SHIav, and the new estimates of NSE and MER were evaluated (the lower portion in
Table 4, columns 10 and 13). The response with SHIav as the cutoff was less than promising
as MER indicated underestimation in the range of nearly 26% (combination-A) and 22%
(combination-B). It can be perceived from Table 4 (column 2) that the values of SHIav
appear significantly different from SHIo and SHIm, thus yielding low values of MT-e in
comparison with VR’. Consequently, no further analysis was pursued using SHIav as a
candidate choice. Prima-facie, SHIm appears to be a better cutoff followed by SHIo and
further investigations were needed to discriminate between these two cutoffs to evolve the
better one. The relative difference between VR and DT-e was considered a better measure
for the discriminant analysis and was conducted as follows.
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4.5. Relative Difference between Deficit Volume (DT-e) and Reservoir Volume (VR)

The performance statistics NSE and MER essentially help to discern the quality of a fit
between MT-e and VR’ about the 1:1 line because both are respectively standardized values
of DT-e and VR. Also, the large variations within DT-e and VR are not accurately accounted
for by NSE and MER statistics. The relative difference in percent (designated as a relative
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error, RE), i.e., RE (=100 × (DT-e − VR)/VR) can be used as a robust measure to express the
adequacy of the estimated values of DT-e as a competing estimate of VR. Preferably, RE
should be close to zero for an ideal estimate of DT-e, and conversely, a higher value indicates
a poor estimation. Thus, based on the DT-e and VR values of 25 rivers, the RE values were
evaluated for the two cutoff conditions, viz. SHIx = SHIo and SHIx = SHIm involving both
combination-A and combination-B. The mean (designated as µre) and standard deviation
(designated as σre) of these 25 RE values were computed and are presented in Table 5. The
cutoff equal to SHIo with combination-A yielded the least µre = 0.77% (σre ≈ 17%) followed
by µre = 1.52% (σre ≈ 18%) with combination-B. The cutoff equal to SHIm outputted µre
close to 4% (σre ≈ 17%) in both combination-A and combination-B. Given these statistics,
one can interpret that SHIo is a better cutoff than SHIm, which contradicts the earlier
finding (based on NSE and MER) that had placed SHIm ahead of SHIo.

Table 5. Summary of performance statistics for the cutoff level at SHIo and SHIm with a varying sample size.

Number of Samples Combination-A, Cutoff = SHIo Combination-B, Cutoff = SHIo

NSE (%) MER (%) µre (%) σre (%) NSE (%) MER (%) µre (%) σre (%)

25 79.82 −1.03 0.77 17.11 79.12 −0.30 1.52 18.36
37 83.34 3.36 3.91 18.40 76.70 1.70 3.10 19.31

Number of Samples Combination-A, Cutoff = SHIm Combination-B, Cutoff = SHIm

25 85.43 2.26 3.75 16.49 85.89 2.84 4.36 17.00
37 72.61 −0.24 3.95 21.05 70.00 −1.28 3.39 21.38

It is worthy to note that µre and σre (not tabulated in Table 5) were also evaluated for
the cutoff equal to SHIav, which resulted in µre ≈ −24% (σre ≈ 14%) for combination-A
and likewise, µre ≈ −22% (σre ≈ 14%) for combination-B. These values (specifically the
µre values), being far from the desired value of 0, further support the earlier argument of
rejecting SHIav as a viable and competing cutoff level.

At this point, there is a need to discriminate between SHIo and SHIm, and to suggest
a consistent cutoff level for estimating the deficit volumes (=reservoir volumes), as the
statistics MER and RE have not rendered unanimous results. This anomaly was solved
by enlarging the sample size from 25 (each river is a sample) to 37. The rivers with a
long record (#3, #5, #19, #20, #22 and #23 in Table 2) were split into two samples, each
of nearly equal size, and VR and DT-e values were computed for 37 (25 + 12) samples.
Based on the 37 samples, the MER (using MT-e and VR’) and RE (using DT-e and VR) were
evaluated and the results are shown in Table 5 at the cutoff levels of SHIo and SHIm for
combination-A and combination-B. For the cutoff level (SHIm), the new µre values were
found to range between 3 to 4% (σre > 18%) but the NSE values dropped significantly
from 85% to 73%. This is undesirable behavior, and thus the reliability of the cutoff (SHIm)
lands in a doubtful regime. In contrast, the behavior of the cutoff (SHIo) is more consistent
because the NSE values remained closer to each other in both samples of the original 25
flow datasets and the latter 37 flow datasets. Further, the µre values were found to be closer
to 0 (ranging from 0.77 to 3.91%). Based on these numbers, it can be easily conjectured that
the cutoff (SHIo) is better compared to the cutoff (SHIm). Needless to mention, it is easy to
derive SHIo values by computing µo and σo (or cvo) from the non-stationary monthly flow
sequences. Likewise, the $m1 and σav can also be rapidly computed from the monthly flow
and SHI sequences.

To objectively illustrate the DM-based methodology, an example is presented using
the monthly data of the following two rivers: the English River (#5 in Table 2, with a
high value of $m1 = 0.76) and the Neebing River (#7 in Table 2, with a modest value of
$m1 = 0.43). The relevant specificities and computations for these rivers are as follows.

English River: T = 92 years (1164 months), µo = 58.61, cvo = 0.74, cvav = 0.51, $m1 = 0.76,
and $m2 = 0.88. Since $m1 = 0.76 (>0.50), so Φ = 0. Plugging the above parameters in the
relevant equations, DT-e was computed as 2.26 × 109 m3. The SPA-based value of VR was
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computed as 2.04 × 109 m3. The relative difference is therefore +11% (indicating an overes-
timation compared to the SPA-based value), which is reasonably acceptable. The above
estimate can be attached to a return period of 100 years (sample size 92 years ≈ 100 years).
The other merit of the DM-based method is the estimation of DT-e with any other re-
turn period, say 50 years (600 months). Plugging T = 600 into the relevant equations,
DT-e = 1.92 × 109 m3, which is less than the 100-year value (=2.04 × 109 m3).

Neebing River: T = 66 years (792 months), µo = 1.62 m3/s, cvo = 1.48, cvav = 0.81,
$m1 = 0.43, and $m2 = 0.73. Since $m1 = 0.43 (<0.50), so Φ = 0.5. Plugging the above paramet-
ric values into the relevant equations, DT-e was computed as 4.83 × 107 m3. The SPA-based
value of VR was computed as 5.69× 107 m3. The relative difference is therefore about−15%
(an underestimation compared to the SPA-based value), which is again within an acceptable
range of error. The above estimate can be attached to a return period of 66 years. The DT-e
value with the return of T = 50 years or 600 months was computed as 4.58 × 107 m3 and
also for T = 100 years or 1200 months as 5.20 × 107 m3. These DT-e estimates are closer
to the SPA estimate of 5.69 × 107 m3, with a slight underestimation. For design applica-
tion, the VR can be taken as the average of 5.69 × 107 and 4.83 × 107 = 5.26 × 107 m3 for
T = 66 years.

In a nutshell, the proposed analytical method yields satisfactory estimates of DT-e,
which are comparable to the SPA-based estimates of reservoir volume, with a margin of
error of ±18%. The combination with the length scaling parameter Φ = 0 and Φ = 0.5,
respectively, for the rivers with high persistence and low persistence on the SHI (MA1)
sequences proved adequate for estimation purposes.

Although in this analysis, the comparison has been made between SPA- and DM-based
methods using the Canadian river flow data, it was considered appropriate to test the
efficacy of the DM method using the data of the Mitta Mitta River (Australia) reported by
McMahon and Mein (1978), and compare the estimates of the reservoir volumes by various
other methods as shown in Table 6 (draft level of 0.75µ at the monthly scale). The estimate
of the reservoir volume based on the DM method is also listed in the last row of this table.

Table 6. Comparison of reservoir capacity by different methods at the monthly scale.

Reservoir Capacity Estimation Method Reservoir Capacity at 0.75 µ (MAF)

1. Rippl method 1100 × 106 m3

2. Residual mass curve method 1100 × 106 m3

3. Sequent peak algorithm (SPA) 1100 × 106 m3

4. Alexander method (cited in McMahon and Mein,1978) 1200 × 106 m3

5. Dincer method (cited in McMahon and Mein,1978) 1200 × 106 m3

6. Gould Gamma Method (cited in McMahon and Mein,1978) 866 × 106 m3

7. Behaviour analysis method (finite reservoir, at 5% probability of failure) 825 × 106 m3

8. Behaviour analysis method (infinite reservoir, at 5% probability of
failure) 900 × 106 m3

9. Drought Magnitude (DM) method (this article) 984 × 106 m3

It is evident from the above table that the estimate of reservoir volume by the DM
(#9) lies between the SPA (#3), Gould Gamma (#6) and Behavioral analysis (#8). It has
been reported (McMahon and Mein, 1978) that the Gould Gamma and Behavior analysis
methods yield better results in terms of the least bias and standard error. In view of the
foregoing observation, the DM-based estimate is relatively closer (i.e., within +14% error)
to the above two estimates. While comparing with the SPA-based estimate, the DM-based
estimate is slightly less (i.e., within −10.6%). Succinctly, the DM-based method offers an
approach for the design of reservoir capacity, which opens a platform for comparison with
techniques such as Extended deficiency analysis, Behavioral analysis, Hardison generalized
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method, Phien method, Vogel and Stedinger method, Gould’s probability method, etc.,
which have been discussed by McMahon et al. (2007). Such investigations of the aforesaid
methods on Canadian rivers are underway by the authors under a separate study.

5. Conclusions

The DM-based methodology for reservoir sizing has been developed and applied at
a 0.75 mean annual flow (MAF) level of the draft at the monthly scale in 25 rivers across
Canada. The analysis, involving the annual, monthly and weekly flows at the aforesaid
draft level, suggested that the monthly scale is the most optimal for the estimation of
reservoir volumes at the draft of 0.75 MAF. The annual time scale was found inadequate.
The weekly scale was adequate but only offered marginal benefits over the monthly based
estimates of reservoir volumes.

In the DM-based methodology, the monthly standardized hydrological index (SHI)
sequences were used to evolve the values of standardized drought magnitudes, MT-e,
which were compared with the SPA-based standardized reservoir volumes, VR’. The DM-
based analysis involved the MA1 (moving average 1) and MA2 sequences, which were
formed from the SHI sequences. The SHI sequences themselves are denoted as MA1, while
the averaged consecutive two SHI values formed the MA2 sequences. The cutoff level
for truncating the MA1 and MA2 sequences was determined as SHIo = (0.75 − 1) µo/σo,
where µo and σo are the overall mean and standard deviation of monthly flow sequences.
Another competitive cutoff level was found as SHIm = (0.75 − 1) µo/σmax, in which σmax
is the maximum value of standard deviation among 12 monthly values. In the DM-based
methodology, one crucial parameter is the characteristic drought length, which is controlled
(or optimized) through the length scaling parameter Φ. At the monthly scale, the value
of Φ = 0 was found adequate for rivers with a lag-1 autocorrelation ($m1) ≥ 0.5, and the
Φ = 0.5 for rivers with $m1 < 0.5. Two combinations of MA sequences were attempted to
estimate MT-e, as follows: in combination-A, differential values of Φ (Φ = 0 for rivers with
$m1 > 0.5 and Φ = 0.5 for rivers with $m1 < 0.5) were applied on the MA1 sequences; and
in combination-B, a single value of Φ = 0.5 was applied on the differential MA sequences,
i.e., MA1 sequences of rivers with $m1 < 0.5 and MA2 sequences of rivers with $m1 ≥ 0.5.
Combination-A emerged to be better in terms of ease and convenience of computations
while yielding MT-e values that are compatible with VR’. The DM-based estimates of deficit
volumes (DT-e) were found to be closer to the SPA-based reservoir volumes (VR) within
an error margin of ±18%. An important feature of the DM-based method is its ability to
explicitly involve the return period in the estimation process, unlike the SPA, which yields
estimates of reservoir volumes that are devoid of return periods.
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Appendix A

The following probability-based relationship from the first principles can be used to
estimate the expected value of the largest drought-magnitude, E (MT):

E(MT) =
∞

∑
j=0

(MT = Yj).p
(
MT = Yj

)
. (A1)

The notation P (.) stands for the cumulative probability and p (.) stands for the simple
probability. Since MT is a continuous random variable, therefore MT has a continuous pdf
so p (MT = Yj) can be evaluated as P (MT ≤ Y j+1)–P (MT ≤ Yj) with MT = Yj replaced by
the mean value (Yj+1 + Yj)/2. Equation (A1) can therefore be expressed as the following:

E(MT) =
n1

∑
j=0

(
Yj+1 + Yj

)
2

[
P
(
MT ≤ Yj+1

)
− P

(
MT ≤ Yj

)]
. (A2)

The upper limit of integration, ∞ in Equation (A1), is replaced by some finite num-
ber n1. The general equation for evaluating P (MT ≤ Yj) based on the extreme number
theorem [13] can be expressed as the following:

P
(
MT ≤ Yj

)
= exp[−Tq

(
1− qq

)(
1− P

(
M ≤ Yj

)]
. (A3)

In which M takes on non-integer values represented by Yj. Since Y’s (such as Y1, Y2,
Y3, Y4, etc.) correspond to values of M, thus the largest of them will correspond to MT. It is
to be noted that M is the sum of several drought-deficit spikes encountered in a drought
spell. Each spike has a negative sign because they are derived by truncating SHI sequences
and they lay on the downside (negative side) of the cutoff level. The deficit spikes can
be construed to obey a truncated normal distribution because a normal pdf encompasses
values of a random variable from −∞ to +∞. Thus, the standard normal pdf is truncated
at various levels of z0 (standard normal number) corresponding to counterpart values of
the probability q. For example, a standard normal pdf can be truncated at z0 = −0.52 with
the corresponding probability of 0.3, which can be obtained from the standard normal
probability table or a polynomial equation documented in Chow et al. [32] and reiterated
in the main text as Equation (4).

The truncated normal pdf version will have a mean and variance, respectively, differ-
ent from 0 and 1. Applying the basic axioms for the evaluation of moments, expressions
for the mean (denoted by µd) and variance (denoted by σ2

d) of the truncated normal pdf
version can be deduced [15,16] as follows.

µd = −
[

exp
(
−0.5 z2

0
)

q
√

2π

]
− z0 (A4)

σ2
d = 1−

z0 exp
(
−0.5 z2

0
)

q
√

2π
−

exp
(
−z2

0
)

q22π
. (A5)

Because drought episodes lay below the desired truncation level, an absolute value of
the term µd is an estimator of the mean value of drought intensity (Id), as it represents the
mean of the several deficit spikes. Likewise, the term σ2

d is an estimator of the variance of
drought intensity, whose value is unaffected by the sign. For example, at the cutoff level of
z0 = −0.52, q = 0.3; and the substitution of these values in Equations (A4) and (A5) yields
µd equal to −0.64 and σ2

d equal to 0.25. As explained earlier, the absolute value of µd will
be taken as the mean value of the drought intensity (Id), i.e., = 0.64. Likewise, at the cutoff
level, z0 = −0.10, q = 0.16; µd and σ2

d will work out as −0.51 and 0.23.
Given the central limit theorem and since M is the sum of the deficit spikes, its proba-

bility structure can be approximated by a normal pdf with mean µM and variance σ2
M [23].
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Such a consideration reduces the expression for the term P (M ≤ Yj) in Equation (A3)
as follows:

P
(
M ≤ Yj

)
=

1
σM
√

2π

∫ Yj

0
exp

[
−0.5

(
M− µM
σM

)2
]

dM. (A6)

It was noted that the parameters µM and σ2
M are related to the extreme drought length

LT, and the mean drought length LM [24]. Such a representative drought length is named
herein as a characteristic drought length LC, which can be expressed as follows:

LC = Φ LM + (1 − Φ) LT. (A7)

The parameter Φ can be designated as a weighing parameter as it weighs the mean
drought length LM and the longest drought length LT. The value of Φ varies from 0 to
1 and is determined through optimization or a trial and error procedure. For first-order
dependence or a Markov Chain order 1 (MC1) situation, the mean length LM can be
expressed as follows [13]:

LM =
1

1− qq
. (A8)

The expression for the expected value of LT in the MC1 situation in drought periods
can be obtained as follows [24]:

LT = 1−
log
[
FT(1− q)qp

]
log
(

qq

) (A9)

where F is the factor to account for the plotting position in the empirical estimation of the
exceedance probability. That is, in the Hazen plotting position formula, the exceedance
probability = 0.5/T (T = sample size), so the return period is equal to T/0.5 = 2T or F = 2.
Likewise, in the Weibull plotting position formula F = 1. In this analysis, the plotting
position formula [30] as developed for Canadian rivers has been used. The formula
evaluates the exceedance probability = 0.75/(T + 0.25), so F = 1.33 (1 + 0.25/T) ≈ 1.33 as T
is generally large. The term qq stands for the conditional probability of the present period
being drought given the previous period was also a drought, and likewise, qp stands for
the present period being drought given the previous period was wet.

The conditional probabilities qq and qp can be computed from the following relation-
ship due to Cramer and Leadbetter (29):

qq = q +
1

2πq

∫ $

0
[exp{−z2

0/(1 + ϑ)}]
(

1− ϑ2
)−0.5

dϑ (A10)

where ϑ is a dummy variable of integration while other terms are as defined earlier. The
integral in Equation (A10) can be evaluated by a numerical procedure, and the values
of qq for a given $ and z0 can be computed. For the monthly SHI sequences $ = $m1.
Equation (A10) can also be used to estimate pp (probability present time being wet given
the past period was also wet) by replacing qq by pp and q by p (=1 − q). Therefore, an
estimate of qp can be found as qp (=1 − pp), which can be used in Equation (A9) for the
estimation of the longest drought lengths LT, involving the MC1 situation. Note for the
MC0 situation, such as for the annual SHI sequences, qq = qp = q.

The expressions for µM and σ2
M can be shown to be related as follows [34]:

µM = LC µd (A11)

σ2
M= LC σ

2
d

[
1 + $

1− $
−

2$
(
1− $ LC

)
LC(1− $)2

]
. (A12)
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Once a proper value of LC has been determined, Equation (A6) is integrated nu-
merically to evaluate P (M ≤ Yj) and then the value of the integrand is inserted in
Equation (A3) to yield an estimate of P (MT ≤ Yj). Letting these values of Yj as Y0 (j
= 0) = 0, Y1 (j = 1) = 0.05, Y2 (j = 2) = 0.10, Y3 (j = 3) = 0.15, Yn1 = 150 (for the monthly scale)
with an increment, ∆ = 0.05, E (MT) can be computed using Equation (A3).

A particular version for the estimation of E (MT) can be developed based on the mean
of the drought intensity, µd involving Equations (A4) and (A9) as follows:

E(MT) = µd LT. (A13)

Note, Equation (A2) involves both the mean and variance of drought intensity (Id) for
the estimation of E (MT), and therefore is more comprehensive.
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