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Abstract: Accurate streamflow prediction is significant when developing water resource management
and planning, forecasting floods, and mitigating flood damage. This research developed a novel
methodology that involves data pre-processing and an artificial neural network (ANN) optimised
with the coefficient-based particle swarm optimisation and chaotic gravitational search algorithm
(CPSOCGSA-ANN) to forecast the monthly water streamflow. The monthly streamflow data of the
Tigris River at Amarah City, Iraq, from 2010 to 2020, were used to build and evaluate the suggested
methodology. The performance of CPSOCGSA was compared with the slim mold algorithm (SMA)
and marine predator algorithm (MPA). The principal findings of this research are that data pre-
processing effectively improves the data quality and determines the optimum predictor scenario.
The hybrid CPSOCGSA-ANN outperformed both the SMA-ANN and MPA-ANN algorithms. The
suggested methodology offered accurate results with a coefficient of determination of 0.91, and 100%
of the data were scattered between the agreement limits of the Bland–Altman diagram. The research
results represent a further step toward developing hybrid models in hydrology applications.

Keywords: streamflow prediction; CPSOCGSA; ANN; metaheuristic algorithms; SSA

1. Introduction

Water shortages have become a global concern due to the rapid increase in residential,
industrial, and agricultural demand, as well as the growing need to conserve water in order
to maintain ecosystem services [1]. Socio-economic factors (i.e., urbanization, population
growth, and industry) and climate change are intensifying water scarcity—where water
needs exceed availability—for cities worldwide [2]. The United Nations estimates that
about 1.8 billion people will face water scarcity by 2025, and two-thirds of the world’s
population will be water stressed [3]. Different basins globally face predominant water
stress and associated water resource quantity and quality challenges that adversely impact
sustainable development, especially for developing countries [4].

Iraq is one developing country that suffers from the vulnerability of climate change
(i.e., increased temperature and reduced rainfall). Additionally, socio-economic factors
(i.e., urbanization, population growth, and the oil industry) impact freshwater resources.
The Tigris and Euphrates Rivers are the principal water resources in Iraq that experienced
significant water shortages from 2009 to 2014. Water scarcity is predicted to increase due to
climate change, increasing water consumption upstream (Turkey, Iran, and Syria) [5]. There
is also evidence that the temperature in Iraq will rise two to seven times faster than the
world average, according to Salman et al. [6]. Furthermore, Iraq’s future rainfall patterns
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and amounts are anticipated to be significantly affected based on various forms of analyses
and scenarios [7].

Therefore, forecasting is considered essential for water conservation and ensuring
environmental sustainability, as has been proven in various fields [8,9]. Forecasting stream-
flow over time is critical for a variety of reasons, including water supply reliability, drought
and flood risk, and environmental maintenance security. Long-term accurate streamflow
forecasts help with water resource planning and management [10]. On the other hand, river
flow modelling is a complex undertaking, as river flow time series are frequently random,
dynamic, non-linear, and chaotic [11]. An analysis of the univariate streamflow predic-
tions by Zhang et al. [12] found that data-driven models are widely used because of their
simplicity and minimal data needs. The most frequently artificial intelligence (AI) models
used in streamflow forecasting are neural-based fuzzy inference systems (ANFIS) [13], sup-
port vector machines (SVM) [14], and artificial neural networks (ANN) [15]. As a simple
operational model, ANN offers significant non-linear mapping capabilities [10]. Despite
the many successes that have resulted from employing the ANN method with a single
ANN, there is still a lot of space for development [16]. This has encouraged researchers to
improve their models. However, various hybrid models incorporating ANNs and various
optimization strategies have been created [17].

Therefore, instead of applying a single model to the same data, a hybrid technique
combines the benefits of two or more independent models to increase prediction accu-
racy [18], as in streamflow forecasting [19–21]. Additionally, it has been discovered that
the accuracy of AIs (without pre-processing data methods) can be enhanced by combining
hybrid AI models (which contain coupled models) with data pre-processing processes [22].
In addition, the findings of some studies have demonstrated that hybrid models are both
robust and informative, and they have been successfully used in various hydrological fields,
for example in water demand forecasting [23,24] and rainfall forecasting [25].

In the same context, the literature has emphasized the importance of applying data
pre-processing to enhance time series quality and identify the best predictor scenarios.
The importance of data cleaning has grown in recent years. Consequently, several signal
pre-treatment strategies have been used to eliminate noise in streamflow time series, such
as wavelet transform (WT) [26], singular spectrum analysis (SSA) [27], empirical mode
decomposition (EMD) [28], and variational mode decomposition (VMD) [29]. Another
substantial aspect of data pre-processing is choosing the best scenario for predictors, such
as mutual information (MI) [30], for a univariate model. Using non-linear statistical
dependence metrics, such as MI, is more suitable for selecting inputs for ANN techniques
than a correlation, which has the limitation of only assessing the linear relationship between
variables [31].

Recently, Ibrahim et al. [32] reviewed the streamflow simulating models and stated
that machine learning (ML) techniques also need to be optimized in tandem to perform the
optimum outcome, thus leading to the desirous formation of combined methods between
a single ML model and optimization techniques. Additionally, the study recommended
that (1) the pre-processing data stage is advisable to be done as efficiently as possible to
avoid noise in the data. In addition, it is suggested that more focus should be allocated to
determining the best predictor combination. (2) Model hyperparameters (i.e., the learning
rate coefficient in ANN) are one of the most important aspects influencing the model’s
performance and results. So, selecting and tuning those hyperparameters is recommended
by applying metaheuristic algorithms instead of utilizing a trial and error procedure.

The search for the best possible solution within a large and uncertain space is a classic
optimization problem that arises in many different branches of engineering. Numerical
methods may be useful when an analytical solution is impossible or would take too long to
implement in practice, but they cannot guarantee a globally optimal result because there
is a high possibility of falling in the local minima. There are a variety of metaheuristic
algorithms that obtain their motivation primarily from nature. Hybridization of existing
algorithms is another prevalent strategy for improving algorithm performance, alongside
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developing new metaheuristic algorithms [33]. In addition, the No Free Lunch Theorem
(NFLT) [34] mentions that no single algorithm can effectively address all possible optimiza-
tion scenarios. In other words, even if an optimization technique achieves an excellent
performance for some issues, it likely performs poorly for others. This has led to the
development of a wide variety of methods for solving optimization problems that have
been proposed by the scientific community.

Several metaheuristic-based methodologies have been developed to determine the
optimal tuning of forecasting models [35]. In recent years, various metaheuristic algorithms
have been effectively utilized in the subject of hydrology. Li et al. [36] created the slim
mold algorithm (SMA), which is a contemporary nature-inspired algorithm that has been
used to solve a variety of optimization problems, such as those in photovoltaic solar
systems [37]. Additionally, the marine predator algorithm (MPA) is a population-based
meta-heuristic algorithm [38] that has been used to tackle various optimization issues, such
as power resources [39]. Furthermore, the particle swarm optimization (PSO) algorithm
was originally designed to model social behavior because of its ability to optimize complex
numerical functions [8]. The PSO method generally provides better problem-solving
abilities, a high convergence speed, and good generalization capabilities for a wide range
of situations [9].

The two primary features of metaheuristic algorithms are exploration and exploitation.
In computer science, “exploration” refers to the bounds of the algorithm’s search space,
whereas “exploitation” is the practice of selecting the most optimal answer from among sev-
eral possible ones [40]. The exploration and exploitation are inversely proportional to each
other, as stated by Eiben and Schippers [41]. This means that if an optimization method
has excellent exploration power for one problem, it will have low exploitation power for
another. The optimization algorithms are hybridized to overcome the randomization, inten-
sification, and entrapment in local minima issues. Furthermore, hybridization improves the
algorithms’ efficiency and accuracy [40]. Accordingly, Rather and Bala [40] developed the
constriction coefficient-based particle swarm optimization and chaotic gravitational search
algorithm (CPSOCGSA). To achieve the best outcome, it integrates PSO’s exploitative
abilities with those of GSA’s exploratory ones. In addition, it employs 10 chaotic maps for
optimal balance between exploration and exploitation processes.

Recently, Hajirahimi and Khashei [42] reviewed the hybridization of hybrid struc-
tures for time series predicting, and the study demonstrated that pre-processing data and
optimization algorithms are crucial components of hybridization. The hybridization of
hybrid models, wherein two or more hybrid classes are merged as opposed to combining
the typical individual forecasting methods, is a novel idea suggested in recent literature in
order to reach a high accuracy. One of these techniques that was applied successfully is the
hybridization of preprocessing-based with parameter optimization-based hybrid models
(HPOH). The hybridization of hybrid models also has certain research gaps that need to
be addressed and future research directions that need to be explored. Moreover, Magali
Troin and Martel [43] reviewed the techniques and methods of streamflow prediction over
40 years and stated that hybrid prediction models are currently a well-established topic
of study that covers a wide range of operational scenarios. In addition, Ibrahim et al.,
2022 [32], concluded that ML techniques have an opportunity for growth and consideration
for future hybrid AI modelling that will make the hydrological study even more intriguing,
demanding, and rewarding for academics. This study aims to develop a novel methodol-
ogy that can accurately forecast monthly medium-term streamflow considering previous
streamflow data. In order to do this, the following tasks will be achieved:

(1) Applying the pre-processing data stage to enhance the data quality through the singu-
lar spectrum analysis (SSA) method and to select the best predictor (lags) scenario
using the mutual information (MI) technique.

(2) Integrating the ANN model with the coefficient-based particle swarm optimization
and chaotic gravitational search algorithm (CPSOCGSA-ANN) to forecast the monthly
water streamflow.
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(3) Examining the performance of the CPSOCGSA-ANN algorithm by applying a hybrid
slim mold algorithm (SMA-ANN) and marine predator algorithm (MPA-ANN).

(4) Applying the HPOH technique for simulating the monthly streamflow based on
several lags.

(5) Expanding the forecasting range and decreasing the uncertainty level of outcomes for
monthly streamflow simulation by testing different recent metaheuristic algorithms
(i.e., hybridization of two existing and two recent algorithms).

2. Study Area and Data Used

The main sources of freshwater in Iraq are the Euphrates and Tigris Rivers. The Tigris
River is one of the main rivers in the Middle East. The river is 1718 km long altogether and
flows through Turkey, Syria, and Iraq, with about 85% of the total basin of the Tigris River
lying in Iraq [44].

Amarah is the capital of the Maysan Governorate in southern Iraq (Figure 1). The study
area is defined by longitudes (46◦20′–48◦05′ E) and latitudes (31◦10′–32◦50′ N), located
400 km south-east of Baghdad Province. Additionally, the area of Maysan Governorate
covers around 16,683 km2 [45]. Amara has a characteristic climate with hot summers and
chilly winters. In the summer, high temperatures are frequently over 40 ◦C. Precipitation
falls during winter and averages 177 mm annually [46].
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Figure 1. Study area, Amarah City, Iraq.

Historical monthly streamflow (m3/s) data were gathered from 2010–2020, supplied
by the Directorate of Water Resources in Maysan City, and were used to build and assess
the model. Figure 2 presents the time series and box plot of the monthly Tigris River
streamflow at Amarah City.
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Figure 2. (A) Monthly streamflow time series; (B) box plot for the Tigris River streamflow at
Amarah City.

3. Methodology

The suggested methodology can be separated into four aspects: data pre-processing,
artificial neural networks, the CPSOCGSA algorithm, and model validation, as shown in
Figure 3.
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3.1. Data Pre-Processing

Recent improvements in streamflow forecasting methodologies underline the need
to use various data pre-processing approaches, which can be divided into three cate-
gories: normalization, cleaning, and selecting the optimal model input [23]. Following
Zubaidi et al. [47], using the SPSS 24 statistics tool, the natural logarithm was applied to
normalize the time series and to eliminate multi-collinearity between independent variables
(model input).

The data cleaning method involves detecting and treating unwanted or worthless data
in order to improve the prediction results. The outliers’ data have a negative impact on the
regression solution and the model’s accuracy [23]. After normalization, the outliers’ data
were determined using the box and whisker method, and then the scores were adjusted to
fit the remainder of the data. Then, normalized and clean time series data were denoised
using singular spectrum analysis (SSA).

SSA is a relatively effective approach for decomposing the original time series into
multiple principal components (PCs). Every PC explains a proportion of the variance of the
original time series, where the first component has the largest value and the last component
has the lowest proportion. SSA can be used for the purpose of time series denoising by
selecting the PCs with the largest proportions of variance and neglecting the PCs with
the smallest variance proportions, which usually explains the structureless noise in the
time series [48]. This approach has proven to be successful in a variety of fields, such as
streamflow forecasting [27], drought forecasting [49], and industry [50]. More information
on SSA can be found in Zhigljavsky [51].

Selecting a suitable predictor’s scenario is one of the most crucial steps for developing
the structure of the prediction model. This phase improves the model’s performance
by identifying the most significant factors [47]. In order to choose the most effective
explanatory variables, the mutual information (MI) technique was applied in this study.
Danandeh Mehr et al. [52] stated that the average mutual information (AMI) is a non-linear
generalization of the autocorrelation function. Mutual information is commonly utilized to
locate time-delayed independent variables.

3.2. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) use a model structure similar to a human brain’s
neural network. ANN is an effective computational method for representing non-linear sys-
tems [53]. The capacity of the ANN model to uncover complicated non-linear relationships
has led to its popularity in water resources and hydrological areas, as in S.I.Abbaa et al. [54],
Tiu et al. [55], and Zubaidi et al. [23]. The most popular ANN design is the multi-layer
feedforward neural network (MLFFNN), because it is easy to implement. Their primary
benefit is that they can provide a simulation for any input/output map, while also being
quite straightforward to implement. When it comes to containing a neural network’s error
rate, the Levenberg Marquardt (LM) algorithm is frequently employed because it is a
high-demand, flexible calculation [56]. There are three primary layers in an MLP model:
the input layer, the hidden layer, and the output layer. Thomas et al. [57] investigated
whether MLFFNN with two hidden layers improves generalization over those with one.
The study concluded that networks with two hidden layers were superior at generalizing
nine out of ten cases, although the actual degree of enhancement was case-dependent. In
addition, multiple studies have demonstrated the efficacy of ANNs with two hidden layers
in capturing the nonlinear relationship between the simulated and observed [47,58,59]. To
have the same ANN structure as in Zubaidi et al. [47], this research will use the ANN model
with four layers, including the input (received Lags of streamflow), two hidden layers, and
an output layer (target, future streamflow). The trial and error procedure establishes the
ideal learning rate and the number of neurons for the hidden layers. However, this ap-
proach is inefficient and may not yield the best results [47]. Therefore, the CPSOGSA-ANN,
MPA-ANN, and SMA-ANN algorithms were used to determine the learning rate coefficient,
the number of neurons in both hidden layers, and to prevent over- or under-fitting the
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model. In addition, the hybrid techniques enhanced the ANN model’s performance and
saved time.

The entire data set was divided into three portions: training (70%), testing (15%), and
validation (15%) [27]. Each ANN model was run multiple times to determine the optimal
neural network structure (weights) for effectively predicting the streamflow.

3.3. Hybridized Constriction Coefficient-Based Particle Swarm Optimization and Chaotic
Gravitational Search Algorithm (CCPSOCGSA)

It is widely documented that each algorithm has inherent limitations that reduce its
ability to produce reliable and sound estimates. As such, the concept of merging two
different algorithms has been increasingly used to cope with the aforementioned issue.
Accordingly, the hybridized constriction coefficient-based particle swarm optimization
and chaotic gravitational search algorithm (CCPSOCGSA) was developed by combining
the particle swarm optimization (PSO) technique, which reflects the simulated behavior
of bird flocking, and the gravitational search algorithm (GSA), in which Newton’s law of
universal gravitation is the driving principle of this physics-based heuristic technique. The
CCPSOCGSA technique has the advantages of the merits of PSO and GSA and diminishes
the drawbacks associated with PSO and GSA techniques represented by randomization,
intensification, and local minima. The detailed information regarding this hybridized
technique will be elaborated on in the next subsections.

3.3.1. Constriction Coefficient-Based Particle Swarm Optimization (CCPSO)

The electrical engineer Russell C. Eberhart and the social psychologist James Kennedy
first developed the PSO technique. They were inspired by the behavior of fish or a flock of
birds in their search for food to propose this algorithm. This behavior shows that a group
of fish and/or a flock of birds can profit from the experience of all other group members to
hunt best, reduce the time of that journey, and save energy. In terms of complexity, PSO
is deemed to be the simplest algorithm compared with the others. Three main operators,
namely, inertia weight, pbest, and gbest constitute the main structure of the PSO algorithm.
The first operator plays a significant role in the global exploration process, while the rest
of the operators help find the search space region. The updating process of the location
and velocity of the particles during the change of their values (particle values) can be
mathematically described as below:

vd
x(t + 1) = w(t)vd

x + rx1+ (1)

xd
x(t + 1) = xd

x(t) + vd
x(t + 1) (2)

where c1 and c2 are the learning constants, while rx1 ∧ rx2 are numbers ranging from 0 to 1.
It should be noted that the CCPSO algorithm was developed to overcome the draw-

backs and limitations associated with PSO. These issues can limit the ability of PSO to
compete with other algorithms in terms of estimation accuracy. To be specific, PSO has
inherent limitations, namely, particle movements outside the solution space and the time
of convergence during the optimization process [60]. The constriction coefficient is as
described below:

ϕ1 = 2.05, ϕ2 = 2.05, ϕ = + (3)

K = 2/
(

ϕ− 2 +
√
(ϕ2 − 4)

)
(4)

where K represents the constriction coefficient, which embodies the inertia weight. Equation (1)
can be rewritten as follows:

vd
x(t + 1) = Kvd

x(t) + Kϕ1rx1

(
pbestx(t)− xd

x(t)
)
+ Kϕ2rx2

(
gbest− xd

x(t)
)

(5)

where Kϕ1 = c1, Kϕ2 = c2
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3.3.2. Chaotic Gravitational Search Algorithm CGSA

The GSA algorithm was developed by taking advantage of a physical phenomenon,
namely, Newton’s law of gravitation and motion. This law helps attract agents (objects)
through gravitational force, which plays a key role in this regard. Objects with heavier
masses pull other objects with lower masses. It is noteworthy that each mass has four
specifications: position, inertial mass, active gravitational mass, and passive gravitational
mass. The solution to the problem of GSA is usually associated with the position of the
mass, while the gravitational and inertial masses are determined using a fitness function.
The mathematical formulation of the gravitational force Fij between masses x and y at time
t can be written as in Equation (6):

Fxy = G(t)
mpx(t)may(t)

Rxy
+ ∈

(
xd

x(t) + xd
y(t)

)
(6)

where mpx ∧may denote passive and attractive masses, respectively. Rxy (t) is the Euclidian
distance between the two masses at time t, while ∈ is a small value to avoid division by
zero [61]. The constant G helps in controlling the solution space and finding the feasible
region, and can be represented by Equation (7):

G(t) = G(to)e(−α CI
MI ) (7)

where G(t) ∧ G(to) are the final and initial values of G, respectively, α is a small constant,
CI is the current iteration, and MI is the maximum number of iterations.

The change in G over time is described using a chaotic normalization process [40,62],
and the final representation of the gravitational constant can be formulated by Equation (8):

Gc(t) = Cnorm
i (t) + G(to)e(−α CI

MI ) (8)

The total force exerted by the masses can be described in Equation (9) below:

Fd
x (t) =

m

∑
y = 1,y 6=x

γyFxy (9)

where γ is a constant with a range between 0 and 1.
To help find the global optimum, the position and velocity of the heavy search

agent (i.e., mass) should be calculated. The position and velocity can be written as in
Equations (10) and (11):

vd
x(t + 1) = γyvd

x(t) + ad
x(t) (10)

xd
x(t + 1) = xd

x(t) + vd
x(t + 1) (11)

where ad
x(t) is the acceleration of the mass.

3.3.3. Combination of CCPSO and CGSA

The aforementioned two techniques (CPSO and CGSA) can be merged to obtain an
advantage from the strengths of each approach and to overcome their limitations. By doing
so, the analyst can obtain solid and reliable estimates. The hybridization equation formula
can be described as in Equation (12):

vd
x(t + 1) =

(
2/
(

ϕ− 2 +
√

ϕ2 − 4
))

vd
x(t) + Kϕ1rx1

(
ad

x(t)− xd
x(t)

)
+ Kϕ2rx2

(
gbest− xd

x(t)
)

(12)

The location of the particles is given by Equation (13):

xd
x(t + 1) = xd

x(t) + vd
x(t + 1) (13)
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3.4. Model Validation

The effectiveness of the proposed methodology was assessed using the mean absolute
error (MAE), root mean squared error (RMSE), mean absolute relative error (MARE), scatter
index (SI), mean bias error (MBE), and the coefficient of determination R2. These indicators
are defined in Equations (14)–(19). Additionally, graphical plots, such as a Taylor diagram,
Bland–Altman, and scatter plot, were utilized to evaluate the forecasting effectiveness of
the proposed methodology.

MAE =
∑N

i = 1|Oi − Fi|
N

(14)

RMSE =

√
∑N

i = 1(Oi − Fi)
2

N
(15)

MARE =
1
N

N

∑
i = 1

|Oi − Fi|
Oi

(16)

SI =
RMSE

O
× 100 (17)

MBE =
1
N ∑N

i = 1(Oi − Fi) (18)

R2 =

 ∑N
i = 1

(
Oi −Oi

)
(Fi − Fi)√

∑
(
Oi −Oi

)2
∑
(

Fi − Fi
)2

2

(19)

where Oi is the measured streamflow, Fi is the predicted streamflow, Oi is the mean of the
measured streamflow, Fi is the mean of the predicted streamflow, and N is the length of
the data.

4. Results and Discussion
4.1. Preparation of the Target and Predictors Factors

Firstly, data were normalized by applying the natural logarithm and were cleaned.
Then, the SSA method was used to gain the time series data of the streamflow without
noise (this was achieved by analyzing the normalized and cleaned time series into three
components); these steps are according to Section 3.1. Figure 4 displays the normalized and
cleaned time series (top row), the new time series (second row), and two noise components
(third and fourth rows). Data pre-processing enhances the correlation coefficients between
the target and predictors (Lags) of the monthly streamflow, e.g., the correlation coefficient of
the raw data of lag 1 increased significantly from 0.84 to 0.97. The correlation coefficients for
the first five lags of the denoise time series were 0.97, 0.91, 0.82, 0.75, and 0.68, respectively.

Three box plot shapes for normalized, cleaned, and denoised streamflow time series
are shown in Figure 5. The figure reveals that the normalized time series had two outliers,
and there was no significant difference in the shape of the data compared with the cleaned
form. All of the shapes had nearly the same median and upper and lower quartiles, while
the upper and lower whiskers of the denoised time series shape were less than those of the
other two shapes (normalized and cleaned time series).

In addition, based on the literature, the first minimum of the average mutual infor-
mation (AMI) was chosen as the time lag [63,64]. Depending on Figure 6 of AMI, five lags
(Lagt_1 to Lagt_5) of monthly historical streamflow data were utilized to estimate future
river streamflow.
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According to Zubaidi et al. [47], the relation between sample size (N) and the number
of predictor variables (m) should be consistent with Equation (20):

N ≥ 50 + 8m (20)

The number of cases in this study was N = 127, which is higher than the required
number of 90.

4.2. Model Configuration

After pre-processing processes and analyzing the data, the data were separated into
three groups: training, testing, and validation (as previously mentioned in Section 3.2).
The ANN model requires integration with the metaheuristic method to establish the ANN
model’s optimal hyperparameters (Lr, N1, and N2). As a result, the CPSOCGSA method
was combined with the ANN model. The results were then compared to the SMA-ANN
and MPA-ANN algorithms for further validation. Swarm sizes of 10, 20, 30, 40, and 50 were
used five times, each with 200 iterations for each method in this study in order to obtain
the minimal fitness function (MSE). Figure S1 demonstrates an example of the CPSOCGSA-
ANN algorithm performance and displays the optimal fitness function for each swarm in
terms of the streamflow.

Figure 7A displays that the (30_2) swarm size gave the best solution for the CPSOCGSA-
ANN algorithm (MSE = 0.02942, after 179 iterations) for streamflow, while in Figure 7B, the
(30_1) swarm size provided the optimal solution for the MPA-ANN algorithm (MSE = 0.03221,
after 78 iterations). Figure 7C presents the swarm size (30_1) and offered the best solution
for the SMA-ANN algorithm (MSE = 0.03455, after 194 iterations).

Figure 7. Fitness function of (A) CPSOCGSA-ANN algorithms, (B) MPA-ANN algorithms, and
(C) SMA-ANN algorithms under five swarm sizes.

Consequently, Table 1 shows the ANN hyperparameters for all of the algorithms.
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Table 1. ANN hyperparameters based on the CPSOCGSA-ANN, MPA-ANN, and SMA-ANN algorithms.

Model Lr N1 N2

CPSOCGSA-ANN 0.2101 5 4
MPA-ANN 0.1150 4 1
SMA-ANN 0.9427 19 15

Lr = learning rate, N1 = number of nodes in the first hidden layer, and N2 = number of nodes in the second hidden
layer, respectively.

4.3. Performance Evaluation

A number of statistical indicators were used to evaluate and compare the performance
of the developed techniques (see Section 3.4 for more details). The R2, RMSE, MAE, and
MARE of all techniques can be seen in Table 2. A comparison of the findings reveals that
all models offered a good forecast level of streamflow time series considering R2, according
to Dawson et al. [65]. The CPSOCGSA-ANN and MPA-ANN combined models yielded
more accurate findings than the SMA-ANN model based on RMSE, MAE, and MARE (the
error values are rescaled). Additionally, the table results confirm that the CPSOCGSA-ANN
technique was preferable to other hybrid techniques. A possible explanation for this might
be that it is likely related to optimizing the PSO algorithm by GSA, which helps PSO then
determine the optimum ANN model’s hyperparameters.

Table 2. The performance of CPSOCGSA-ANN, MPA-ANN, and SMA-ANN in the validation stage.

Model R2 RMSE (m3/s) MAE (m3/s) MARE

CPSOCGSA-ANN 0.91 1.07 1.07 1.01
MPA-ANN 0.86 1.095 1.088 1.02
SMA-ANN 0.85 1.45 1.3 1.056

Additionally, Figure 8 shows the Taylor diagram for the CPSOCGSA-ANN (B), MPA-
ANN (C), and SMA-ANN (D) forecast techniques in the validation stage. This diagram
proposes a graphical summary of the agreement between the observed and predicted
patterns based on the standard deviation (SD), root-mean-square difference (RMSD), and
correlation coefficient (R). In Figure 8, the grey arc, blue azimuthal line, and green contour
line refer to values for the SD, R, and RMSD for the observed (reference point, A) pattern,
respectively. The diagram reveals that the CPSOCGSA-ANN technique produced low SD,
RMSD, and high R, and was the nearest model to the reference point, representing the
observed pattern.

In order to scrutinize the goodness of fit of the three techniques, an error analysis was
achieved in the validation stage. The error scatter plots against the sample numbers for
the validation stage are presented in Figure 9. What stands out in this figure is that the
mean error of the CPSOCGSA-ANN model was closer to zero (from 0.041 to 0.097) than
the other techniques, and SMA-ANN was the worst (from −0.874 to 0.375). There was
no definite pattern to the distribution. The above outcomes affirmed that the proposed
methodology (CPSOCGSA-ANN) offered a more accurate performance than the MPA-ANN
and SMA-ANN models.

For additional validation of the CPSOCGSA-ANN model, the distribution of the resid-
ual data was analyzed. For this, normality tests were used. Shapiro–Wilk and Kolmogorov–
Smirnov tests were performed at a significance level of 0.05 to verify or reject the normality
of the residual data. The values of both tests were more than 0.05, which means the residual
data were normally distributed based on the null hypothesis assumption [66,67]. In addi-
tion, the ADF and KPSS tests revealed that the residual data were stationary. Accordingly,
these four tests emphasized the capability and reliability of the CPSOCGSA-ANN model.

In addition, a Bland–Altman scatter plot was used to scrutinize the agreement of
the CPSOCGSA-ANN model. The plot can show the systematic and random differences
and the merit of revealing the variation in the results. Figure 10 shows scattered data,
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suggesting an excellent distribution fit between limits of agreement (100%). Moreover, a
further statistical test revealed that the CPSOCGSA-ANN model yielded SI of 0.015, which
indicates an excellent outcome. Taken together, these results indicate the relation between
the measured and simulated values.
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Figure 9. CPSOCGSA-ANN, MPA-ANN, and SMA-ANN residual scatterplots.

Overall, what stands out in these results is the following:

(1) These results highlight the potential utility of SSA and MI methods for enhancing
raw data quality and choosing the best lags scenario without violating the multi-
collinearity hypothesis.

(2) CPSOCGSA has been proven to be a reliable algorithm that is applied for integrating
the ANN technique for monthly forecast streamflow compared with the SMA and
MPA algorithms.

(3) Various statistical analyses have showed that the proposed methodology accurately
predicted monthly medium-term streamflow data.
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(4) This study reveals the need for further investigation into additional hybrid forecast
techniques in different time scales.
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5. Conclusions

This study built and examined a novel methodology to forecast the monthly river
streamflow based on several previous lags. It employed SSA to denoise raw time series and
MI to choose the best predictor scenarios (lags). Additionally, three recent metaheuristic
algorithms (CPSOCGSA, MPA, and SMA) were used to integrate the ANN model by
determining the optimal hyperparameters. Historical monthly streamflow data of the
Tigris River were utilized over 11 years to perform the research. The results of this study
identified the significance of data pre-processing techniques for improving the raw data
quality and determining the best lags scenario. It has also shown that CPSOCGSA-ANN
performed better than the MPA-ANN and SMA-ANN algorithms depending on several
statistical criteria, such as R2, RMSE, MAE, and MARE. Taken together, these results reveal
that the proposed methodology is a reliable and skillful technique for forecasting monthly
streamflow by yielding R2 = 0.91, with an RMSE equal to 1.07 m3/s. These results can
offer useful information to the local authorities (i.e., managers and policymakers), helping
the irrigation sector company better manage the irrigation system, leading to enhanced
service and management of resources in the Maysan Governorate. It is recommended that
further research be undertaken in the combined prediction models (HPOH) due to there
being an abundance for further progress in pre-treatment signals, data reduction, and for
determining machine learning model hyperparameters. In addition, further investigation
and experimentation using the combined technique to simulate the streamflow driven by
climatic factors are strongly recommended, because extreme weather will likely become
more prevalent in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/hydrology9100171/s1, Figure S1: CPSOCGSA-ANN algorithm
performance with five times run for each swarm.

https://www.mdpi.com/article/10.3390/hydrology9100171/s1
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