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Abstract: The aim of this study is to investigate the flood management and mitigation measures in
ungauged NATURA protected watersheds. The examined watersheds are located in one the most
European significant NATURA areas (Prespa Natural Park North Greece). SCS-CN model was
applied to perform the hydrological modeling for extreme rainfalls of 50, 100 and 1000 return periods.
Extensive field research was conducted to record all the hydrotechnical works of the study area, to
evaluate their current condition and measure the respective hydraulic characteristics. The results of
the hydrological modeling showed that the flood danger in the study area is generally low. However,
almost the half of the hydrotechnical works could not discharge the high and medium probability
(50 and 100 years) peak flows. The main causes are the extremely dense riparian vegetation that has
been developed on the banks and the thalweg of the riverbeds and in some cases the inappropriate di-
mensioning of the technical works. The intense development of the riparian vegetation, has increased
the roughness coefficient and reduced the dimensions and discharge capability of the technical works,
while NATURA restrictions and regulations may be limiting any logging and trimming activities
within the streams, especially in priority habitat types. Special Ecological Evaluation studies and
educating the public about the necessity of the flood control measures and impact, could provide a
framework for a thorough discussion about the flood management in NATURA areas.

Keywords: flood generation; hydrotechnical works; hydrological modeling; riparian vegetation;
SCS-CN model

1. Introduction

Floods are natural phenomena that constitute an integral part of the hydrological cycle.
Most floods are triggered by interactions between extreme unexpected weather events and
the watershed geo-hydrological characteristics (relief, land uses, geomorphology, human
interference) [1–4]. Floods in Mediterranean region could be considered to be the most
often, destructive and hazardous natural phenomena, which usually occur in ephemeral
streams and small-scale watersheds [5–8]. The last decades, floods have caused significant
human fatalities [9–16] and noteworthy financial losses [10,17–20]. In Greece, as in the
rest of Mediterranean area, a main factor that increases the potential of flood events is the
human interventions such as urban sprawl [3,10,21–24], a fact that strongly influences the
hydraulic characteristics of streams and floodplains [10,25,26].

The investigation of extreme flood events in ungauged watersheds, using hydrological
and hydraulic models, presents high uncertainties, because of the short lag time, the unex-
pected nature of flood phenomena and the lack of rainfall and discharge data [10,25,27,28].
For those reasons, the flood management is very complicated and difficult to be applied
in ungauged watersheds. These difficulties are even more intense in NATURA protected
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watersheds, because of the special regulations and restrictions, concerning the management
of the protected vegetation species and the strict rules of the construction/maintenance of
hydrotechnical and flood control works [29,30].

Natural lakes and reservoirs create special conditions for the breeding of wild life,
but human interventions and land use changes could be a threat [31,32], downgrading
the quality of the habitats. On the other hand, they are particularly important for the
human activities such as water for irrigation, drinkable water, fishing, human recreation,
etc. [33,34].

The development of dense riparian forest in all the streams of the study area (Greek
part of Prespa Natural Park basin) creates a special ecosystem of high ecological and
aesthetic value. It also protects the slopes of the riverbeds from potential erosion [35]. The
dense riparian forest consists mainly of large trees and shrubs, decisively influencing the
roughness coefficient and favoring the sediment deposition. This fact results in a sharp
decrease of water velocity and cross sections dimensions, reducing the discharge capability
of the hydrotechnical works. The decision making, concerning the logging and trimming
of the large trees and shrubs, the removal of sediment deposits from the banks and streams’
thalweg, the construction of new flood control works and the maintenance of the old works,
generates social conflicts among ecological groups, individual ecologists, local residents
and local authorities, who suggest different flood management strategies to be applied.

The conflict between the scopes of the European Commission (EC) Water Framework
Directive and the EC Habitats Directives (NATURA 2000) is known and generates conflict
of interests among different people groups [36]. To the best of our knowledge there are few
studies that deal with the flood risk management in NATURA protected areas [37,38], and
there are very few that deal with ungauged NATURA protected small catchments [39], in
which the zero-intervention strategy is applied within the floodplain area.

The aim of the study is to investigate the flood management in ungauged watersheds,
which are under the protection of the NATURA regulations and restrictions, in the Greek
Part of Prespa basin (GR 1340001). More specifically, (a) all the hydrotechnical works that in-
fluence the surface water flow were recorded, (b) the most flood vulnerable hydrotechnical
works were located during the field work, (c) the stream maximum discharges were calcu-
lated for 50, 100 and 1000 return periods according to EU Directive (2007/60/EK), (d) the
water discharge capability of each hydrotechnical work was calculated and evaluated in
comparison to the stream maximum discharges, (e) the influence of NATURA regulations
and restrictions that concern the construction and maintenance of the hydrotechnical works
was discussed based on the study results.

2. Materials and Methods
2.1. Study Area—Watersheds Description

The importance of the Presa natural park (Figure 1) for the conservation of nature
is really high. At its ecosystems one could find lots of rare species with some of them
being endemic and appearing only at the Prespa lakes. More than 1800 plant species
on 70 vegetation types, 270 bird species (of which 143 breed here) and lots of important
fish, reptiles, amphibians and mammals can be found at the area. The district hosts a
lot of endangered and threatened species on 49 different ecotypes in a restricted range
where the diversity of altitude, land uses, climatic conditions and geological backgrounds
is great [35,40]. Due to the wealth of the region, 4 different sites of the NATURA 2000
network have been designated. Prespa is also included at the Ramsar convention as a
wetland of international importance.
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Figure 1. The watersheds that examined in the Greek part of Prespa Natural Park.

The dense forest vegetation that is growing on the stream banks and thalwegs of the
study area, influences the flow of the flood water discharge, by increasing the roughness
coefficient and decreasing the water velocity. Additionally, the dense forest vegetation
traps significant amounts of sediments of various dimensions, which drastically decrease
the stream cross sections dimensions, also decreasing the water discharge capability. The
vegetation management within the stream banks and thalweg and the construction and
maintenance of the technical works is very complicated, because the vegetation of the
study area is part of the NATURA habitat types (Figure 2, 92A0-Salix alba and Populus
alba galleries, 91E0-Alluvial forests with Alnus glutinosa and Fraxinus excelsior) [40,41].
As a result, any human intervention (flood management plans, flood control measures,
construction and maintenance of the technical works) within the study area should be
followed by a Special Ecological Evaluation study.
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Figure 2. NATURA habitats types in the wider research area.

The hydrological modeling was applied in seven (7) typical Mediterranean watersheds,
namely Agios Germanos, Mileonas, Platy, Kallithea, Leukonas, Karyes and Mikrolimni
(Figure 1). These seven watersheds assigned with the respective settlement names, form the
Greek part of the basin of the Prespa Natural Park. The total study area is 104.83 km2 and
the headwaters of the main streams are located to Varnoudas (2334 m a.s.l.) and Moutsaras
(2113 m a.s.l.) mountain ranges, the main streams flow generally with a west direction,
pass through the above-mentioned settlements and finally flow into Prespa lakes. The
relief of the watersheds could be characterized as mountainous and very steep, with an
average slope over 42%, but with significant differentiation between the floodplain and
the areas above 1000 m a.s.l. In Table 1 the main watershed morphometric characteristics
are presented.
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Table 1. Morphometric characteristics of the watersheds in the study area.

Area (km2) Perimeter (km) Min Altitude (m) Max Altitude (m) Mean Altitude (m) Mean Watershed
Slope (%)

Agios Germanos 65.02 34.86 861 2334 1630 44.65

Mileonas 1.85 6.01 873 1406 1049 39.96

Platy 3.75 10.99 867 1970 1186 37.03

Kallithea 7.88 13.54 878 2109 1358 47.34

Leukonas 8.01 11.63 901 1835 1231 41.38

Karyes 4.52 10.76 892 1675 1231 37.33

Mikrolimni 13.80 16.86 863 1496 1068 40.78

The 47.2% of the watersheds area is covered by grass land and pastures, 38.3% is
covered by broad leaved and coniferous forests, 5.5% and 4.9% is covered by cropland and
bare rocks, respectively, but with differentiation among the watersheds. The dominant
rocks of the area are gneiss and granite, which behave as an impermeable formation to
the water infiltration, and their participation exceeds the 90%. Most of gneiss lithological
types are easily weathered and covered by loose weathering mantle of ranging thickness,
resulting in the manifestation of springs of usually low yield, in its contact with the intact
rock [42]. The formation of the drainage network is mainly dendritic, the average density
of drainage network is calculated to be 4.63 km/km2 and the average main stream slope is
11.08% (Table 2). The density of the drainage network in the study area is relatively low, a
fact that is attributed to the forest coverage and the extended presence of erosion resistant
rocks (gneiss and granite).

Table 2. Hydrographic characteristics of the watersheds in the study area.

Drainage Network Formation Drainage Network
Density (km/km2)

Main Stream
Length (km)

Main Stream Average
Slope (%)

Agios Germanos Dendritic 3.30 18.82 6.08

Mileonas Dendritic 5.30 4.47 10.89

Platy Parallel 4.52 6.27 15.21

Kallithea Parallel 5.07 8.27 14.69

Leukonas Dendritic 4.38 6.12 11.32

Karyes Parallel 4.14 6.44 11.80

Mikrolimni Dendritic 5.71 7.15 7.63

2.2. Estimation of the 24-h Maximum Rainfalls for 50, 100 and 1000 Years Return Periods

The European Directive 2007/60/EC for the flood risk assessment, clarified that the
flood risk should be calculated concerning the return periods of 50, 100 and 1000 years,
estimating the respective Intensity–Duration–Frequency (IDF) rainfall curves. The calcu-
lation of IDF rainfall curves is a complex process, which requires the use of long rainfall
time series, strict time step, reliable data and short recording time step (less than 6 h).
Unfortunately, there are no adequate and detailed rainfall data in the study area. To over-
come this limitation, the time series of the daily maximum 24-h rainfall obtained from
Koula Meteorological Station (MS) were used. Koula MS in operating continually for the
last 64 years, and thus provides a significant time series length. However, Koula MS has
only operated as an automated rain gauge with 30 min time step for the last seven years.
Statistical analysis was implemented using the Hydrognomon software [43]. Initially, a
quality control of the data was performed to identify potential extreme values that do
not make sense, but also the dates on which missing values have been recorded. The
missing values were substituted by applying the method of simple linear regression [44],
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using all the available time series of the broader study area. The error of the predicted
values was calculated using well known statistic indexes, the Root Mean Square Error
(RMSE), the Nash-Sutcliffe efficiency (NSE) and the Mean Bias Error (MBE). The Standard
Deviation (SD) was calculated to be 5.97 and the RMSE was 3.17, almost the half of SD,
which indicates an acceptable error range [45,46]. The NSE was 0.66, which falls into the
model acceptable range (0–1) [45,46]. The MBE was –0.98, indicating an underestimation of
the predicted values, which is totally normal, as the Koula rain gauge is located at a lower
altitude and presents lower values of precipitation.

Statistical analysis was performed on time series data in order to calculate the 24 h max
rainfall. The statistical distributions were subjected to χ2 test and Kolmogorov–Smirnov
test to evaluate how well they were fitted to the time series, taking into account the concern
about the influence of the time series length on distribution performance. The distribution
that was best fitted to the time series was the GEV-max (Generalized Extreme Value-max;
Figure 3 and Tables 3 and 4). According to the analysis, the maximum 24 h rainfalls for 50,
100 and 100 years return periods were 77.4 mm, 84.9 mm και 108.9 mm, respectively.
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Table 3. Distributions’ performance subjected to χ2 test.

x-Square Test a = 1% a = 5% a = 10% Attained a Pearson Param.

EV1-Max (Gumbel max) ACCEPT ACCEPT ACCEPT 17.13% 7.73846

GEV-Max ACCEPT ACCEPT ACCEPT 22.12% 5.67692

GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 21.71% 5.76923

EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 13.18% 8.47692

EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 13.18% 8.47692
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Table 4. Distributions’ performance subjected to Kolmogorov–Smirnov test.

Kolmogorov–Smirnov Test a = 1% a = 5% a = 10% Attained a DMax

EV1-Max (Gumbel max) ACCEPT ACCEPT ACCEPT 92.35% 0.06814

GEV-Max ACCEPT ACCEPT ACCEPT 93.71% 0.05122

GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 92.97% 0.05484

EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 91.93% 0.06865

EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 57.55% 0.09686

2.3. Disaggregation of the 24-h Maximum Rainfalls for 50, 100 and 1000 Years Return Periods

To perform the hydrological simulation in the study area, it was necessary to disaggre-
gate the calculated values of the 24-h maximum rainfalls (50, 100 and 1000 years return
periods). The disaggregation was achieved applying the SCS storm types (I, IA, II, III),
compiled by the Soil Conservation Service [47]. To decide which of the four storm types
was best fitted on the available storm data from Koula MS, a comparison with known
extreme events was applied. During the field research, residents and local authorities were
asked if they had witnessed flood events in the past. Based on this information, an extreme
flood event was recorded on August 3, 2015 between 17:00 and 19:00, which could be
confirmed by the available meteorological data. The total recorded rainfall was 55.8 mm
with duration of 2 h. The total rainfall (55.8 mm) was disaggregated using the SCS storm
types for 2 h duration [48] and compared with the observed rainfall data (Figure 4).
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2.4. Hydrological Modeling

The hydrological modeling was applied for the seven watersheds of the study area,
using the rainfall-runoff model of Soil Conservation Service–Curve Number (SCS-CN) [47].
SCS-CN hydrological model is well-known and widely used in many countries [49–53] and
also in Greece [54–60]. The Curve Number (CN) is a dimensionless empirical parameter
used for the estimation of runoff and infiltration from rainfall excess, and ranges from 30 to
100, with the highest values indicating higher runoff potential.
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The Hydrologic Engineering Center′s Hydrologic Modeling System (HEC-HMS) soft-
ware [61] was implemented to calculate the flood hydrographs for 50, 100 and 1000 years
return periods. The basic components of HEC-HMS software (CN, impervious area, trans-
form method, base flow method, initial abstraction, lag time, loss method, etc.) were set
as follows: CN (loss method), no baseflow method (ephemeral streams) and SCS unit
hydrograph (transform method) were applied. The initial abstraction and the respective
CN were modified according to Antecedent Moisture Conditions (AMC) and the flood
hydrographs for each watershed and return period were calculated two times, one for
AMCII and one for AMCIII, in order to cover the worst flood scenarios. SCS considers
that there are three categories of Antecedent Moisture Conditions (AMC), which are Type I
(dry), Type II (medium) and Type III (wet). These are defined based on cumulative rainfall
thresholds of the previous five days, as shown in Table 5.

Table 5. Categorization of rainfall of the previous 5 days for the calculation of the initial rainfall
losses of the SCS-CN method [62].

AMC Group
Total 5-Day Antecedent Rainfall (mm)

Dormant Season Growing Season

I Less than 13 Less than 35

II 13–28 35–53

III Over 28 Over 53

The SCS-CN model was previously calibrated and validated in other relevant studies
in Greece, which presented similar geomorphologic and land-use conditions [26,55].

The dimensionless empirical parameter CNII,20 (for AMC II average humidity condi-
tions and an initial loss rate 20%) was estimated using GIS techniques and the empirical
equation provided by the “Deucalion Project”, which has been validated in Mediterranean
watersheds [63]:

CNII,20 = 10 + 9 × iPERM + 6 × iVEG + 3 × iSLOPE (1)

where iPERM (water permeability), iVEG (land uses-vegetation density) and iSLOPE
(drainage capability) are variables that receive values ranging between 1 and 5, according
to the related tables [63,64] and field research. The iPERM was based on the dominant
type of building constructions, soil and geological characteristics of the watersheds, which
were estimated using the geological maps (1:50,000) provided by the Institute of Geology
and Mineral Exploration of Greece [42] (map sheets: Florina and Korytsa), as well as
field surveys. The vegetation variable (iVEG) was estimated using the detail data that are
available from the Greek Ministry of Environment and Energy [41]. A Digital Elevation
Model (DEM, 5 × 5 m resolution) provided by the Hellenic Cadastre was used, in order for
the iSLOPE variable to be estimated.

Humidity conditions II and the corresponding CNII values are considered to be
representative of 50% of the flood episodes. However, during the winter season when
the soil is almost permanently saturated, the CNII value does not correspond to the real
conditions. For this reason, the value corresponding to average humidity conditions
(type II) should be converted to the initial soil moisture conditions type III according to the
empirical relation [62]:

CNII,20 = (23 CNII,20)/(10 + 0.13 CNII,20) (2)
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Concerning the time of concentration (tc), previously published studies refer that
Giandotti equation is more reliable in the Greek and Mediterranean watershed condi-
tions [64,65]. For that reasons, Giandotti equation [66] was selected to be used in order to
calculate the time of concentration (tc):

tc =
4
√

F + 1.5 L
0.8
√

H− h
(3)

where, tc: the time of concentration (hours), F: watershed area (km2), L: the main stream
length (km), H: average altitude (m).

The lag time (tL) was calculated in relation to the time of concentration (tc) using the
following equation [67]:

tL = 0.6 × tc (4)

where, tL: the lag time (hours) and tc: the time of concentration (hours)

2.5. Field Work—Maximum Water Discharge Capability of the Technical Works

The main purpose of the field survey was the detailed recording of the technical works
that were associated with the surface water runoff in the watersheds and the influence on
the maximum water discharge. Additionally, using information provided by the residents
and the local authorities, the flood vulnerable locations and technical works were recorded.
The current conditions, dimensions, Manning’s roughness coefficient and stream slope
of the selected technical works (bridges, culverts, water pipes) that discharge the water
peak flow were measured and the maximum discharge capability was calculated. These
hydrotechnical works presented limited dimensions, poor maintenance and their locations
(near settlements, infrastructures, livestock, road network) are characterized by high flood
risk, and in case of flood event significant human life and socioeconomic losses could
be emerged. The hydraulic characteristics of the selected cross sections are presented
in Table 6.

Using the measured hydraulic characteristics of the selected cross sections of the
technical works, the maximum water discharge capability was calculated applying the
Manning equation [68]:

u = 1/n × R2/3 × J1/2 (5)

Q = F × u (6)

where, u: water velocity (m/s), R: hydraulic radius (R = F/U), F: cross section area (m2),
U: cross section wetted perimeter (m), J: energy grade line slope (m/m), n: Manning’s
roughness coefficient [69] and Q: water discharge (m3/s)

During the field survey, the vegetation that was growing near the technical works,
on the banks and the thalwegs of the streams was recorded, with the aim to evaluate the
influence of vegetation on the maximum water discharge. According to the field survey
and the habitat types (Council Directive 2006/105/EC), all the vegetation types in the study
area are under the protection of the NATURA regulations and restrictions.
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Table 6. Hydraulic characteristics and the water velocity of the examined cross sections.

Cross Section
Width (m)

Cross Section
Height (m)

Slope J
(m/m)

Wetted
Perimeter U (m)

Manning’s Roughness
Coefficient (n)

Cross Section
Area (m2)

Hydraulic
Radius R (m)

Water Velocity
u (m/s)

1 Agios Germanos
(AG18-bridge) 7.70 2.30 0.0440 12.0.033 0.028 17.71 1.44 9.36

2 Agios Germanos
(LE6-culvert) 2.80 2.00 0.0340 6.80 0.04 5.60 0.82 4.05

3 Agios Germanos
(LE3-culvert) 3.50 1.70 0.0530 6.90 0.04 5.95 0.86 5.21

4 Agios Germanos
(YP12-culvert) 1.60 1.00 0.0790 3.60 0.04 1.60 0.44 4.09

5 Agios Germanos
(YP9-culvert) 4.00 2.70 0.0807 9.40 0.028 10.80 1.15 10.91

6 Agios Germanos
(YP7-bridge) 6.60 2.10 0.0760 10.80 0.04 13.86 1.28 8.14

7 Mileonas
(MH2-concrete pipe) 2 concrete pipes with 1 m diameter 0.0110 3.14 0.033 0.78 0.25 1.25

8 Platy (PL4-culvert) 5.30 2.80 0.0400 10.90 0.05 14.84 1.36 4.90

9 Kallithea
(KA8-culvert) 5.50 1.20 0.0850 7.90 0.04 6.60 0.84 6.47

10 Leukonas (L4-bridge) 10.00 2.40 0.0480 14.80 0.04 24.00 1.62 7.54

11 Karyes (K2-culvert) 4.00 2.00 0.0740 8.00 0.04 8.00 1.00 6.80

12 Karyes (K6-culvert) 2.00 1.00 0.0720 4.00 0.033 2.00 0.50 5.09

13 Karyes (K7 και

K8-culverts) 2.50 1.00 0.0720 4.50 0.033 2.50 0.56 5.46

14 Mikrolimni
(M20-culvert) 2.90 1.00 0.0229 4.90 0.033 2.90 0.59 3.21

15 Mikrolimni
(M8-culvert) 2.10 1.70 0.01 5.50 0.033 3.57 0.65 2.67
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3. Results and Discussion
3.1. Technical Works Recording—Maximum Discharge Capability Estimation

In Figure 5 the recorded technical works of the study area are presented. It is obvious
and also expected, that most of the hydrotechnical works were constructed at the junctions
between the road and hydrographic network.
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Figure 5. The location of the recorded hydrotechnical works within the study area.

Additionally, in Table 7 the categories and the number of technical works for each
watershed are presented. Table 7 revealed that the majority of the technical works (bridges
and culverts, 66%) have a direct relation with the discharge of the flood peak flows.

Table 7. Total recordings of all the existing hydrotechnical works in the research area.

Records for Each
Watershed Bridge Pedestrian

Bridge
Water

Pumping
Check
Dams

Concrete
Culverts

Plastic
Culverts

Concrete
Stream

Sections

Other
Technical

Works

Agios Germanos 98 15 6 8 10 40 8 5 6

Mileonas 3 1 0 0 0 1 1 0 0

Platy 8 3 0 0 3 0 0 0 2

Kallithea 18 4 0 1 11 0 1 0 1

Leukonas 7 4 0 0 0 0 2 0 1

Karyes 12 3 0 1 1 5 0 0 2

Mikrolimni 19 1 2 0 2 12 0 1 1

Sum 165 31 8 10 27 58 12 6 13
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During the field survey, the condition of the technical works was evaluated, while
the most flood prone locations/works were recorded. This evaluation was based on the
following criteria: (a) the proximity with settlements, houses and important infrastructures,
(b) the existence of dense vegetation and trapped sediments and (c) the hydraulic character-
istics of the cross sections, In Figure 6 the most flood prone locations/works are depicted
and in Table 6 there are the respective hydraulic characteristics of each location/work.
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cal analysis.

3.2. Curve Number (CN) and Time of Concentration (tc) Estimation—Hydrological Modeling

Figure 7 shows the spatial distribution of the CNII,20 parameter, while Table 8 shows
the mean values of the CNII,20 and CNIII parameters for all the watersheds in the research
area. CNIII values were resulted applying the Equation (2). Figure 7 depicts increased
values of the CNII,20 parameter, which are attributed to the increased average slope of the
study area, low water permeability of the geological formations of the area (gneiss, granite)
and the relatively low cover by forest vegetation.
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Figure 7. Spatial distribution of the CNII,20 for AMCII in the watersheds of the study area.

Table 8. CNII,20 and CNIII mean value for all the watersheds.

Watersheds CNII,20 CNIII

Agios Germanos 80.34 90.12

Mileonas 73.94 86.71

Platy 70.91 84.86

Kallithea 75.51 87.64

Leukonas 71.05 84.95

Karyes 68.31 83.22

Mikrolimni 67.99 83.01

The values CNII,20 and CNIII are relatively high and particularly those of CNIII (over
80), which means that in wet conditions (mainly in winter and autumn) the risk of flooding
is increased, due to the reduced capability of soil and vegetation to retain large amounts
of precipitation. It is known that forests present finite capabilities to retain large amounts
of precipitation, especially during extreme rainfall events [70], even if the forest cover
percentage is significantly high [22,55]. It is evident, that the AMC plays a crucial role in
the flood generation and in the study area the flood risk potential is very high especially in
wet conditions (AMCIII).

In Table 9, the results of the calculated values of Giandotti time of concentration and
lag time are presented. The watersheds presented similar values of time of concentration
mainly because of the similar values of hydrographic and morphometric characteris-
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tics, with an exception in Agios Germanos and Mikrolimni watersheds, which exhibited
higher values.

Table 9. Hydrographic and morphometric characteristics required for the calculation of Giandotti time of concentration and
lag time.

Area Min Altitude Mean Altitude Main Stream
Length

Time of
Concentration Giandotti

Lag Time
(USDA)

Units
km2 m m km h min

F Hmin Hmed L tc tL

Agios Germanos 65.02 861 2334 18.82 1.970 70.92

Mileonas 1.85 873 1049 4.47 1.144 41.20

Platy 3.75 867 1186 6.27 1.200 43.21

Kallithea 7.88 878 1358 8.27 1.348 48.54

Leukonas 8.01 901 1231 6.12 1.411 50.78

Karyes 4.52 892 1231 6.44 1.233 44.39

Mikrolimni 13.8 863 1068 7.15 2.234 80.41

In Table 10, the maximum discharge capability of the selected hydrotechnical works
and the peak discharges for 50, 100 and 1000 return periods of the respective streams are
presented. According to the results, there are many cases of the selected hydrotechnical
works that are proven not sufficient to discharge the expected peak flows for the examined
return periods. Specifically, in Table 10 the red values (red cells) indicate the circumstances,
in which the technical works will fail to discharge the expected peak flows. The marginal
cases are marked in orange, while the cases, in which the technical works will discharge
the expected peak flows are presented in green color. Accepting the known uncertainties
of the hydrological models in ungauged watersheds, the marginal values were based
on a reasonable range between ±20%, which could be characterized as acceptable in
hydrological modeling [10,56,71,72].

Table 10. Maximum discharge capability of the technical works and the stream peak flow for 50, 100 and 1000 years
return periods.

Maximum Discharge
Capability of the

Technical Works Q (m3/s)

Stream Peak Flow (Q m3/s)

AMC II AMC III

50 Years 100 Years 1000 Years 50 Years 100 Years 1000 Years
Agios Germanos
(AG18-bridge) 165.79 157.00 187.80 295.50 259.00 294.40 412.50

Agios Germanos (LE6-culvert) 22.68 9.90 12.10 19.90 18.20 20.90 29.80
Agios Germanos (LE3-culvert) 31.02 8.27 10.11 16.63 15.21 17.47 24.91

Agios Germanos (YP12-culvert) 6.55 14.80 18.40 31.60 30.00 34.60 50.30
Agios Germanos (YP9-culvert) 117.79 3.20 4.00 6.80 6.70 7.70 11.20
Agios Germanos (YP7-bridge) 112.81 3.20 4.00 6.80 6.70 7.70 11.20
Mileonas (MH2-concrete pipe) 0.98 5.00 6.20 10.50 10.10 11.60 16.80

Platy (PL4-culvert) 72.77 7.90 10.00 18.00 18.30 21.20 31.30
Kallithea (KA8-culvert) 42.72 15.30 18.80 31.10 28.90 33.20 47.60
Leukonas (L4-bridge) 180.86 15.50 19.70 35.30 36.00 41.80 61.70
Karyes (K2-culvert) 54.41 7.50 9.90 18.60 20.10 23.60 35.40
Karyes (K6-culvert) 10.19 7.50 9.90 18.60 20.10 23.60 35.40

Karyes (K7 και K8-culverts) 13.65 7.50 9.90 18.60 20.10 23.60 35.40
Mikrolimni (M20-culvert) 9.31 4.92 6.43 12.19 13.29 15.60 23.58
Mikrolimni (M8-culvert) 9.53 8.53 11.14 21.12 23.01 27.03 40.85
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3.3. The Influence of the NATURA Restrictions and Regulations on Flood Management Measures

The results revealed that the specific peak flow ranged between 2.5 and 7.8 m3/s/km2,
values which internationally, and in Greece, are considered relatively low for flood danger
potential. Usually, values of specific peak flow between 9 and 11 m3/s/km2 are considered
dangerous and can cause severe flooding [10,55,73]. Thus, the area can be considered as of
low flood risk in terms of flood peak flows.

The Greek legislation considers that the small dimension and low importance technical
works should be constructed to be capable to discharge the maximum discharges of 50 and
100 years return period for AMCII. The results showed that almost the half of the technical
works of the study area could not discharge the high and medium probability (50 and
100 years) flood peak flows.

The main causes that directly affects and dramatically reduces the maximum discharge
capability of the technical works are the extremely dense riparian vegetation that has
been developed on the banks and the thalweg of the riverbeds and in some cases the
inappropriate dimensioning of the technical works. This vegetation consists mainly of
NATURA protected trees and shrubs of large size and in high density. The development
of dense riparian forest in all the riverbeds of the region creates a special ecosystem of
high ecological and aesthetic value, which is protected by NATURA regulations. It also
protects the banks of the streams from potential erosion. However, the strict restrictions
on trees/shrubs logging and trimming within the streams, have caused the unlimited
development of the riparian vegetation around and sometimes on the technical works and
along the streams and also the concentration of large amounts of sediments in various
locations. This situation significantly increased the roughness coefficient and reduced the
dimensions of the technical works cross sections. In many cases, the dense vegetation and
the sediments have blocked to a large extent the openings of the technical works, while
it is characteristic that in few cross sections the dimensions of the cross sections were not
measured, because access was impossible. In Figure 8 the condition of the technical works
is indicatively presented.
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Figure 8. Representative pictures of the selected hydrotechnical works for the hydrological analysis. (AG18):bridge;
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(L4):bridge; (K2):culvert; (K6):culvert; (K7):culvert; (M20):culvert; (M8):culvert.

The creation of flood management plan, the construction of new flood control works,
the maintenance and/or reconstruction of the old technical works, the logging and trim-
ming of trees and shrubs, the sediment depletion of streams, require a Special Ecological
Evaluation study, complying with NATURA regulations and the Greek legislation require-
ments. The Special Ecological Evaluation study is subjected to public consultation, where
every individual person or group can erase arguments. Prespa National Park Management
Body (PNPMB) is the authority responsible for activities such as wetland management,
providing information and raising awareness, protecting the area and guarding against
illegal activities such as unlicensed sand extraction and hunting which place a stress on the
natural environment. Society for the Protection of Prespa (SPP) participate as a member
of the Board of Directors, but has also actively supported the work of the PNPMB. The
PNPMB, SSP, the forest service, Ministry of Environment and Energy (YPEN) and local au-
thorities (Municipality) are the main stakeholders who should collaborate in order to plan
the vegetation management is streams and the flood management and control measures.
Various ecological groups and ecologists are active in the research area, which are extremely
sensitive to the NATURA habitat protection, and frequently just for the trimming of some
shrubs and branches several difficulties and obstacles are encountered. This fragmentation
of flood risk management, among many services, combined with the sensitivity of many
ecologists to the logging and trimming of trees and shrubs, has led to the deterioration
of the maintenance/reconstruction of hydrotechnical works and the lack of flood control
management plan, a fact which increase the flood risk in the study area.
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4. Conclusions

The results of the maximum 24-h rainfalls for return periods of 50, 100 and 1000
showed that the rainfall intensity in the study area is generally low and as a result the
potential of flood generation is also low. The hydrological analysis and the value of the
specific peak discharge revealed also that the flood risk in the examined watersheds is
low. However, the inadequate maintenance of the hydrotechnical works, the deposition
of sediments, the dense vegetation in the streambeds and in some cases the inappropriate
dimensions of technical works, have as a result the increase of the flood risk.

The protection of the environment constitutes the first priority when we are talking
about NATURA habitats, which are extremely crucial for the maintenance of rare and
endangered flora and fauna species. However, in NATURA areas various human activi-
ties take place and flooding constitutes a serious problem. Consequently, efforts should
concentrate on protecting valuable and endangered habitat types while ensuring that
flood risk in the area remains low. Vegetation management within the streams and next
to hydrotechnical works is undoubtedly a complicated process, which requires relevant
scientific expertise, time, light machinery and capital investment.

Special Ecological Evaluation studies aiming at the flood risk assessment and edu-
cating the public about the necessary flood control measures necessity and impact, could
provide a framework for a thorough discussion about the flood management in NATURA
areas. The Special Ecological Evaluation studies could be the outcome of the combined
knowledge and efforts of the stakeholders, local authorities and the ecological groups of
the area, as well as considering public consultation arguments.
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