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Abstract: The changing climate affects the agricultural lands, and, in turn, the changes in agricultural
lands alter the watershed. A major concern regarding waterbodies is the increased sedimentation
rates due to climate change. To improve the water quality, it is crucial to remove fine sediments.
Using current environmental dredging methods is challenging because of the sediment volumes
that must be dredged, the absence of nearby disposal sites, and the shoreline infrastructure at the
dredging locations. To address these issues, we used a surgical dredging method with a variable area
suction head that can easily maneuver around the docks, pilings, and other infrastructures. It can also
isolate the fine grain material to better manage the dredged volumes in the seabed where nutrients
are typically adhered. To this end, a statistical analysis of the dredged samples is essential to improve
the design efficiency. In this work, we collected several samples using a variable area suction head
with different design settings. The collected samples using each design setting were then used to
model the distributions of the different grain sizes in the dredged sediments. The proposed statistical
model can be effectively used for the prediction of sediment sampling outcomes to improve the
gradation of the fine sediments.

Keywords: dredging; water quality; statistical modeling; log-normal distribution; beta distribution;
bootstrap method

1. Introduction

The potential for higher sedimentation rates in waterbodies is a growing concern
stemming from climate change [1]. The projected impacts of our changing climate raise
concerns regarding associated changes in agricultural lands and the effects those changes
may have on the watershed. Some of these projected impacts include changes in rainfall
patterns, desertification, land usage, and runoff [2]. The National Oceanic and Atmo-
spheric Administration’s (NOAA) National Climate Report produced the map [3] shown
in Figure 1, illustrating precipitation patterns in the United States in 2017 in comparison
with the average precipitation patterns over 122 years starting from 1895.

The map shows that more than half of the states in the continental US experienced
above average precipitation. NOAA ranked the year 2017 the 3rd warmest and the 20th
wettest year on record, with precipitation being above average for the five consecutive
preceding years.

Climate change simulations for the Beasley Lake watershed in Mississippi utilizing
the AnnAGNPS pollution model suggested increases in agricultural pollutant loading to
be between 9% and 12% by 2070 [4]. Similarly, in the Apalachicola area of Florida, a Soil
and Water Assessment Tool was developed [5] to simulate sediment loading with regard
to climate conditions of the year 2000 and the year 2100. It showed that climate change
may have seasonal impacts on runoff and sediment loading, affecting the seasonal patterns
of plant and animal life in the waterway [5]. Beyond the US, models have predicted a
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3.3%–16.5% increase in phosphorous loading in Danish streams within the next 100 years
varying by region, thus negatively altering the ecology of most lakes [6]. Various models
have shown similar results in a number of locations [7,8].

Nutrients carried in the runoff in the form of fertilizer or organic material is one of the
causes of eutrophication of our coastal waterbodies. As the organic matter decays and mixes
with the fine sediments, muck is formed. Muck is fine-grained sediment characterized
by having high organic nutrients and high water content [9–12]. The nutrient load that
is constantly fluxing up into the water from the muck can be higher than the nutrients
flowing into the water body from the runoff [13]. This legacy loading of nutrients is an
additional cause of eutrophication. The increase in nutrient loading in water systems
has severe impacts on ecosystems, such as triggering algal blooms that then cause low
dissolved oxygen and result in massive fish kills, such as those seen in recent years in the
Indian River Lagoon [14,15].

Figure 1. Statewide precipitation, 2017 [3]. Ranks are from 1 for driest to 123 for wettest.

In addition to trapping nutrients, fine sediments are also a source of turbidity. Due
to the fine-grained nature of the silts and clays that make up the muck, it is easily mixed
up into the water column, releasing nutrients and limiting light availability. The increased
turbidity decreases photosynthetic growth, and as the fine material resettles, the natural
substrate of the lagoon can become covered [14]. The removal of fine sediments is crucial
to improve water quality. Muck poses a threat to communities that rely on the natural
physiology of the lagoon: a sandy substrate, steady nutrient cycles, and clear water.

The primary existing method for reducing nutrients and nutrient loading to eutrophic
systems beyond agricultural mitigation is the use of environmental dredging, which is
defined as “the removal of contaminated sediments from a waterbody for purpose of
sediment remediation” [16,17]. Conventional methods use cutter suction or hydraulic
suction dredges that require significant processing times and can alter or damage the
benthos [18]. Due to the volumes that must be dredged and the locations of the areas
that require dredging, current environmental dredging methods often face challenges in
meeting the Army Corps’ guidelines, such as the availability of a nearby disposal site
or the shoreline infrastructure. To address this issue, a “surgical dredging” method was
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established by use of a variable area suction head [19,20]. The research presented in this
paper is focused on the removal of fine sediments with minimal disturbance to the natural
substrate by testing the design of a variable intake suction head for the hydraulic dredging
of fine sediments. Using a variable area suction head can facilitate maneuvering of a small
hydraulic dredge around the docks, pilings, and other infrastructures. It can also pinpoint
the fine-grained and nutrient-laden sediments in the seabed to better manage the dredged
volumes. However, current resources limit the ability to fully analyze the design efficiency.
A statistical method is essential to further improve the previous design and to avoid the
significant processing power required for performing a full sediment flow analysis on the
suction head. In this paper, a statistical model is introduced for the prediction of sediment
sampling outcomes to improve the gradation of the fine sediments.

2. Background

The variable area suction head, depicted in Figure 2, was tested at the Florida Institute
of Technology using a 5′ × 5′ cylindrical tank with a pumping arrangement.

Figure 2. Variable area suction head (with and without gearbox cover, shown left to right).

During each dredging test, the suction head was set to three different opening settings,
5/8′′, 2.5′′, and 5′′, which were referred to as closed, halfway, and open, respectively. These
settings are in reference to the spacing of the bottom and the top plates of the suction head.
Control tests were also performed using just the hose alone with no suction head attached.

With these heights, the intake area of the suction head was calculated by using the
following equation for the surface area:

Ai = 2πrh (1)

Using the calculated intake areas, the intake velocity was calculated for each setting
using the continuity equation.

Q = Vi Ai (2)

The flow, Q, for all tests was set at 120 GPM. The calculated values for the intake area
and the intake velocity are shown in Table 1.

Table 1. Intake areas and velocities.

Control Closed Halfway Open

Intake Area (cm2) 45.60 228.02 912.07 1824.15

Intake Velocity (cm/s) 166.01 33.20 8.30 4.15

When the intake velocity for each setting was established, the expected sediment
diameter to be entrained by the suction head was calculated. For dredging when no jet
systems were being used, the seabed was assumed to be in a stable state, so no particles
were suspended. With this assumption, the Shields parameter, Ψ, can be used to find the
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sediment diameter for which movement is expected. The Shields parameter is expressed
as a ratio of the liberating moment to the restoring moment [21]:

Ψ =
τc

(ρs − ρ)gd
(3)

where ρs is the density of the sediment, ρ is the density of the fluid (water), d is the
characteristic sediment diameter, g is the acceleration due to gravity, and dimensional shear
stress τc is

τc =
1
2

ρCDu2 (4)

where u is the intake velocity, and CD is the drag coefficient [21]:

CD =
24
Re

√(
1 +

3Re
16

)
(5)

where Re is Reynolds number:

Re =
ρwd

µ
(6)

where w is the fall velocity of the sediment [21]:

w =

√
4(ρs − ρ)gd

3ρCD
(7)

and µ is the viscosity. Solving Equation (3) for d, we have

d =
τc

Ψ(ρs − ρ)g
(8)

Alternatively, sediment diameters can be expressed by [21]

ϕ = − log2 d (9)

A Shields parameter of 0.03 is a typical value for incipient sediment motion [21],
and using the density of quartz 2.65 g

cm2 , the drag coefficient for an imperfect sphere is
approximately 0.44. Using the values above in Equation (8), the sediment size properties
are shown in Table 2.

Table 2. Sediment diameter for incipient motion.

Control Closed Halfway Open

d (mm) 1299.54 51.98 3.25 0.81

ϕ −10.34 −5.70 −1.70 0.30

In practice, the suction head does not necessarily entrain the calculated sediment size.
The fall velocities of the sediment can be used to approximate the entrained sediment size.
A particle will be entrained if the fall velocity of the particle is smaller than the intake
velocity of the suction head. To calculate d using the fall velocity, Equation (7) can be solved
for d:

d =
w23ρCd

4(ρs − ρ)g
(10)

The expected entrained sediment diameter of the particles that are suspended directly
at the intake of the dredging head are calculated iteratively using Equation (10) (Table 3).

These values are the approximated sediment sizes expected in the dredge slurry. The
approximated sediment sizes along with the collected samples in the previously ran tests
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can be used in a statistical model to estimate the entrained sediment sizes and improve the
efficiency of the suction head design.

Table 3. Sediment diameter for entrainment.

Control Closed Halfway Open

d (mm) 22.44 2.67 0.57 0.30

ϕ −4.49 −1.42 0.82 1.73

3. Methods

To estimate the entrained grain size and predict the entrained percentage of a given
grain size based on the total sample weight, the collected samples during the test runs were
used to model the probability distribution of the grain size based on the suction head’s
parameters. Log-normal distribution has been commonly used for grain size analysis, as
it is outlined in the Coastal Engineering Manual [22]. First, the grain size distribution is
modeled by a log-normal distribution [23]. Then, the probability of a specific grain size
is estimated using the beta distribution. The beta distribution is theoretically appealing
to model the percentage of sediment weights of different grain sizes. The number of
collected samples in the test runs is small due to the time required to acquire and process
a sample. Therefore, a bootstrap method was employed to estimate an empirical beta
probability distribution.

3.1. Log-Normal Model of Grain Size

In the first test run, the so-called no shroud test, the suction head operated alone
without any additional jetting system or shroud configuration. Separate tests were run,
and we collected 3 samples for each setting of the suction head. These samples were
then analyzed in the lab by using a sieving technique. The weight of each grain size was
measured (in a sediment sample), and its percentage was calculated. The mean grain size
(in ϕ) can be estimated by [23]

Mdϕ =
ϕ16 + ϕ84

2
(11)

where ϕ16 and ϕ84 are the 16th and 84th grain size percentiles measured in ϕ. The standard
deviation of the grain size (measured in ϕ) can be approximated by

σϕ =
ϕ84 − ϕ16

2
(12)

Skewness αϕ, second skewness α2ϕ, and kurtosis (peakedness) βϕ of the grain size
are [23]

αϕ =
Mdϕ − ϕ50

σϕ
(13)

α2ϕ =
1
2 (ϕ5 + ϕ95)−Mdϕ

σϕ
(14)

βϕ =
(ϕ16 − ϕ5) + (ϕ95 − ϕ84)

2σϕ
(15)

3.2. Beta Distribution for Proportion of Grain Size

The beta distribution is a continuous probability distribution defined on the interval
[0,1]. It is parameterized by two positive shape parameters α and β to control the shape of
the distribution. The beta distribution can be applied to model random variables in a broad
range of different disciplines. Beta distribution is suitable to model random variables with
intervals of finite length. Hence, it has been commonly used to model the random behavior
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of proportions, fractions, and percentages. In turn, beta distribution is a natural choice to
model the percentage of the sediment weights of the different grain sizes in this project.

The proportion of grain size based on the total sample weight can be modeled using
the beta distribution [24]:

f (g) =
gα−1 (1− g)β−1

Γ(α)Γ(β)
Γ(α + β) (16)

where g is the grain size, α and β are the shape factors, and Γ is the Gamma function.
Parameters of the beta distribution (α and β) are defined by the moments (mean and
standard deviation) of distribution [25]:

α =
(

1−µ

σ2 − 1
µ

)
µ2

β = α
(

1
µ − 1

) (17)

In practice, parameters of the beta distribution (α, β) can be estimated using the
sample mean (g) and sample variance (S2

g) of the collected sample:

α̂ =

(
1−g
S2

g
− 1

g

)
g2

β̂ = α̂
(

1
g − 1

) (18)

3.3. Bootstrap Analysis

A sample size of at least 30 is recommended for a sound estimate [26]. The collected
sample size in this work was three for each setting. Therefore, a bootstrap analysis on the
data was performed to generate a large bootstrap sample size to perform the analysis. A
beta distribution was then estimated for the generated bootstrap sample and compared to
the previously estimated beta distribution from the original samples. The estimated shape
parameters of the beta distribution can be used for predicting sediment distribution for a
specific design set and to identify the optimal design setting of the suction head for the
expected results.

First, 3 sediment weights were combined for each grain size (combined sediment
sample), and then bootstrap samples were generated by resampling (with replacement)
the combined sample for each grain size 5000 times. In this way, a total of 7 sets (of
5000 samples) were generated for each of the suction settings. For each grain size, the sums
of the 3 resamples were taken. Then, those sums of each grain size were summed together
to obtain a series of bootstrapped sample weights. The sums for each respective grain size
were then divided by the bootstrapped sample weight to obtain a bootstrap proportion.
The bootstrap proportion provides an estimate of the weight proportion of each grain size
in the sample for different settings. The bootstrap analysis was performed by resampling
the measured weight of each individual grain size 5000 times as depicted in Table S1 for
the control sample with a grain size of phi equal to zero (1 mm).

Next, each row of resampled data was summed over each of the 7 grain sizes. This
provided a 5000 by 7 matrix. The rows were then summed to obtain the total sample weight
for all grain sizes of each resample (Table S2). Finally, to quantify the bootstrap proportions,
the sum of each grain size for each resample was divided by its respective total sample
weight as depicted in Table S3. For example, resample 1 in this table shows that a grain
size with phi = 0 makes up 0.93% of the sample, whereas a grain size with phi = 1.23 makes
up 15% of the total sample weight.

4. Results and Discussion

Because the collected samples for each setting are of a small size, to better visualize
the sediment distribution, the total weights of three samples for the same setting were
combined to create one larger sample for that specific setting. The 16th and 84th percentile
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of the distribution (ϕ16 and ϕ84) in Equation (12) were then interpolated from the ϕ plot
and solved to find the mean grain size for each setting.

4.1. Log-Normal Statistics

The estimated parameters for the log-normal distribution are summarized in Tables 4 and 5.
Table 4 shows the estimated parameters for each sample individually, while Table 5 shows
the estimated parameters for the combined samples. The sediments with smaller diameters
are represented by a larger ϕ value in the ϕ scale in these tables.

Table 4. Estimated parameters for the no shroud test.

Mdϕ σϕ αϕ α2ϕ βϕ

Control 1 1.39 0.798 −0.189 −0.015 0.607
Control 2 1.682 0.897 −0.05 0.177 0.891
Control 3 2.398 1.742 0.32 −0.106 0.178

Closed 1 2.149 1.55 0.043 NA NA
Closed 2 2.421 1.535 0.378 −0.142 0.314
Closed 3 1.656 1.021 −0.046 0.419 0.994

Halfway 1 1.958 0.636 −0.07 −0.401 1.184
Halfway 2 2.706 1.248 0.284 −0.252 0.464
Halfway 3 2.023 0.998 0.004 0.132 1.012

Open 1 2.757 1.258 0.313 −0.21 0.378
Open 2 2.005 0.67 −0.099 −0.279 1.107
Open 3 2.738 1.289 0.304 NA NA

Table 5. Estimated parameters of the no shroud test for combined samples.

Mdϕ σϕ αϕ α2ϕ βϕ

Control 2.354 1.712 0.3719 −0.0944 0.372
Closed 2.048 1.377 0.1691 0.0395 0.1690

Halfway 2.1310 0.861 0.05 0.0671 0.050
Open 2.2680 0.861 0.0361 0.0618 0.036

As it can be seen in Table 4, excluding the control, the largest mean grain size (smallest
mean ϕ value) is obtained in the third sample of the closed setting, and the smallest
mean grain size (largest mean ϕ value) is obtained in the first sample of the open setting.
Similarly, with the combined samples (Table 5), the smallest mean ϕ value is obtained in
the closed setting, and the largest mean ϕ value is obtained in the open setting. These
results demonstrate that the mean grain size being reduced as the opening size increases
holds true.

When comparing Tables 4 and 5, it may be noticed that there are some discrepancies
between the values presented in the individual samples versus their combined version. As
an example, if the reader were to average the Mdϕ values of the control samples in Table 4,
this value would not be the same as the value represented in Table 5. This discrepancy
occurs because the physical weight of each individual sample (i.e., control 1, control 2, and
control 3) used to determine this value varies. Thus, numerically, each sample is weighted
differently in the combined calculations.

The standard deviation
(
σϕ

)
in the ϕ value represents the gradation of a sediment

sample. A perfectly sorted sample would have a standard deviation of 0. The standard
deviation of a well-sorted sample would be less than or equal to 0.5, and the standard
deviation of a poorly sorted sample would be larger than or equal to 1 [21]. In Table 5, the
largest standard deviation, so the most poorly sorted sample, belongs to the control test.
This is followed by the closed setting. The gradation of the sample improved by nearly 50%
by the halfway and open settings with the same standard deviation of 0.861; however, none
of these settings (halfway and open) are considered “well-sorted” by definition. This shows
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that as the opening size of the suction head is increased, the sediment size gets closer to the
mean grain size, whereas in the control test, the sediment size is either much larger than or
much smaller than the mean grain size. This is further investigated by the skewness

(
αϕ

)
of the sample in which the separation of the mean grain size from the median grain size
is evaluated. A positive value of αϕ is indicative of distributions skewed toward higher
ϕ values (longer right tail), and a negative value is indicative of a skew toward smaller
ϕ values (shorter right tail), with the value of zero representing a perfectly symmetrical
distribution [23]. As seen in Table 5, the largest skew value belongs to the control test and,
since it is a positive value, this demonstrates the skewness is toward higher ϕ values, or
smaller sediment diameters. This skewness then reduces as the suction head is opened
toward a more symmetrical distribution with the open setting having an αϕ value of 0.0361.

4.2. Beta Distribution for the Analysis of Sediment Weight

A beta distribution was utilized to demonstrate the percentage of sediment weight.
Its parameters were estimated using the collected samples for each design setting. The
cumulative distribution function (CDF) and probability density function (PDF) were then
estimated and visualized for each test. Moreover, the PDF and CDF of the bootstrapped
data were estimated and visualized. The sediment size demonstrated in the figures based
on the ϕ values are summarized in Table 6.

Table 6. Sediment size and associated ϕ values.

ϕ Sediment Size

ϕ ≤ 0 Very Large
0 < ϕ ≤ 1.23 Relatively Large
1.23 < ϕ ≤ 2 Large
2 < ϕ ≤ 2.74 Medium

2.74 < ϕ ≤ 3.24 Small
3.24 < ϕ ≤ 4 Relatively Small

4.32 ≤ ϕ Very Small

Figure 3 shows the PDF and CDF of the beta distribution for the original samples
as well as the bootstrap sample of the control test. Heatmaps for the original samples as
well as the bootstrap sample of the control test are depicted in Figure 4. The fraction of
the sample weight for small, relatively small, and very large grain sizes is almost zero
(Figures 3 and 4). The fraction of the sample weight for the very small and large grain size
is up to 60%, while the fraction of the medium size and relatively large grain size is up to
30%. The fraction of the sample weight for the very small grain size is between 5% and
60%, for the medium size is between 10% and 30%, for the large size is between 20% and
60%, and for the relatively large size is between 20% and 30%. As demonstrated in Figure 4,
the medium, large, and relatively large sediment sizes made up more of the sample weight.
Comparing this to the bootstrapped data, some similarities are observed. However, the
densities of the data are less extreme, and the curves of the mid-range sediment sizes
(medium, large, and relatively large) and the very small sediment size have stretched over
a broader range. For example, the medium grain size was originally peaked somewhat
steeply at around 25% of the total sample weight, while the tails of the curve asymptote to
0 at around 10–30%. However, comparing the same grain size of the bootstrapped data,
the density peaks at around 15% of the total sample weight, while the tails span from 0%
to around 35%. The PDFs for the same control test show that the very small or very large
grain size will make up less of the sample, while the coarser size is more likely to make
up a larger fraction of the sample. Similar results are interpreted from the bootstrap PDF.
However, just as the bootstrap CDFs were stretched over the x-axis, the bootstrap PDFs are
demonstrating a similar stretch over the x-axis. This shift means that of the bootstrapped
data, the grain sizes are more likely to make up a larger range of the total sample. For
example, the distribution of the original sample shows that the relatively large grain size
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has less than 10% probability of making up 20% of the total sample weight, while the
bootstrap distribution data suggest a 30% chance of the relatively large grain size making
up the same fraction of the sample (20% of the total sample weight).
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distributions of the smaller grain sizes make up slightly more of the total sample weight
in comparison with that of the control (close to zero). Similar to the control sample, the
bootstrap distributions of the smaller gran sizes in the closed setting exhibited a spreading
out along a larger fraction of the total sample weight. This can be seen more clearly in the
comparison of the CDFs of the original sample and the bootstrapped one. For example, the
distribution of the original sample shows that there is approximately a 20% chance that the
relatively large grain size makes up 20% of the sample weight, while it is closer to 30% in
the bootstrap distribution. Overall, looking at the distributions of the samples taken with
the closed setting, the larger grain sizes were more likely to make up more of the sample
weight. The smaller grain sizes also have a higher chance (although not likely) of making
up slightly larger portions of the sample weights as compared to those of the control test.
The results agree with the estimated log-normal distribution summarized in Table 5, which
shows that the closed test has a mean grain size much larger than that of the control test.
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Figure 5. Closed design setting—beta distributions of original samples along with bootstrap distributions.

Moving on to the halfway test (Figures 7 and 8), the differences in the distributions
are more visible in comparison with both the control and closed settings. In the halfway
setting, the distribution of the largest (very large) grain size shows that it is more likely
(40%) not to pick up this grain size at all (1% of the sample weight) in comparison with the
previous settings. This probability was closer to 30% and 20% for the closed and the control
settings, respectively. As shown in the CDFs and heatmaps, the bootstrap distributions
spread out more evenly over a longer range of sample weight. Moreover, there is a spike
in the intensity for the largest grain size (Figure 8, bottom row), which is indicated by the
dark blue bar in the original sample and the light blue bar in the bootstrap sample.
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Figure 7. Halfway design setting—beta distributions of original samples along with bootstrap distributions.

Although the intensity of the bootstrap spike is reduced in comparison with the
intensity of the original sample for the very large grain size, it has a slightly broader spread.
In contrast, a bootstrap spike can be observed for the relatively small grain size, which
does not appear in the heatmap of the original sample.

Finally, looking at the open setting, Figures 9 and 10 show much different results
compared to what was observed for the other test settings. The probability of not picking
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up the very large grain size (weight percentage close to zero) is about 50% in this setting,
as there is a 50% chance (CDF in Figure 9) that the very large grain size makes up just over
0% of the total sample weight. The bootstrap distributions are comparatively similar to the
distributions of the original samples, but they spread out over a broader range of sample
weight. The difference is substantial for the medium grain size depicted in Figures 9 and 10.
From the heatmap, it is noted that the medium grain size has a sharper intensity over
a shorter length, while the bootstrap distribution has a dimmer intensity over a longer
range. This difference for the medium grain size can be observed as a shift in the CDF
from an impulse at about 40% of the total sample weight to a smoother increase between
30% and 45% of the sample weight in the bootstrap distribution. The differences between
the distributions of the original and the bootstrap samples are more clearly illustrated in
Figure 10. For instance, the spike intensity peak for the very large grain size is shifted
slightly to the right in the bootstrap, representing a larger fraction of the sample weight.

Reviewing the heat maps in Figure 4, Figure 6, Figure 8, and Figure 10 suggest that
in almost all settings, the intensities of the smaller grain sizes, including small, relatively
small, and very small (except for the very small grain size in the control test), become
steeper. Moreover, the peak of the medium grain size is typically associated with a larger
percentage of the total sample weight, and its bootstrap distribution is somewhat stretched
in comparison with the distribution of the original samples in all settings except for the
halfway test. In comparison with the distribution of the original samples, the bootstrap
distribution of the large grain size is steepened except for in the control test. In comparison
with the other grain sizes though, the distribution peak is substantially lower, and the
distribution is spread across a broader range of sample weight. This demonstrates that there
is more fluctuation on how much of the sample weight will be made up of a large grain
size. Meanwhile, the bootstrap distribution of the relatively large grain size is flattened in
all tests except for the open setting. Similarly, the bootstrap distribution of the very large
grain size is flattened in all settings except for the open setting.
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We also visualized the weight distribution for different grain sizes using the boxplot.
Results are depicted in Figure 11. By visual inspection, we can notice the difference in
the mean weight for different grain sizes in all settings, including control, closed, halfway,
and open. To investigate the statistical significance of mean weight differences for the
different grain sizes, we used Tukey’s ‘Honest Significant Difference’ method. In this
way, a set of confidence intervals were constructed for the differences between the means
of different grain sizes with the specified family-wise probability of coverage where the
intervals are based on the studentized range statistic. As we can observe in Figure 12,
no confidence interval contains zero, rejecting the null hypothesis that any given pair
of grain sizes have the same mean weight. Lower bound, upper bound, and p-value
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for all confidence intervals for the different settings are reported in four tables in the
Supplementary Materials. Careful interpretation of the heatmaps and Tukey’s confidence
intervals suggests significant differences in the weight proportion of each grain size. We
must point out that while heat maps visualize the weight percentage of each grain size,
Tukey’s confidence intervals demonstrate the difference in the mean weight percentages of
the different grain sizes.
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Figure 11. Box plot of proportion of sediment weights for different grain sizes.

Figure 12. Family-wise confidence interval of proportion of sediment weights for different grain sizes.

5. Summary and Conclusions

In this work, a surgical dredging method with a variable area suction head was used
for the dredging of fine sediment. The variable area suction head can easily maneuver
around the docks, pilings, and other infrastructures to isolate the fine grain material and
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better manage the dredged volumes in the seabed. Several samples were collected with
different design settings. Collected samples for each design set were used to model the
distribution of different grain sizes in the dredged sediments. The proposed statistical
model can be used to improve the design efficiency by predicting the sediment sampling
outcomes regarding the gradation of the fine sediments. The sediments were divided into
seven groups based on the grain size, from very small to very large. Four test designs,
including three different suction head settings along with a control test, were performed.
The collected data in each test were used to model a probability distribution for each grain
size separately. In this way, seven distributions were modeled for each suction head setting.
Due to the limited resources, our sample size for each setting was small. Therefore, a
bootstrap analysis was performed to virtually generate larger samples.

Ultimately, the estimated distributions can be employed to estimate distributions
of grain size in the dredged sediments by adjusting the suction head settings. In turn,
dredge operators can optimize the design of the suction to suit a distribution that is skewed
more toward our desired results. Our future work will be focused on using the estimated
distributions to optimize the dredging performance and use the collected samples to tune
the distribution of each grain size.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/hydrology8030098/s1, Tables S1 to S3: Bootstrap Tables, Tables S4 to S7: Tukey’s ‘Honest
Significant Difference’.
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