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Abstract: Isotope data and major ion chemistry were used to identify aquifer recharge mechanisms
and geochemical evolution of groundwaters along the US–Mexico border. Local recharge originates as
precipitation and occurs during winter through preferential infiltration pathways along the base of the
Gila Range. This groundwater is dominated by Na–Cl of meteoric origin and is highly concentrated
due to the dissolution of soluble salts accumulated in the near-surface. The hydrochemical evolution
of waters in the irrigated floodplain is controlled by Ca–Mg–Cl/Na–Cl-type Colorado River water.
However, salinity is increased through evapotranspiration, precipitation of calcite, dissolution of
accumulated soil salts, de-dolomitization, and exchange of aqueous Ca2+ for adsorbed Na+. The
Na–Cl-dominated local recharge flows southwest from the Gila Range and mixes with the Ca–Mg–
Cl/Na–Cl-dominated floodplain waters beneath the Yuma and San Luis Mesas. Low 3H suggests
that recharge within the Yuma and San Luis Mesas occurred at least before the 1950s, and 14C data
are consistent with bulk residence times up to 11,500 uncorrected 14C years before present. Either the
flow system is not actively recharged, or recharge occurs at a significantly lower rate than what is
being withdrawn, leading to aquifer overdraft and deterioration.

Keywords: groundwater; environmental isotopes; hydrochemistry; transboundary aquifer; Colorado
River Delta

1. Introduction

The Colorado River is strictly managed. Water regulatory practices are implemented to
provide vital water resources to seven states in the USA and two states in Mexico (Figure 1).
In the Lower Colorado River Basin, south of the Utah–Arizona border, more than 27 million
people depend on the river for sustenance. Nearly 1.2 million ha of farmland are irrigated
with Colorado River water in the fertile and productive fields of the Mexicali and Imperial
Valleys [1].

The lower Colorado River basin has seen extensive land-use changes in the last century.
Pastures and crops have replaced native vegetation, and surface Colorado River water has
been diverted for irrigation. These changes led to a massive loss of natural habitat in the
Colorado River Delta (termed “Delta” below). The river no longer reaches the lower part
of the Delta today, and riparian, wetland, and estuarine habitats occupy less than 5% of
their original 780,000 ha extent [2].

This study aims to establish sources of solutes, sources of aquifer recharge, groundwa-
ter residence time, and geographic variation of major ion chemistry in groundwater on the
eastern flank of the Colorado River Delta. This is accomplished using environmental iso-
tope data (δ18O, δ2H, 3H, and 14C) and major ion chemistry. In the over-allocated Colorado
River system, distinguishing the different sources of water and salt becomes increasingly
important for the long-term management and protection of water resources and the natural
and seminatural habitats that depend on them.
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Figure 1. Colorado River Basin (left). Study area: lower Colorado River, Colorado River Delta and major geographical and
geological features (right). The red-dotted line shows the limit of the Yuma and San Luis Mesas. The Wellton-Mohawk
Drain (WM Drain) is shown as a solid blue line. OPCNM: Organ Pipe Cactus National Monument. Cross-section A-A’
shown as a supplementary file (Figure S1).

The results of this investigation are used to evaluate the groundwater dynamics and
geochemical process of this transboundary aquifer along the US–Mexico border between
the states of Arizona and Sonora. Understanding groundwater flow and its chemical
evolution are vital for the effective management and use of groundwater resources in this
aquifer vulnerable to overdraft and salinization.

2. Materials and Methods
2.1. Study Area
2.1.1. Geography

The Colorado River Delta lies along the western boundary of the Sonoran Desert
and within the Salton Trough geologic region. The Delta extends from the confluence of
the Colorado and Gila River near Yuma, Arizona, to the Gulf of California and covers an
area of more than 600 km2 (Figure 1; [3]). The lower Colorado River marks the western
boundary of this study. The Gran Desierto de Altar is located to the east of the study area
and covers an area of 5500 km2 [4]. The Gila River historically flowed around the Gila
Range, an arid and rugged, northwest-southeast trending range with its highest elevation
at ~960 m above sea level (masl; Figure 1), before joining the Colorado River. Today, the
Gila River rarely reaches the area under normal conditions.

2.1.2. Climate

Climate is warm and arid in the area. Records from 1951 to 2010 at Morelos Dam in
Baja, California, show maximum temperatures reach 50 ◦C [5]. Annual evaporation rates
range between 1.9 and 3.4 m, evapotranspiration is approximately 1.40 m, and annual
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precipitation averages only 63 mm [5]. Precipitation occurs as sporadic events during
winter and summer seasons as cyclonic and convective events, respectively [6].

2.1.3. Geology

A detailed geological description of the area is provided by [7–11]. In general, the
San Luis, Mexicali, and Yuma valleys are part of a graben with an average thickness of
4150 m. The basement consists of igneous and metamorphic rocks of Cretaceous age [7,10].
The valley-fill contains marine sediments deposited during transgressions of the Gulf
of California during the Pliocene and Quaternary sedimentary deposits of continental
origin [8,11]. Sediment exposed at the surface is of alluvial type (conglomerates, sand, silt,
and clays) and represents the most recent deposition cycle from the Colorado River and the
Gila River [11]. The study area is bounded by extensive eolian deposits of Pleistocene age
to the southeast and igneous and metamorphic rocks of Cretaceous age to the northeast
(Gila Range).

An escarpment marks the western boundary of the Altar Basin against the Delta. Two
faults pass through the study area. The Cerro Prieto fault, which passes southeast into the
Gulf of California, is the active southernmost segment of the San Andreas fault system
and has strike-slip movement as high as 60 mm/year [12,13]. The Altar fault is an inactive
strike-slip fault, running parallel to the Cerro Prieto fault. Both faults dip to the west, have
dextral offset and displace the southwestern side downwards.

2.1.4. Colorado and Gila River Discharge

Before developing major river engineering projects (the 1930s–1960s), such as Hoover
Dam and Glen Canyon Dam, the Colorado River flowed along its natural course and
discharged into the Gulf of California. Natural annual flows ranged between 1.6 × 1010 m3

and 1.8 × 1010 m3 at Lee’s Ferry [14]. Peak flows occurred from April to June when
late-spring snowmelt from higher elevations entered the area (Figure 2). The Gila River
contributed an estimated 0.16 × 1010 m3 per year to Colorado River discharge at its
confluence near Yuma before upstream diversions dewatered the river [15]. Construction
of dams along the Colorado River, particularly the Hoover Dam in 1936, has increased the
evaporation of river water and greatly influenced δ18O and δ2H in surface water below
Hoover Dam. Pre-dam and post-dam river water are, consequently, distinctive in isotope
composition [16].
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and Gila River as combining the Gila (USGS Station 09474000), Verde (USGS Station 09510000) and
Salt River (USGS Station 09497500). All data are available online from [17].



Hydrology 2021, 8, 80 4 of 22

The entire flow of the Colorado River is now captured and used before reaching the
river’s mouth. South of the USA–Mexico border, no water flows, except during unusually
wet years and engineered environmental flows resulting from water treaties between the
USA and Mexico [18,19]. Climatic anomalies arise from El Niño Southern Oscillation and
affect the entire Colorado River catchment. When upstream storage reservoirs are full, high
precipitation during El Niño years can increase river discharge. This was observed at the
USA–Mexico border, where daily discharges peaked at 935 m3/s during the mid-1980s [3].

2.1.5. Hydrogeology

Water-bearing units in the area are described in great detail by [9,10]. These are
divided based on age: Tertiary rocks with poor transmissive properties and Pliocene to
Holocene deposits yield a significant amount of water. For this study, we focus on the
upper ~300 m of the younger water-bearing sediments where most of the production wells
in the study area are found. This part of the aquifer is formed by the upper fine-and
medium-grained sediment of the younger alluvium [9,20,21].

Direct infiltration from the Colorado River and overbank flooding were the main
source of recharge to the aquifer before major agricultural development [10,22]. Today,
the aquifer has an annual recharge of 755 × 106 m3 by infiltration from unlined irrigation
canals supplied with Colorado River water and groundwater from the Colorado River
Basin upstream of Yuma, Arizona [7,23]. Pre-development, regional groundwater flowed
in a northeast-southwest direction from the junction of the Colorado River and Gila River
near Yuma, Arizona, to the northern Gulf of California (Figure 3A; [21]).

Unlined canals and groundwater pumping have disturbed the source and sink patterns
of water movement to and from the aquifer within the Delta [10]. Groundwater flow direc-
tion has remained constant, but in areas where long-term surface irrigation has occurred
(e.g., Yuma Valley), groundwater levels are higher now than during pre-development
time (Figure 3B). Several reaches along the river now act as drains for groundwater where
groundwater levels are high, but less than 3.5 × 107 m3 (4.6%) of the yearly Colorado River
flow discharges as groundwater into the Gulf of California [11,24].
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2.1.6. Ciénega de Santa Clara

The Ciénega de Santa Clara (Ciénega) is a brackish wetland along an old course of the
Colorado River in Mexico. The Ciénega lies along a shallow depression on the eastern edge
of the Delta and covers an area of 6000 ha dominated by Typha dominguensis (Figure 1; [26]).
It is an “off-channel” wetland; its water does not come directly from the Colorado River. The
most important source of water for the Ciénega is brackish groundwater (TDS > 2.6 ppt)
derived from the Wellton-Mohawk Irrigation Drainage District of Arizona (irrigated with
Colorado River water). Excess agricultural runoff is transported to the Ciénega by a
concrete-lined canal, the Wellton-Mohawk Drain, which delivers 1.3 × 108 m3/y. The
Riito Drain (Figure 4), which transports wastewater from Mexican agriculture, supplies
approximately 1.4 × 107 m3 to the Ciénega [27].
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2.2. Field Methods

Surface water samples were collected from the Ciénega, Wellton-Mohawk Drain, and
Colorado River at Yuma, Arizona during May 2013, October 2013, and July 2014 (Figure 4).
These surface water samples were used to establish the evaporation trend of Colorado
River water. Groundwater samples were collected from the Minute 242 well field along
the Arizona–Sonora border in October 2016. These groundwater samples were used to
evaluate potential water sources besides Colorado River water. Additionally, two bulk
sediment samples from the San Luis Mesa were analyzed for δ13CCaCO3 to correct 14C ages.

Temperature, pH, dissolved O2, and electrical conductivity (EC) levels were measured
in the field after each parameter had stabilized. Samples for oxygen, hydrogen, and carbon
(DIC) stable isotopes were filtered with a 0.45 µm nylon filter and kept in capped glass
vials with no headspace. Unfiltered water samples were collected for 3H and 14C analysis
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in rinsed 1-L HDPE and amber borosilicate glass bottles, respectively. Samples for ions
and alkalinity were filtered with a 0.45 µm nylon filter and kept in HDPE bottles. Cation
samples were preserved with concentrated, optima grade HNO3. All samples were kept
on ice while in the field and then refrigerated at 4 ◦C before analysis. Alkalinity was
determined by the Gran alkalinity titration method [28] within 12 h of collection. This is
expressed as HCO3

−, assuming dominance of this anion at the observed pH values and
consistent with units used in previous studies.

2.3. Laboratory Methods

Values of δ18O and δ2H were measured at the Environmental Isotope Laboratory,
Department of Geosciences, University of Arizona, using a Finnigan Delta-S mass spec-
trometer with automated CO2 equilibration and Cr-reduction attachments. Analytical
precisions (1σ) for these techniques are 0.08% for δ18O and 0.9% for δ2H. δ18O and δ2H
data are reported in delta notation:

δ = (R/Rstd − 1) × 1000 (‰)

where R is the ratio of the heavier over, the lighter isotope in the sample, and Rstd is the
isotope ratio of Vienna standard mean ocean water (VSMOW).

δ13CDIC values were measured on a ThermoQuest Finnigan Delta Plus XL continuous-
flow gas-ratio mass spectrometer coupled with a Gasbench automated sampler. Samples
were reacted for >1 h with phosphoric acid at room temperature in Exetainer vials pre-
viously flushed with He gas. Standardization was based on NBS-19 and NBS-18, and
precision was ± 0.30‰ or better (1σ). All δ13C values were expressed in delta notation
relative to the Vienna Pee Dee Belemnite (VPDB) standard.

Tritium values were measured by liquid scintillation counting on electrolytically
enriched water in a Quantulus 1220 spectrophotometer with a detection limit of 0.7 tritium
units (TU) for 8-fold enrichment and 1500 min of counting. Carbon-14 was measured as
liberated CO2 reduced to graphite at the NSF-Arizona Accelerator facility. These results are
reported as percent modern carbon (pMC) relative to NBS standards oxalic acid I and II.

Anion concentrations were determined in the Department of Hydrology and Atmo-
spheric Sciences at the University of Arizona using a Dionex ion chromatograph model
3000 with an AS23 analytical column (precision ± 2%). The analyses for cations were
performed by the Arizona Laboratory for emerging contaminants (ALEC) at the University
of Arizona using a PerkinElmer Elan-II inductively coupled plasma–mass spectrometer
(precision ± 2%).

2.4. Data

The final dataset for this study (Table S1) contains published and unpublished re-
sults for water samples from agricultural wells in the San Luis Valley [29,30], Yuma and
San Luis Mesa [10,17,30], and the lower Colorado River floodplain [7,31]. The saturation
indices of water samples were calculated using the hydrogeochemical equilibrium model
of PHREEQC [32].

Average δ18O, δ2H, and solute chemistry values for the different potential water
sources in the area were determined from other existing databases or publications and are
used for comparison with individual values in the study area (Table 1; Figure 5). These
endmembers include pre-dam Colorado River water (water recharging before Hoover
Dam completion in 1936), post-dam Colorado River water (evaporated, while stored in
upstream reservoirs), agricultural discharge, and Gila River. Pre-dam Colorado River water
ion concentration and δ18O and δ2H values were approximated using data from USGS
station 9380000 at Lee’s Ferry [17]. This station was used because it is located upstream
from Lake Mead, where enrichment by evaporation occurs. Colorado River water near
Lee’s Ferry is assumed to represent water reaching the Delta before major development
along the lower Colorado River. For post-dam Colorado River water δ18O, δ2H, and ion
values were calculated using data from USGS station 9522000 at Morelos Dam [17].
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Table 1. Average composition of waters in the study area.

Type Year pH Ca2+

(mg/L)
Mg2+

(mg/L)
Na+

(mg/L)
K+

(mg/L)
HCO3−

(mg/L)
SO42−

(mg/L)
Cl−

(mg/L)
NO3−

(mg/L)
Br−

(mg/L)
δ18O
(‰)

δ2H
(‰)

Pre-dam
Colorado River 1967–2015 7.8 89 30 95 5 190 290 65 2.16 0.05 −15.0 −115

SD 35 12 44 2 35 137 35 5.00 0.04 0.3 2
Post-dam

Colorado River 1980–2015 8.2 89 32 146 5 197 302 149 0.37 0.31 −12.0 −97

SD 12 4 29 1 15 49 35 0.17 0.04 0.6 5
Ag. discharge 1961–1995 7.8 271 117 881 9 392 941 1514 2.13 0.62 −10.8 −89

SD 72 37 83 1 45 97 570 0.56 0.01 0.4 4
Gila River 2004–2005 8.0 56 19 342 4 255 262 348 3.64 - −9.9 −71

SD 50 14 352 5 137 257 411 4.92 - 1.3 20
Winter rainfall 1990–2006 −7.2 −47
Largest events 1990–2006 −7.5 −50

SD: standard deviation. δ18O and δ2H relative to V-SMOW (‰). Largest events: The largest 30% of rain events in the period of record.

For agricultural discharge, δ18O, δ2H, and ion values were calculated using data from
USGS station 9529300 at the Wellton-Mohawk Drain [17] and [7,33]. Values of δ18O and
δ2H, and ion concentrations in the upper Gila River, near Safford, Arizona (Figure 1) were
calculated using well data from [34].

Multiyear rainfall isotope data collected at Organ Pipe Cactus National Monument
(OPCNM; Figure 1) in Arizona were used to estimate long-term δ18O and δ2H values of
winter precipitation representing local recharge in the area [30]. OPCNM is located 175 km
east of the study area at an elevation of 515 masl, which is similar to the average elevations
in the Gila Range.

Individual and mean δ18O and δ2H values for the different endmembers are shown in
Figure 5A,B. For rainwater, the means are weighted for precipitation amount.

Evaporated Colorado River Water

The (δ18O, δ2H) values of Colorado River water at different degrees of evaporation
were modeled using a method described by [36]. Average pre-dam Colorado River water is
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used as a starting point (δ18O = −15‰ and δ2H = −115‰). A displacement of data to the
right of the GMWL reflects evaporative loss. Average humidity is assumed to be 60% to
obtain an evaporation slope between 5 and 6, which is characteristic of evaporated Colorado
River water in the area [16,37]. This evaporation trend is referred to as the Colorado
River evaporation trend (CRET) in several isotope plots (e.g., Figure 5). Equilibrium (α)
and kinetic fractionation (∆E) factors for 18O and 2H are calculated using the following
equations [38,39]:

103lnα18Ol−v = 1.137 × (106/T2) − 0.4156 × (103/T) − 2.0667 (1)

103lnα2Hl−v = 24.844 × (106/T2) − 76.248 × (103/T) − 52.612 (2)

∆E18Ol−v = 14.2 × (1 − h) (3)

∆E2Hl−v = 12.5 × (1 − h) (4)

In Equations (1) and (2), T is the mean annual temperature (K), and α is the frac-
tionation factor. A temperature of 298 Kelvin is assumed for calculation purposes. This
temperature is nearly identical to the average temperature at Yuma, Arizona (296 K; [40]).
In Equations (3) and (4), h is the relative humidity (0.60).

The enrichment factor Eis calculated using Equation (5):

E18Ol−v = [α − 1] × 103 (5)

The evaporative enrichment for δ18O and δ2H values can be modeled, according to
a Rayleigh distillation, by assuming different residual water fractions (f) in the following
Equation (6):

E18Ototal × ln(f) = evaporative enrichment (6)

E18Ototal is the overall enrichment for 18O in this case. The overall enrichment for
evaporation under the specified conditions is +15.06‰ for 18O and +84.51‰ for 2H. The
result of Equation (6) is added to the average (δ18O, δ2H) values of pre-dam Colorado
River water to model the evolution of Colorado River water under different degrees of
evaporation (Figure 6).
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Figure 6. δ2H vs. δ18O showing modeled evolution of Colorado River water evaporating under 60%
relative humidity (mod. evaporated Colorado River). Also shown: data for surface water from the
Ciénega (labeled CIEN), average pre-dam Colorado River water, average post-dam Colorado River
water, the GMWL, and the CRET. Percentages indicate the degree of evaporation relative to pre-dam
river water.
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3. Results
3.1. Major Ion Trends

The distribution of predominant anions and cations shows that surface Colorado River
water evolves from a Ca–HCO3-dominated water type in its headwaters into Na–Ca–Cl-
SO4-dominated waters as it travels downstream and reaches the international border with
Mexico (Figure 7A). Groundwater samples from the Colorado River floodplain consist of
mixed Ca–Mg–Cl/Na–Cl water types. Samples belonging to the Yuma and San Luis Mesas
and Gila Range foothills groups show Na+ and Cl− as the predominant ions (Na–Cl-type;
Figure 7B).
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Figure 7. (A) Piper diagram showing data for surface waters in the Colorado River Basin including data for headwaters
(USGS Station 09196500), Green River, Utah (USGS Station 09315000), Lee’s Ferry (USGS Station 09380000), Hoover Dam
(USGS Station 09421500), US–Mexico border (USGS Station 09522000), and Gila River near Dome, Arizona (USGS Station
09520500). All USGS data are available online from [17]. (B) Piper diagram showing data for groundwaters in the study
area, including Colorado River Floodplain, Yuma and San Luis Mesas, and Gila Range.

All groundwater samples in the floodplain, Yuma and San Luis Mesas, and Gila Range
foothills are undersaturated concerning halite, gypsum, and anhydrite (SI < 0). This allows
Na+, Cl−, Ca2+, and SO4

2− concentrations to increase along the flow paths. Most of the
groundwater samples are supersaturated or close to saturation concerning dolomite, calcite,
or both (SI between −1 and 1), indicating a strong presence of these two minerals in the
aquifer system.

3.2. Stable Isotopes
3.2.1. Endmembers and Evaporation Calculation

Endmember isotope compositions were calculated as means of the data shown in
Figure 5A. Pre-dam Colorado River water (δ18O, δ2H) values are −15‰ and −115‰,
post-dam Colorado River water values are −12‰, and −97‰, agricultural discharge
values are −10.8‰ and −89‰, and Gila River water values are −9.9‰ and −71‰
(Table 1; Figure 5B). Rainfall isotope data (δ18O, δ2H) yielded average values of−7.2‰ and
−47‰ for winter, and −7.5‰ and −50‰ for the 30% wettest events (Table 1; Figure 5B).
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Although the study area is close to the coast, seawater from the Gulf of California (Figure 8)
is not required as an endmember for the present dataset.
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Figure 8. (A) δ18O and δ2H values of surface water and groundwater from the Colorado River floodplain (CRFP). (B) δ18O
and δ2H values of waters from the San Luis and Yuma Mesas, Gila Range relative to the GMWL and the CRET. Deep well
data from [41]. Dashed gray line shows hypothetical mixing between seawater in the Gulf of California [42] and evaporated
Colorado River water.

Surface water samples from the Ciénega (labeled CIEN in Figure 6) have δ18O values
between −10.6‰ and +6.0‰, and δ2H values between −88‰ and +8‰. The highest δ18O
and δ2H values are located in the southern part of the Ciénega near the tidal flats (sites 76
and 77). All water samples fall to the right of the GMWL (Figure 6). Some of the samples
in the Ciénega have lost more than 50% of volume by evaporation relative to the pre-dam
Colorado River endmember (Figure 6).

3.2.2. Surface and Groundwater Data

Stable isotope data for the study area are shown in Figure 8A,B. The (δ18O, δ2H)
values of Colorado River collected at Yuma, Arizona were−11.8‰ and−95‰, respectively
(Table S1). Wellton-Mohawk Drain discharge (WMD) had (δ18O, δ2H) values of −10.6‰
and −87‰. Groundwater samples from wells in the Colorado River floodplain (CRFP),
on both sides of the border, have δ18O values between −9.4‰ and −14.7‰, and δ2H
values between −75‰ and −112‰, and plot mainly on the CRET. Groundwater samples
from wells in the Yuma and San Luis Mesas (Mesa) have δ18O values between −7.9‰
and −14.9‰, and δ2H values between −60‰ and −114‰. These fall mainly along a
linear mixing trend between the pre-dam Colorado River and local winter precipitation
endmembers.

Groundwater samples from four wells near the Gila Range have δ18O values between
−7.6‰ and −8.7‰, and δ2H values between −55‰ and −67‰.
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3.2.3. H and 14C

Tritium and 14C activities for Colorado River water at Yuma were ~5 TU in 2017 and
~101 pMC in 2009, respectively (Table S1; [43]). However, values for 3H and 14C were
higher during the previous decades when more bomb-pulse 3H and 14C were present in the
atmosphere [44]. Colorado River water measured near the USA–Mexico border contained
716 TU in 1967 and 12–17 TU between 1993 and 1998 [16]. Post-bomb-pulse precipitation in
the Kofa Mountains, 90 km northeast of Yuma, averaged 3.4 TU in 2008–2009 [44]. Colorado
River floodplain groundwater samples range between 5 and 16 TU, and San Luis Mesa
samples range between <0.1 and 15 TU. The high values, 10–16 TU, all occur close to the
Colorado River (Figure 9); they cannot be explained by the recharge of river water since
1993 but must include some recharge from the bomb pulse. With one exception, tritium
is below detection level in groundwater from the San Luis and Yuma Mesas, indicating
pre-bomb recharge.
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Figure 9. Tritium (TU) data for groundwater samples. Shading indicates topography (see Figure 1).
The red-dotted line indicates the extent of the San Luis and Yuma Mesa.

Three 14C measurements from the San Luis Mesa have 59, 29, and 26 pMC, corre-
sponding to uncorrected 14C ages between 4800 and 11,500 14C years before present.

Most Colorado River floodplain groundwater samples consist of mixed Ca–Mg–
Cl/Na–Cl, but a few samples fall exclusively within Na–Cl facies. The opposite is true for
the Yuma and San Luis Mesas and Gila Range foothills where groundwater samples are
Na–Cl-dominated, but a few samples fall within the Ca–Mg–Cl/Na–Cl mix (Figure 7B).
The influence of SO4

2−-rich Colorado River water in the floodplain is evident in Figure 10.
While most of the groundwaters in the floodplain have SO4

2− values >200 mg/L, those in
the Mesa and Gila Range foothills have SO4

2− values <200 mg/L.
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4. Discussion
4.1. General Patterns

Colorado River headwaters are initially Ca–HCO3-dominated due to the dissolution
of silicate and carbonate minerals. These waters evolve into Ca–Mg–Cl/Na–Cl type in the
upper Colorado River in part due to the interaction with the local geology, anthropogenic
activities (e.g., mining and farming), and evaporative concentration where extensive irriga-
tion of land occurs (Figure 7A). Salts (halite and gypsum) dissolved from the Eagle Valley
Evaporite, Paradox Formation, Mancos Shale, Chinle Formation, and their associated soils
account for approximately half of the total solutes in this part of the river [45,46].

Agriculture dominates the floodplain in the lower Colorado River area. Here, the
proportion of Cl− and Na+ in Colorado River water increases due to irrigation return
flows, marine salt input, and/or halite evaporites in the lower Colorado River basin.
Evaporation at Lake Mead and mixing with return flow is evident from Figure 5A, where
post-dam Colorado River waters plot to the right of the GMWL and overlap agricultural
discharge in some cases. Nearly 30% of the total river surface discharge has been lost to
evapotranspiration when Colorado River water enters Morelos Dam, as suggested by the
(δ18O, δ2H) values of post-dam Colorado River water (Figures 5 and 6).

Evaporated Colorado River water would fall along the 1:2 line in Figure 10, repre-
senting the Cl/SO4 mass ratio in post-dam Colorado River water. There is an excess of
Cl−, relative to SO4

2−, in virtually every water sample plotted. Bacterial SO4
2− reduction

could drive water samples to plot to the left of the evaporation line, creating an excess
of Cl−. However, SO4

2− concentrations are relatively high, oxic conditions prevail in
the unconfined aquifer, and SO4

2− reduction has only been noted in a few wells within
the floodplain where organic matter is more readily available [9]. Thus, evaporation by
itself does not explain the observed relationship between Cl− and SO4

2−, and there are
additional sources of Cl−. These additional sources of Cl− result in a wide range of Cl−

concentrations, which tend to be lower near the Colorado River floodplain than in the
Mesa (Figure 11A).
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The (δ18O, δ2H) values for groundwater in the study area are also variable. Figure 11B
shows the differences in δ2H in groundwaters. Within the floodplain, the observed range of
δ2H corresponds to mixtures of average pre-dam river water with δ2H values near −114‰
and post-dam river water with average values near −97‰ (compare Figure 8A). Mixtures
with a high proportion of pre-dam water (<−105‰) dominate groundwater beneath a
broad area of the floodplain in Mexico. The area is poorly constrained to the south, and
this pattern may extend further south than indicated in Figure 11B.

The (δ18O, δ2H) values of groundwaters derived from local precipitation (−7.6‰
and −51%; [30]) are slightly lower than the average winter precipitation (δ18O and δ2H)
values (−7.2‰ and −47‰), but are consistent with the isotope composition of the largest
30% of rain events (−7.5‰ and −50‰, Figure 5B; [30,47–49]). The extensive alluvial fans
observed at the base of the Gila Range suggest that mountain system recharge and focused
recharge in ephemeral streams are likely to occur at the mountain front, as in other semi-
arid basins in southern Arizona [50–52]. This occurs during winter when precipitation
exceeds evapotranspiration. Groundwater flows from these recharge zones in the mountain
front of the Gila Range west into the Yuma and San Luis Mesas. Mountain system recharge
is present in at least one of the samples located at the base of the Gila Range (Figure 8B,
−7.6‰ and 55‰).

Clearly, many such samples are Colorado River water or mixtures that are predomi-
nantly local recharge (Figure 8B). Infiltration of river water beneath the mesas is physically
difficult to occur as far east as the pediment of the Gila Range (Figure 3). Three floodplain
groundwater samples clearly contain mixtures of local recharge with river water (Figure
8A). Precise estimation of ratios in each case is problematic because of the difficulty of
specifying a river water end member on the river evaporation trend, which intersects the
mixing trend at a small angle.
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The groundwater levels (Figure 3), location of the samples (Figure 4) and chemical and
isotopic composition (Figures 7 and 8) suggest that Na–Cl-dominated groundwaters from
the Yuma and San Luis Mesas and the Gila Range (mountain system recharge) are moving
westward, and mixing with Ca–Mg–Cl/Na–Cl waters from the floodplain (Colorado River).
This idea is illustrated in Figure 11, which shows higher Cl− and δ2H over the eastern side
of the study, relative to groundwaters in the floodplain and intermediate values between
them. Previous studies in the area [7,31] suggested that the Na–Cl-dominated waters
along the border represent Gila River water. The presence of Gila River water cannot be
discounted from isotope data alone; however, water with higher (δ18O and δ2H) values
than the floodplain waters also occurs at the mountain front, where recharge from the Gila
River is not possible. Therefore, such water is attributed here to local recharge.

Before major development, Gila River water in Yuma likely had (δ18O and δ2H) values
consistent with the evaporation of high-elevation precipitation in the headwaters originat-
ing on the GMWL at δ18O =−12 to−10‰ (Figure 5A). There is an evaporation trend in the
Gila River samples that overlaps with the Gila Range data (compare Figures 5A and 8B).
However, this is likely influenced by modern irrigation and the infiltration and percola-
tion of evaporated agricultural return, which did not occur before major development in
the floodplain.

Evaporation of Gila River surface water in pre-development times certainly occurred,
as it occurs in the river upstream of dams [53]. Historical hydrochemical data along the
lower Gila River are scant, and recent data show that today groundwater up to 90 km
upstream from the Colorado and Gila River confluence is dominated by Colorado River
chemistry [33]. Peak flows in the Colorado River occurred from April to June when late-
spring snowmelt arrived in the area and replenished the aquifer. Historical Colorado River
streamflow was at least two orders of magnitude larger than the Gila River during high flow
season. It is very likely that the two rivers mixed, even before their confluence, resulting in
waters dominated by Colorado River chemistry, and a pure Gila River endmember would
be hard to find west of the Gila Range.

Independently of the origin of groundwaters in the eastern side of the study area, the
low 3H levels indicate that recharge within the Yuma and San Luis Mesas occurred at least
before the 1950′s, before the detonation of thermonuclear devices for most groundwater
samples (Figure 9), and the 14C data are consistent with bulk residence times of thousands
of (uncorrected 14C) years before present (between 4800 and 11,500). Combining old
water and limited modern recharge across the Mesa suggests that the aquifer is vulnerable
to overdraft.

4.2. Source of Solutes
4.2.1. Na+ and Cl−

Most waters from the Colorado River floodplain, Yuma and San Luis Mesas, and Gila
Range foothills have a Na/Cl equivalent ratio close to the trends corresponding to halite
dissolution and seawater dilution (Figure 12A). A Na/Cl equivalent ratio higher than one
indicates the release of Na+ from silicate weathering reactions [54] in the Delta sediments.

Halite beds likely exist in the Delta due to marine transgression/regression cycles
and seawater evaporation, but within the study area, there is no evidence of them in the
available well-log data [9]. Partial dissolution of evaporite deposits explains high salinity in
groundwaters in the western part of the Colorado River Delta [55]. There, halite and sylvite
associated with lacustrine clayey sediments have been identified by X-ray diffraction and
severely affect Cl− concentrations in groundwater. These clays are also likely found in the
study area.
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Figure 12. (A) Na+ vs. Cl− (meq/L). Lines show 1:1 halite dissolution and seawater dilution trajectories. (B) Cl− (mg/L) vs.
Br− (mg/L). Inset shows samples with low concentrations. (C) Cl−/Br− (mass) vs. Cl− (mg/L) with seawater/Colorado
River water mixing trend. The horizontal line shows the seawater (SW) Cl/Br ratio [56]. Graphs include data for floodplain
(CRFP), Mesa, Gila Range, surface water from the Ciénega (CIEN), local rainfall, and Colorado River. Colorado River data
obtained from USGS Station 09404200. See text for further explanation.

Groundwater levels in the sampled areas are several meters higher than the high tide
levels in the nearby coastline of the Gulf of California (Figures 3 and 4). Isotope data for
the Mesa could be interpreted as indicating mixing of Colorado River water and seawater
(Figure 8B). Based on the elevation of the water table and the location of the groundwater
samples, this is physically impossible. However, this is a possibility for groundwater
samples obtained from deeper wells (>1200 m) at Riito (Figure 8B; [41]).

Since no halite-bearing strata are known within the study area, and no evidence exists
for seawater intrusion (excluding deep wells), the possible sources of Cl− are (1) Salt-
bearing clays, (2) irrigation water, (3) precipitation, and (4) dry deposition and eventual
dissolution of marine-derived salts. The ions Cl− and Br− provide a useful tracer combi-
nation to identify the source of salinity in groundwater. Bromide is rejected during the
process of halite precipitation, and the Cl/Br mass ratio of solid NaCl is usually 2–3 orders
of magnitude higher than in the original waters (~5000; [57]). The Cl/Br mass ratio of
seawater is about 290 and is preserved in precipitation occurring near the sea [58].
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The Cl/Br mass ratio of post dam Colorado River water upstream of Lake Mead (USGS
Station 09404200) appears consistent with a trend line resulting from halite dissolution.
This line plots very close to the Cl− axis because of the low Br− content in the mineral
(Figure 12B, inset). Closer inspection of Cl/Br data in the study area (Figure 12C) provides
an alternative explanation of Br− content in the river water. Figure 12C indicates large
ranges in both Cl− (1–60 mg/L) and Cl/Br (1000–3000) in river water. The figure shows
a mixing line for seawater with a river water composition chosen as 10 mg/L Cl−, and
a Cl/Br = 2000. Other mixing lines are possible for alternative choices of river water
composition. The range of Cl− could be explained in part by changes in the dilution of salt
input from upstream evaporites. However, the prominent linear data array to the right of
the mixing line is better explained by very small additions of sea salt to river water. The
Cl/Br mass ratio of local precipitation follows a trend line resulting from the dilution of
seawater (Figure 12B). The Cl/Br mass ratio in local precipitation ranges between 150 and
274, similar to the marine Cl/Br mass ratio and is consistent with marine-derived aerosols
(Figure 12C). A single sample from the Gila Range and a few samples from the floodplain
and the Yuma and San Luis Mesas plot near the marine Cl/Br mass ratio (Figure 12C). Most
of the samples have intermediate Cl/Br equivalent ratios. This indicates mixing between
Colorado River water having irrigation and halite-derived Cl−, and local recharge having
Na+ and Cl− originating from seawater aerosols.

Groundwaters within the floodplain and the Yuma and San Luis Mesas have Cl−

concentrations between 132 and 1000 mg/L (Table S1). It is important to emphasize that
some of the variability in Cl− concentration is likely explained by the spatial and temporal
distribution of the sample collection. Water samples were obtained from wells with depths
between 40 and 242 m from the surface. Shallower wells are more likely to be disturbed
by anthropogenic activity, such as irrigation. The historical data used in this study are
for samples collected between 1962 and 2016. Older samples could reflect a chemical
composition more closely related to pre-dam Colorado River water with evaporation
and less anthropogenic sources of solutes, and newer samples could be more similar to
post-dam Colorado River water.

4.2.2. Ca2+, Mg2+, SO4
2−, and HCO3

−

The dissolution of calcite, dolomite, and gypsum results in waters dominated by Ca2+,
Mg2+, SO4

2−, and HCO3
− [59]. There is an approximate 1:1 relationship for groundwaters

in the study area with a slight deficiency of (Ca2+ + Mg2+) relative to (SO4
2− + HCO3

−),
particularly in groundwater samples from the floodplain (Figure 13). The excess negative
charge is balanced by Na+ likely derived from old groundwater discharging into the river
through the exchange of Ca2+ or Mg2+ for Na+ with clay minerals. Cation exchange also
explains the excess Na+ relative to Cl− observed in Figure 12A and causes floodplain
groundwaters to plot above the 1:1 halite dissolution trend.

The highest Cl/SO4 mass ratio in the Gila Range samples (~6) approaches the ratio
in seawater (~7.4, Figure 14). This further supports the idea that local recharge contains
marine salts transported to the mountains either as marine aerosol or dust. As locally
recharged groundwaters having a high Cl/SO4 molar ratio move westward, they mix
with an SO4

2−-dominated endmember (Colorado River water), as illustrated by the Mesa
samples in Figure 14A,B (dashed line).

The Mg/Ca mass ratio for the Gila Range samples varies between 0 and 0.6
(Figure 14B). Samples 43 and 82, both located in the Mesa, have the lowest δ18O and
δ2H values of all the samples (−14.9 and −114, and −14.8‰ and −111, respectively), and
characterize pre-dam Colorado River water. We assume that the Mg/Ca mass ratio range
(0.2–0.5) of these samples represents pre-dam Colorado River water. Within the floodplain,
Mg/Ca molar ratios range between 0.2 and ~3. Some degree of evaporation is observed
in floodplain samples (Figures 8A and 14A), but the Mg/Ca mass ratios would remain
constant if this were the only process occurring in the floodplain and would plot in the
dashed circle in Figure 14B. Three additional processes are believed to affect Colorado
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River floodplain groundwaters 1) precipitation of solid phases, such as calcium carbonate,
2) de-dolomitization of Mg-bearing carbonates, and 3) exchange of Ca2+ or Mg2+ for Na+

in the vadose zone, as previously discussed.
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4.3. Hydrochemical Evolution

Features of the regional flow system, the relations between major solutes, and stable
isotope data suggest that the following set of reactions is responsible for the hydrochemical
evolution of groundwater in the study area:

Ca2+ + CO3
2− ←→ CaCO3 (7)

CaSO4 → Ca2+ +SO4
2− (8)

Ca(Mg)CO3 → Ca2+ + Mg2+ + CO3
2− (9)

Ca2+ + 2Na-X = Ca-X + 2Na+ (10)

In reaction (10), X represents an ion exchange site occupied by two monovalent cations
or one divalent cation.

The evolution of groundwaters in the study area is described in the following para-
graphs. Recharge having ionic ratios similar to those of seawater enters the aquifer along
the Gila Range. Most rainwater is concentrated by evaporation and transpiration by water-
efficient native vegetation, leading to the accumulation of meteoric salts near the surface.
These readily soluble salts are dissolved during the most intense and infrequent events,
and contribute with Na+, Ca2+, Cl−, and SO4

2− to groundwater when excess precipita-
tion reaches the aquifer. Average local recharge in the region plots near the GMWL. This
suggests that infiltration occurs during winter as the mountain system recharge when
evaporation is low and through preferential pathways along the major washes draining the
Gila Range. The concentration of range-front groundwater is remarkably higher than the
rainfall it was derived from, as observed in the Gila Range samples, and is dominated by
Na–Cl. This groundwater flows towards the southwest and mixes with Ca–Mg–Cl/Na–Cl
Colorado River water along the Yuma and San Luis Mesas (Figure 8).

Mineral–water equilibria suggest that dissolution–precipitation of calcite and dolomite,
dissolution of halite and gypsum, and exchange of aqueous Ca2+ for adsorbed Na+ control
the concentrations of solutes in the floodplain. Groundwater pumping draws sulfate-rich
groundwater used for flood irrigation in the Yuma and San Luis Valley. Soil water is
subjected to evapotranspiration, and Ca2+ and dissolved inorganic carbon are removed by
precipitation of calcium carbonate. Precipitation of calcium carbonate allows the further
dissolution of gypsum by the common ion effect. In the special case where groundwater is
in equilibrium with calcite and dolomite, the dissolution of dolomite (de-dolomitization)
increases Mg2+ concentrations, as observed in Figure 14B [60].

Montmorillonite is the most abundant clay in the study area and has considerable
capacity for cation exchange [9]. As soil water moves through the soil, Na+ is released
for Ca2+ during the cation exchange process. This affects the Mg/Ca ratio in floodplain
samples (Figure 14) and explains the deficit of Ca2+ + Mg2+ relative to SO4

2− and HCO3
(Figure, balanced by the excess Na+ observed in Figure 12A. The groundwater produced
by this set of reactions is enriched in readily soluble salts left behind by evapotranspiration
of irrigation water and contributes to the salinization of the aquifer when excess irrigation
infiltrates and reaches the water table [60]. Once in the aquifer, the enriched solution mixes
with Ca–Mg–Cl/Na–Cl groundwater and Na–Cl groundwaters derived from local recharge
(Figure 15).
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5. Conclusions

Stable isotopes (δ18O and δ2H) distinguish four potential water endmembers in the
Colorado River Delta: post-dam river water, pre-dam river water, Gila River water, and
local recharge. Evaporation effects are prominent in the dataset; Colorado River samples
form a single evaporation trend of slope 5.8. Groundwater from the Delta floodplain and
water from the Ciénega de Santa Clara plot on the river evaporation trend. Seawater cannot
intrude on the shallow aquifers examined in this study.

In the Gila Range, local mountain system recharge results from the largest 30% of
winter rainfall events. Recharge occurs through preferential infiltration pathways along the
major washes draining the Gila Range. Water from smaller rainfall events is lost to evapora-
tion and transpiration, which causes the accumulation of meteoric salts with seawater ion
ratios near the surface. Accumulated salts are dissolved during the large and infrequent
precipitation events, yielding infiltration more concentrated than rainwater; these solutions
infiltrate into the water table. Solutes are dominated by Na–Cl and contribute Na+, Ca2+,
Cl−, and SO4

2− to the aquifer.
In the irrigated floodplain of the Colorado River Delta, hydrochemical evolution is

mostly controlled by the original Ca–Mg–Cl/Na–Cl-type Colorado River water, with small
(<1%) additions of marine salt. Mineral saturation states, ionic relations, and stable isotopes
indicate that salinity is augmented by evapotranspiration, precipitation of calcite that leads
to the dissolution of gypsum by the common ion effect, dissolution of accumulated soil salts,
de-dolomitization, and exchange of aqueous Ca2+ for adsorbed Na+. Pre-dam Colorado
River water is common in floodplain groundwater.

In the Yuma and San Luis Mesas, values of δ18O and δ2H indicate mixing between
local recharge at the Gila Range and Colorado River water. Na–Cl-dominated groundwater
flows southwest from the Gila Range and mixes with the Ca–Mg–Cl/Na–Cl-dominated
floodplain waters. Low 3H indicates that groundwater within the Yuma and San Luis
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Mesas infiltrated before the 1950′s, and 14C data are consistent with bulk residence times
of thousands of years (4800 and 11,500 uncorrected 14C years before present).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/hydrology8020080/s1, Figure S1: General geology and cross-section A–A’. Table S1: Isotopic
and chemical composition of waters in the study area.
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