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Abstract: This paper presents a method of hydrograph extrapolation, intended for simple and efficient
streamflow forecasting with up to 10 days lead time. The forecast of discharges or water levels is
expressed by a linear formula depending on their values on the date of the forecast release and the
five previous days. Such forecast techniques were developed for more than 2700 stream gauging
stations across Russia. Forecast verification has shown that this method can be successfully applied to
large rivers with a smooth shape of hydrographs, while for small mountain catchments, the accuracy
of the method tends to be lower. The method has been implemented into real-time continuous
operations in the Hydrometcentre of Russia. In the territory of Russia, 18 regions have been identified
with a single dependency of the maximum lead time of good forecasts on the area and average slope
of the catchment surface for different catchments of each region; the possibilities of forecasting river
streamflow by the method of hydrograph extrapolation are approximately estimated. The proposed
method can be considered as a first approximation while solving the problem of forecasting river
flow in conditions of a lack of meteorological information or when it is necessary to quickly develop
a forecasting system for a large number of catchments.

Keywords: flood forecasting; early warning system; medium-term hydrological forecasts; hydro-
logic modeling

1. Introduction

Improving hydrological forecast accuracy and increasing lead times as well as expand-
ing the scope of forecast application is necessary for improving the efficiency of water
resources management, and the safety of the population and infrastructure from the fre-
quent floods caused by intense snowmelt, rain floods and ice jams in the territory of Russia.
An important role here is given to continuous issuing of short- and medium-term flood
forecasts with lead times of up to 5 and 10 days, respectively [1–3].

There are a variety of models and methods applied in operational short and medium-
term streamflow forecasting in the present time [3]. These methods more or less take into
account the peculiarity of runoff formation in the catchment area and the movement of
water within the river network. They are implemented as physical–mathematical and
conceptual models or as statistical dependencies of the predicted value on the hydrological
and meteorological characteristics known by the date of the forecast [1,2,4–7].

Statistical methods are a very widely used mathematical tool, used as the basis for
many hydrological analyses and forecasting techniques. They are based on historical
data and statistical analysis, including simple gauge-to-gauge relationships, as well as
relationships of streamflow characteristics with additional meteorological variables. The
strength of the statistical models is that they can be relatively easily developed and quite
efficiently implemented in operational use [8,9], which makes them commonly used as a
starting point while developing more sophisticated flood forecasting system [2].
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The proposed forecasting method based on hydrograph extrapolation falls within
the statistical methods category—it implies statistical analysis of historical data and
rather simple development and implementation in hydrological short and medium term
forecasting practice.

This method is characterized by a simple scheme for obtaining short-term and medium-
term forecasts of discharges and water levels based on data from hydrological observations
only. For large flat rivers with a smooth shape of hydrographs, it can give quite satisfactory
results with significant savings in time and labor costs. The exceptional natural diversity
of Russia makes it possible to assume the applicability of this method in other regions of
the world in conditions when the relevance and necessity of forecasting river flow from a
large number of catchments at the same time makes it difficult to use more complex and
laborious methods based on modern hydrological and meteorological models.

The information support subsystem in automated mode provides an extensive hy-
drometeorological information base for real-time forecasting. It is based on the use of
a modern database management system, which operates within the automated system
for processing operational information of the Hydrometeorological Center of Russia [10].
The subsystem for making and issuing hydrological forecasts is based on the work of
automated software tools that implement a variety of methods of hydrological forecasting
and output updating.

For operational delivery of observed and forecasted products to users, the subsystem
of preparation and delivery of information-analytical and forecast products to users is
implemented. The subsystem is implemented based on WEB and GIS technologies, which
allows integration and visualization in a single information environment (the Internet) of
all output products. Interaction with users is carried out using a WEB application; the
functionality of application is developed taking into account users’ requirements [11,12].

2. Materials and Methods
2.1. The Method

The smooth changes of average daily flow rates and water levels throughout the year,
typical for fairly large rivers, provide the basis for the simplest version of flow forecasting
by extrapolating the hydrograph. Such extrapolation can provide the forecast of the average
daily water discharge with the lead-time ∆t days in the form of a generalized polynomial:

Q̂(t + ∆t) = c0(t) + c1(t)ϕ1(∆t) + . . . + ck ϕk(∆t) (1)

where Q̂(t + ∆t) is the streamflow forecast, c0(t), c1(t), . . . , ck(t)—coefficients described
below; ϕ1(∆t), . . . ,ϕk(∆t) are some predefined functions. For example, in the case of
ϕ1(∆t) = ∆t, . . . ,ϕk(∆t) = (∆t)k, Formula (1) means the extrapolation of the hydrograph
to ∆t days ahead by polynomials to the power of k. In particular, for a value of k = 1, a
linear extrapolation is performed, and for a value of k = 2, a parabolic extrapolation is
performed. Depending on the forecast date t, values c0(t), c1(t), . . . , ck(t) in the Formula
(1) are determined based on the assumption that the sequence of observed discharges Q(t),
Q(t − 1), . . . , Q(t − k) for the forecast date and for k previous days are described by the
same generalized polynomial. This assumption is expressed as a system of equations:{

Q(t − i) = c0(t) + c(t)ϕ1(−i) + . . . + ck(t)ϕk(−i),
i = 0, 1, . . . , k.

(2)

The solution of the system (2) leads to linear expression of the values c0(t), c1(t),
. . . ., ck(t) in terms of discharges Q(t), Q(t − 1), . . . , Q(t − k). After substituting these
expressions into Formula (1), it takes the form:

Q̂(t + ∆t)=
k

∑
i=0

ai(∆t)Q(t − i)+b(∆t).
k

∑
i=0

ai(∆t)Q(t − i) (3)
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Thus, the extrapolation of the hydrograph using any polynomial of the Formula (1)
leads to the fact that the forecast Q̂(t + ∆t) is expressed as a linear combination of the
corresponding date of the forecast of water discharge Q(t) and k previous discharges
Q(t − 1), . . . , Q(t − k).

The values Q̂(t + ∆t) determined by Formula (3) can take extremely and unrealistic
high and low values. Extremely high values Q̂(t + ∆t) can occur when predicting water
discharges on a steep rise of streamflow during spring floods or rainfall induced floods.
Extremely low and even negative values Q̂(t + ∆t) can occur when forecasting water
discharges and water levels during a steep spring flood or rain flood recession period.

In order to avoid unrealistically low and high forecast values, the results of Formula (3)
application shall be adjusted by replacing such extreme values Q̂(t + ∆t) with acceptable
minimum minQ or acceptable maximum maxQ discharge values. The final scheme of water
discharge forecast is expressed by the formula:

Q̃(t + ∆t) =


minQ i f Q̂(t + ∆t) < minQ;
Q̂(t + ∆t) i f minQ ≤ Q̂(t + ∆t) ≤ maxQ;
maxQ i f Q̂(t + ∆t) > maxQ.

(4)

The generalized extrapolation of the average daily water levels leads to a similar
formula, which expresses the forecast of the water level Ĥ(t + ∆t) in the form of a linear
combination of the average daily level known by the date of the forecast H(t) and k levels
H(t − 1), . . . ,H(t − k) for the previous days:

Ĥ(t + ∆t)=
k

∑
i=0

ai(∆t)H(t − i)+b(∆t). (5)

The results of applying Formula (5) are adjusted in the same way by replacing the
extreme values Ĥ(t + ∆t) with an acceptable minimum minH or maximum maxH values
of water level. The final forecast scheme of water level is expressed by the formula:

H̃(t + ∆t) =


minH i f Ĥ(t + ∆t) < minH;
Ĥ(t + ∆t) i f minH ≤ Ĥ(t + ∆t) ≤ maxH;
maxH i f Ĥ(t + ∆t) > maxH.

(6)

Limiting the permissible values of streamflow rates and water levels using Formulas
(4) and (6) allows one to avoid unnecessarily low and high flow rates. However, in this
case, there is a danger of underestimating the expected extreme characteristics of the river
streamflow. In order to reduce the likelihood of such an underestimation, an estimate
of a quantile corresponding to close to 100% of the annual probability of exceeding, for
example, 99%, should be used as an acceptable minimum. An estimate of the quantile
corresponding to a near 0% annual probability of exceeding, for example, 1%, should be
used as an acceptable maximum.

This method is a variant of the Wiener filter, which is widely used in various branches
of science [13,14]. The method can be also considered as a particular option of the forecast
correction scheme which takes into account the autocorrelation of their errors [15].

It is not absolutely robust, since it requires a statistical assessment of the parameters of
Formulas (3) and (4) or (5) and (6). However, when using a sufficient amount of data over a
long period, the estimates of these parameters can be quite stable.

The method can be used for short- or medium-term forecasting of river runoff and
water level during a certain phase of the water regime or throughout the year. It is not
purely formal, since the water discharge and water levels taken into account in Formulas
(3) and (5) for k + 1 days indirectly characterize the flow of meltwater or rainwater, the
replenishment or depletion of soil moisture and groundwater reserves, the change in
riverbed and floodplain water reserves, and the transformation of a spring flood wave or
rain flood during the previous period. The possibilities of using this method are confirmed
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by its sufficiently successful application for obtaining short-term forecasts of river runoff in
the Kama river basin [16].

2.2. Implementation

The hydrograph extrapolation method was used to predict the average daily discharge
and water levels at stream gauging stations across Russia throughout the year. The method
for daily water level forecasting was applied at 2776 gauges, for discharge forecasting—for
2098 stream gauging stations (Figure 1). In each case, a continuous time series of daily
hydrological observations was used to develop the method for the period from 1 January
2010 to 31 December 2019.

Figure 1. The location of stream gauging stations in Russia and gauges with efficient water level
forecasts, based on the proposed approach.

For a given forecast lead time ∆t = 1, . . . , 10 the parameters a0(∆t), a1(∆t), . . . , ak(∆t)
and b(∆t) used in Formula (3) or (5) were estimated by the least square method. The
minimum and maximum values of discharges and water levels included in Formulas (4)
and (6) were determined from the long-term series of hydrological observations.

For each value of the lead-time ∆t from 1 to 10 days, the optimal number k was selected
for Formulas (3) and (5), at which the value of forecast root-mean-square error is minimal.
The analysis showed that for all values of the forecast lead-time ∆t = 1, . . . , 10, the values
of such optimal parameter k did not exceed 5. On this basis, all forecasts of average daily
discharges and water levels were determined according to the Formulas (3) and (5) using
k = 5.

As permissible minima and maxima of river runoff in Formulas (4) and (6), estimates
of quantiles corresponding to the annual probability of exceeding 99% and 1% were used,
obtained for the entire period of long-term observations available for each river section.
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As an example, Table 1 indicates values of parameters of Formulas (3) and (4) for gen-
erating forecasts of the average daily water discharges of the Don River near Serafimovich
with a lead time ∆t = 1, . . . , 10 days.

Table 1. Parameters of Formulas (3) and (4) for daily streamflow forecasting at gauging station
Serafimovich on the Don River.

∆t, Days a0 a1 a2 a3 a4 a5 b minQ,
m3/s

maxQ,
m3/s

1 1.435 −0.309 −0.082 0.053 −0.048 −0.054 2.21 148 5531
2 1.746 −0.522 −0.068 0.015 −0.065 −0.118 5.48 148 5531
3 1.981 −0.605 −0.129 0.02 −0.169 −0.117 9.41 148 5531
4 2.236 −0.740 −0.143 −0.068 −0.199 −0.116 13.84 148 5531
5 2.462 −0.829 −0.255 −0.099 −0.141 −0.178 18.90 148 5531
6 2.689 −1.007 −0.309 −0.048 −0.128 −0.249 24.57 148 5531
7 2.829 −1.126 −0.282 −0.046 −0.105 −0.335 30.87 148 5531
8 2.898 −1.136 −0.299 −0.044 −0.064 −0.435 37.65 148 5531
9 2.977 −1.168 −0.309 −0.025 −0.050 −0.52 44.75 148 5531

10 3.116 −1.208 −0.315 −0.037 −0.027 −0.658 60.09 148 5531

In order to automate the procedure for generating forecasts and quality assessment
for any set of gauging stations, a computer program was developed using Python pro-
gramming language and set up in the Hydrometcenter of Russia. The computer program
includes the following steps:

— reading and processing data that can be stored in one or more files;
— estimation of the parameters of the forecast scheme for each gauging station;
— evaluation of various indicators of the received forecasts quality;
— creating a separate directory for each gauge, where the parameters of the forecast

generation scheme and its quality indicators are stored;
— creating the result table with forecasts.

2.3. Forecasts Verification

The quality of short- and medium-term forecasts of average daily discharges and
water levels was evaluated based on an independent data sample that was not taken into
account when determining the parameters of the forecast formulas. For this purpose, the
jackknife approach was applied [17,18]:

(1) first year was excluded from the 10-year observation period;
(2) data for the remaining 9 years were used to estimate the parameters of the forecast

generation scheme;
(3) resulting estimates were substituted into Formulas (3) and (4) or (5) and (6) to predict

discharges or water levels during the excluded year;
(4) for the excluded year (independent sample), a series of forecast errors for 365 or (for a

leap year) 366 days was formed;
(5) data for the excluded first year were returned and the next year excluded;
(6) data for the second year were excluded on the next step of cross-validation;
(7) after repeating the described procedure for all 10 years, an N-long series of forecast

errors, obtained on an independent material, was formed (N = 3652).

The check performed in this way showed that when using the data of daily observa-
tions for 10 years, the parameters of the formulas for obtaining the forecast are quite stable,
since their estimates practically coincided for each of the 10 options for excluding data for
one of 10 years.
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If we denote the average value of the predicted value per day t by Y(t) and its forecast
by Ỹ(t), then for the period from 1 January 2010 to 31 December 2019, the Nash–Sutcliffe
model efficiency coefficient is determined by the formula:

NSE = 1 −

N
∑

i=1
[Y(t)− Ỹ(t)]2

N
∑

i=1
[Y(t)− Y]2

, (7)

where Y is the arithmetic mean of the series Y(1), . . . , Y(N) of the actual values of the
modeled characteristic [18]. This indicator does not exceed 1; moreover, the equality
NSE = 1 is achieved for an absolutely exact model that ensures the coincidence of the
quantities Y and Ỹ. Equality NSE = 0 means that modeling is as accurate as calculating
a quantity Y from its mean Y. Negative NSE values indicate completely unsatisfactory
simulation results.

The paper [15] proposes the following classification of the quality of models: a model
can be considered good if NSE ≥ 0.80; satisfactory provided 0.36 ≤ NSE < 0.80; unsatis-
factory provided NSE < 0.36.

For all river sections and flow characteristics, the average forecast error Y(t)−Ỹ(t) is
zero, that is, the extrapolation of the hydrograph does not give systematic forecast errors.

For the forecast of the Don River daily streamflow near Serafimovich, lead times
varying from 1 to 10 days, NSE values are presented in Table 2.

Table 2. NSE values for daily flow forecasts at major gauging stations.

Index Gauge Name River
NSE Values for Different Lead-Times, Days

1 2 3 4 5 6 7 8 9 10

10,031 Bologor’e Ob’ 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.97 0.96
11,055 Ust’-Ishim Irtysh 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.96 0.95
11,801 Salekhard Ob’ 0.99 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.94 0.93
9803 Igarka Yenisey 0.99 0.99 0.98 0.96 0.94 0.91 0.89 0.86 0.82 0.78
3821 Kiusur Lena 0.99 0.98 0.95 0.90 0.85 0.79 0.73 0.66 0.60 0.55
5033 Bogorodskoye Amur 0.99 0.99 0.99 0.98 0.97 0.96 0.94 0.93 0.91 0.89

77,801 Verkhnee
Lebyazhye Volga 0.99 0.99 0.99 0.98 0.96 0.95 0.92 0.90 0.88 0.85

1801 Srednekolymsk Kolyma 0.99 0.97 0.93 0.89 0.84 0.79 0.75 0.70 0.65 0.61
70,801 Ust’-Pinega Northern Dvina 0.99 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.79 0.76

Figure 2 shows observed and forecasted hydrographs at major gauging stations in
2010–2011; streamflow forecast lead-time is 5 days.



Hydrology 2022, 9, 1 7 of 14

Figure 2. Observed (blue) and forecasted with a lead time ∆t = 5 days (red) hydrographs at major
gauging stations (listed in Table 2) in 2010–2011.

3. Results

For the stream gauging stations across Russia, the results of streamflow and water
level forecast verification make it possible to assess the performance of the used method of
hydrograph extrapolation and the automated system of forecast preparation and issuance.

The number of gauging stations where satisfactory or good forecasts (NSE ≥0.36) of
discharges Q, m3/s, and water level H, cm have been achieved using the technique is given
in Table 3.

Table 3. The number of gauging stations with satisfactory forecasts of various lead times.

Elements
∆t, Days

1 2 3 4 5 6 7 8 9 10

Q, m3/s 2069 2015 1922 1810 1685 1565 1425 1276 1125 1008
H, cm 2775 2769 2755 2724 2692 2634 2558 2476 2360 2237

The data in this table show that with lead time ∆t = 1 day, satisfactory forecasts of
water discharge can be obtained for 2069 gauging stations, satisfactory forecasts of water
levels for 2775 stations; with lead time ∆t = 2 days, for 2015 and 2769 stations, respectively,
etc. At the same time, the stations for which satisfactory forecasts were obtained with a
longer lead time are also included in the number of stations with satisfactory forecasts with
lead time ∆t.
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It is important that with maximum lead time for medium-term forecasts ∆t = 10 days,
water discharges are forecasted satisfactorily for 1008 gauging stations and water levels for
2237 stations.

Table 4 shows the numbers of stream gauging stations where flow and water level
forecasts were good for lead times from 1 to 10 days (efficiency coefficient not less than 0.8).

Table 4. The number of stream gauging stations with good forecasts of various lead times.

Elements
∆t, Days

1 2 3 4 5 6 7 8 9 10

Q 1864 1442 1020 726 531 411 324 252 203 160
H 2707 2438 1971 1509 1177 908 733 600 513 426

Information given in Tables 3 and 4 demonstrates that in general, water levels are
better forecasted than discharges using the technique. This is due to the significantly higher
amplitude of fluctuations of discharge and thus, the less smooth change in time.

In addition, for every lead time, the number of gauging stations with satisfactory flow
forecasts significantly exceeds the corresponding number with good forecasts.

Generally, the accuracy of the hydrograph extrapolation method turned out to be
lower for rivers with a small catchment area and large watershed slope, in particular, for
small mountain rivers. This is due to the fact that under such conditions, river runoff
responds quickly (sometimes it takes a few hours) to snow melting or rainfall [2,7,18]. As
a result, the water regime is determined by a series of short-term floods, outside of the
winter low-water period, one can speak of a saw-tooth flow hydrograph, and it is difficult
to predict this with sufficient accuracy even for the next day. For such rivers, it is necessary
to use methods that are based on modeling the processes of river runoff. Due to this, an
automated system for preparing and issuing short-term forecasts of small Russian rivers
runoff is being developed in the present time; it is based on conceptual models of river
runoff formation including the Hydrometcenter of the Russia model and the Swedish HBV
model [8,19].

The change of average daily water discharge and levels is smooth, as in Figure 2,
for rivers with big catchment area and small watershed slope; therefore, the hydrograph
extrapolation method allows satisfactory and good forecasts to be made with a sufficiently
long lead-time. This method gives good forecasts with lead time up to 10 days for such
large Russian rivers as the Amur, Lena, Yenisey, Ob, Irtysh, Tobol, Kama, Don, Northern
Dvina and Pechora.

The efficiency coefficient value is decreasing with an increase in the lead time of the
forecast ∆t. This allows determining of the maximum lead time for good forecasts max(∆t)
in such a way that forecasts with efficiency coefficient value not less than 0.8 can be obtained
for all values ∆t not exceeding max(∆t).

For water discharges, the average value of maximum lead time of good forecasts is
3.3 days, and for water levels, 4.7 days. For satisfactory forecasts of water discharges and
water levels, maximum lead times are 7.6 and 9.4 days, respectively.

One of the most important tasks of the operational hydrological forecasting system is
the forecasts provision to end users (including hydrologists at regional offices, National
Disaster Management Agency, Cities administrations and others) in a timely and effective
manner. For this purpose, the system for monitoring and forecasting of floods and other
adverse hydrological phenomena was developed based on the recent advances of GIS-
WEB technologies [11,19]. Forecasts of water levels, automatically issued according to the
abovementioned techniques, are sent to the delivery system in the form of web services.
The user, in a real time mode, using a regular web interface, has access to forecasts of flows
and water levels (Figure 3). During operation, the systems demonstrated the accuracy and
reliability of forecasting, the efficiency of bringing the output products to the end users
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for making correct and timely decisions aimed at minimizing damage from the passage
of floods.

Figure 3. Hydrograph of observed daily water level at the Volga—Kstovo (75,605) for the period
8 October 2021–18 October 2021 and its forecast.

The ability to extrapolate the hydrograph is characterized by the maximum lead time
of good forecasts max(∆t) when NSE ≥ 0.80. Maximum lead time of good forecasts depends
on not only the catchment area size and watershed slope but also on other natural (climate,
relief, landscape) as well manmade conditions of river flow formation. Thus, defining the
relation between maximum lead time max(∆t) and the catchment area and watershed slope
is possible only for geographically homogeneous regions. For such areas, the smoothness of
the hydrographs’ shape increases with an increase in the catchment area A and a decrease
in its average slope I. Consequently, with an increase in A and a decrease in I, the maximum
lead time of good forecasts max(∆t) should increase.

When identifying such regions, data on 1879 river gauges with natural river flow
located throughout the entire territory of Russia were used. For each gauge, according
to the data of daily observations, the maximum lead time of good forecasts max(∆t) was
calculated using the hydrograph extrapolation method. The values of the watershed area A
and its average slope I were obtained.

As a first approximation, the predictability indicator max(∆t) and the catchment area
A and the average slope I dependence were analyzed. For this purpose, various types of
the function f(A, I) were considered, for each of which the correlation coefficient r between
f(A, I) and the max(∆t) was estimated. The variant of f(A, I) was chosen as the optimal one,
where the coefficient r had the maximum value. The logarithm of the catchment area ln(A)
turned out to be such an optimal variant. The maximum value of r appeared to be 0.50. The
tightness of the max(∆t) and ln(A) dependence turned out to be insufficient for assessing
the predictability of river flow in specific river sections using the values of A and I. In this
regard, the search for closer dependences of the indicator max(∆t) on the optimal type of
the function f(A, I) was considered for geographically homogeneous regions.

When identifying regions with a single dependence of the max(∆t) and the area A
and the average slope I of the catchments, the goal was to achieve, at least, its relative
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geographical homogeneity. To achieve this goal, the information contained in the Big
Geographical Atlas of Russia was taken into account [18]. The procedure for identifying
each region included the following steps:

• identification of the “core” formed by catchments with fairly similar flow formation
conditions and its regime;

• preliminary identification of the optimal type of the function f(A, I), which has the
maximum correlation coefficient r with the index max(∆t);

• adding adjacent catchments if their data do not significantly reduce the value of r;
• refinement of the optimal type of the function f(A, I);
• discarding adjacent catchments if their data negatively influenced the relationship.

Thus, 18 regions were identified with a single dependence of the predictability indica-
tor of river runoff max(∆t) on the function of morphometric characteristics of the catchment
area f(A, I) corresponding to each region. These regions cover about 80% of the entire
country and are shown in Figure 4.

Figure 4. Regions with a single relationship of the predictability indicator of river flow and the
function of morphometric characteristics of the catchment area.

Table 5 shows the name, number of river gauges N, optimal type of the function f(A, I)
and the correlation coefficient r of the relationship with max(∆t) for each region.
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Table 5. Characteristics of the selected regions.

№ Region of Russia N f(A, I) r

1 North-West territories 71 ln(A) 0.76

2 Northern Dvina river
basin 75 ln(A) 0.77

3 Pechora river basin 46 A 0.84

4 Kama river basin 129 (A/I) 1
2 0.82

5 Oka river basin 66 (A/I) 1
2 0.84

6 Don river basin 75 ln(A) 0.80

7 Kuban river basin 25 (A/I) 1
2 0.77

8 Terek river basin 33 ln(A) + 1.3ln(I) 0.76

9 Tobol river basin 36 ln(A) 0.81

10 Irtysh river basin 78 ln(A/I) 0.80

11 Upper Ob’ river basin 162 (A/I) 1
2 0.82

12 Lower Ob’ river basin 32 ln(A) 0.91

13 Yenisei river basin 80 (A/I) 1
2 0.76

14 Lena river basin 88 ln(A/I) 0.75

15 North-East territories 63 ln(A) − 4ln(I) 0.79

16 Amur river basin 54 ln(A) 0.88

17 Far-East territories 43 A 0.75

18 Sakhalin island 25 (A/I) 1
2 0.75

As an example, Figure 5 shows the relationship between max(∆t) and ln(A) for the
Lower part of the Ob river basin (Region 12 in Figure 4).

Figure 5. Dependence of good forecasts water levels maximum lead-time max(∆t) on catchment area
logarithm ln(A) for the basin of the Lower Ob.
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Judging by the point distribution, one can state that, for river catchment areas more
than 300,000 km2, forecast efficiency is good for lead times more than 5 days; for areas with
700,000 km2 or more, lead times with good forecast efficiency may reach up to 10 days.

Similar and more detailed relationships for different regions of Russia allows assessing
in advance the possibility of using the hydrograph extrapolation method in flow forecasting.

In Table 4, it is worth noting that application of f(A, I) = ln(A) + 1.3ln(I) as the optimal
argument for the Terek river basin (mountainous basin in the south of European Russia)
indicates that in this region, the maximum lead time is satisfactory. According to forecasts,
max(∆t) increases with an increase in the average slope of the river basin surface. This
unexpected result has a fairly simple explanation.

The rivers of the Terek basin have the highest values of slopes; the catchments are
located mainly high in the mountains. Snow and glacier flow origin predominates here.
It provides a smooth shape of the hydrograph in general. The rivers have the smallest
slopes, the catchments of which are located mainly on the plain. For them, rain food pre-
possesses. It provides the sharp outlines of individual floods and the sawtooth character of
the hydrograph as a whole [20]. Thus, for the Terek river basin, the average slope of the
river basin indirectly characterizes the location of the catchment area of the river and its
flow origin, and this determines the features of the hydrograph shape and the possibility of
its extrapolation.

The hydrograph extrapolation method was used to obtain a forecast of water discharge
with a lead-time ∆t from 1 to 10 days. In this regard, the values of the indicator max(∆t),
which determines the maximum lead-time of good forecasts, are also limited to 10 days.
As a result, for many regions, the relationship of this indicator with the morphometric
characteristics f(A, I) becomes nonlinear as it increases and the value of max(∆t) approaches
10. This leads to the fact that the correlation coefficient r, which characterizes the tightness
of the statistical relationship and the degree of its linearity, underestimates the actual
tightness of the relationship between max(∆t) and the argument f(A, I). If discharges are
predicted with a lead time of more than 10 days, the nature of this dependence would be
linear in the entire range of values and the correlation coefficients r would be greater.

For all selected regions, the relationship of the max(∆t) and morphometric character-
istics f(A, I) turned out to be insufficiently close to allow determination of the maximum
lead time of satisfactory forecasts at certain values of area A and the average slope I of a
catchment. However, these relationships allow estimation of the extremely low value of f(A,
I), which provides satisfactory forecasts with a sufficiently long lead time, and an extremely
high value, in which satisfactory forecasts are possible only with a short lead time or are
impossible at all (max(∆t) = 0).

Thus, identified regional dependencies allow estimating the threshold values of the
area and average slope of the catchment, beyond which, satisfactory forecasts are possible
with a sufficiently long lead time, or, conversely, only with a short lead time or are not
possible at all.

4. Discussion

The authors are far from considering the proposed hydrograph extrapolation method
as an alternative to other methods used in streamflow forecasting. In each specific case,
the use of meteorological observations and forecasts, as well as taking into account the
landscape structure of the catchment using a well-chosen model of the formation of river
flow, will make it possible to obtain more accurate forecasts of discharges and water levels
in comparison with the hydrograph extrapolation method. An example would be: a
method for short-term forecasting of river runoff in the Kuban basin and the Black Sea
coast of the Caucasus based on the model of formation of thaw-rain runoff of mountain
rivers of the Hydrometeorological Center of Russia and the meteorological model COSMO–
Ru [21]; a method for short-term forecasting of the Kama River tributaries based on the
HBV hydrological model and the COSMO–Ru meteorological model [20].
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The only but indisputable advantage of the hydrograph extrapolation method is its
simplicity. For its implementation, only the data of hydrological observations and the
standard statistical estimates of the parameters contained in the formulas for obtaining
the forecast obtained on their basis are needed. As shown by the results of applying this
method to predict the flow of hundreds of Russian rivers, it allows one quickly and with
maximum savings in time and resources to obtain satisfactory and good short-term and
medium-term forecasts of streamflow and water level.

Thus, the hydrograph extrapolation method can be considered as a first approximation
while solving the problem of forecasting river flow in conditions of a lack of meteorological
information or when it is necessary to quickly obtain forecasts for a large number of
catchments. It seems that at the next stages, in order to obtain more accurate results,
comprehensive work is required to develop and implement more complex and physically
based methods.

5. Conclusions

The proposed method of hydrograph extrapolation makes it possible to obtain a
scheme for forecasting of the streamflow and water level in a river section in the form of
two simple formulas, the parameters of which are estimated from the data of hydrological
observations. In order to implement this method in the Hydrometeorological Center
of Russia, the automated system has been developed that allows continuous issuing of
streamflow and water level forecasts with a lead time up to 10 days for 2776 river sections
located practically throughout the country.

The verification of these forecasts based on the data of daily hydrological observations
for the period from 2010 to 2019 showed that the proposed method allows obtaining of
good and satisfactory results for fairly large rivers with a smooth shape of hydrographs.
In particular, good forecasts of water levels with a lead time of ten days can be produced
for more than 400 river sections. Limiting the permissible values of streamflow rates
and water levels using the method may lead to underestimating the expected extreme
characteristics of the river streamflow, which has been taken into account while using the
method in operational forecasting. The maximum lead time of good forecasts, for which
the Nash–Sutcliffe efficiency coefficient is not less than 0.8, is taken as an indicator of the
possibilities for forecasting river runoff.

On the territory of Russia, 18 regions are identified, for each of which this indicator can
be calculated depending on the area and average slope of the catchment surface. The values
of these morphometric characteristics have been determined, at which good forecasts are
possible with a sufficiently long lead time of 8–10 days, or, conversely, only with a short
lead time of 1–2 days, or are not possible at all.
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