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Abstract: This study of the Quantitative Estimation Precipitation (QEP) of rainfall, detected by two
Meteorology Radars over Chi Basin, North-east Thailand, used data from the Thai Meteorological
Department (TMD). The rainfall data from 129 rain gauge stations in the Chi Basin area, covering
a period of two years, was also used. The study methodology consists of: firstly, deriving the
QPE between radar and rainfall based on meteorological observations using the Marshall Palmer
Stratiform, the Summer Deep Convection, and Regression Model and calibrating with rain gauge
station data; secondly, Bias Correction using statistical method; thirdly, determining spatial variation
using three methods, namely Kriging, Inverse Distance Weight (IDW), and the Minimum Curvature
Method. The results of the study demonstrated the accuracy of estimating precipitation using
meteorological radar. Estimated precipitation compared against an equivalent of 2 years of rain
station measurement had a probability of detection (POD) of 0.927, where a value of 1 indicated perfect
agreement, demonstrating the effectiveness of the method used to calibrate the radar data. The bias
correction method gave high accuracy compared with measured rainfall. Furthermore, of the spatial
estimation of rainfall methods, the Kriging methodology showed the best fit between estimation of
rainfall distribution and measured rainfall distribution. Therefore, the results of this study showed
that the rainfall estimation, using data from a meteorology radar, has good accuracy and can be
useful, especially in areas where it is not possible to install and operate rainfall measurement stations,
such as in heavily forested areas and/or in steep terrain. Additionally, good accuracy rainfall data
derived from radar data can be integrated with other data used for water management and natural
disasters for applications to reduce economic losses, as well as losses of life and property.

Keywords: rainfall estimation; Quantitative Precipitation Estimation (QPE); radar; bias correction; Kriging

1. Introduction

In Thailand, several hydrology models have been applied (e.g., SWAT, HEC-HMS)
for a variety of water resource purposes. These hydrology models play a major role in
developing an understanding of the hydrological dynamics of catchments, and they are
widely used in water resources management, flood control, drainage design, water supply,
and irrigation. In these models, rainfall data are an indispensable input necessary to operate
the models. Traditionally, rainfall datasets obtained from rain gauges were used as input
to hydrological models. There is an opportunity to use meteorological radars to derive
rainfall data, which, if successful, can be used as input in hydrology models.

The radar type used in this study was Weather Radar Double Polarization, which
emits electromagnetic transmissions. These emissions are back scattered by atmospheric
hydrometeors in the form of reflectivity.

Z = a.R.b (1)
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where Z is radar reflectivity (mm6.m−3), R is rainfall Rate (mm.hr−1), and a and b are the
coefficients, which depend on climate and location, including season and type of rain. For
equilibrium rainfall condition, a linear Z-R relationship is observed, i.e., b =1.

Marshall et al. [1] derived the values a = 200 and b = 1.6, and in this form, it is com-
monly known as the Marshall Palmer Stratiform method. It has been indiscriminately
used regardless of climatic region. These parameters, in fact, do change (Wilson et al. [2])
and appear to depend on the size and distribution of atmospheric hydrometeors. Atmo-
spheric hydrometeors’ size distribution varies with the type and phase of the precipitation
(Joss et al. [3]; Uijlenhoet [4]; Chumchean et al. [5]). Errors and uncertainties in the measure-
ment of reflectivity, as well as the conversion of reflectivity to rainfall rates on the ground,
have meant that the advances in and the advantages of radar precipitation data have not
been fully realized in many hydrology applications (Chumchean et al. [6]; Berne et al. [7]).

Ciach et al. [8] employed the non-parametric kernel regression method to model radar
rainfall uncertainty. Fewer assumptions about the processes being modelled need to be
invoked when sufficient observational data exist, so this method can be more effective than
parametric methods (Silverman [9]; Mehrotra et al. [10]). While nonparametric techniques
have the ability to adjust to data on a local level, outliers can cause local biases.

The advantage of the extensive spatial coverage of weather radars is that they are
able to monitor many small catchments in some areas, which may remain unmonitored
and therefore without precipitation records (Berne et al., [7]). Additionally, the various
difficulties in measuring spatial variability of precipitation and intermittent precipitation,
as well as measuring under some types of catchment cover (forest) and terrain (mountains),
makes estimation of spatial distribution of rainfall in a catchment with a sparse rain gauge
network very difficult (Hwang et al. [11]). This translates to modeling using hydrological
distributed models. Their accuracy is limited by the availability of reliable spatial rainfall
input data. (Syed et al. [12]). Spatial interpolation techniques can be useful in catchments
where rain gauges are unevenly distributed. Such methods include simple ones: Kriging,
Inverse distance weighting, and Minimum curvature. A review of different interpolation
methods was presented by Hwang et al. [11], where the rain gauge was a single sensor.
Obtaining a distributed precipitation field over various river gauged areas over Chi basin
remained a challenging task to undertake. Taking advantage of the spatial variability of
radar, by focusing on merging radar and gauge data, could further improve the spatial
interpolation of gauges. Rabiei et al. [13], demonstrated that the main factor determining the
quality of the result is if the quantitative radar data are good. Hasan et al. [14,15], showed
that rain gauge and radar could be merged when errors associated with the precipitation
field derived of both can be quantified correctly. This approach is promising because, in
sparsely gauged regions, the error structure developed from radar and rain gauge data and
translated to nearby ungauged regions.

This study used data from the Chi Basin located on the north-eastern Thailand. The
catchment has two dams: Lampao Dam and Ubonrat Dam. The purpose of this study is to
obtain high accuracy rainfall data from weather radars that may be input to hydrological
models for dam operations, flood, and agriculture-related applications and catchment
management, especially in areas which are poorly gauged.

2. Data and Methods
2.1. Study Area and Data

The Chi River is the longest river that wholly flows within Thailand. The river sources
from the Phetchabun mountains. The river flows from east to west before joining the Mun
River, which ultimately runs into the Mekong River. The Chi Basin (Figure 1) covers an
area of approximately 49,132 km2, is located in north-eastern Thailand, and extends over
14 provinces in Thailand, namely Chaiyaphum, Khon Kaen, Nongbua lamphu, Udonthani,
Mahasarakham, Nakonratchasima, Loei, Phetchabun, Kalasin, Roiet, Yasothon, Ubon
Ratchathani, Sisaket, and Mukdahan. The Chi Basin is located between latitude 15◦30′ north
and 17◦30′ north, as well as between longitude 101◦30′ east and longitude 104◦30′ east.
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Figure 1. Chi River Basin, including its major rivers, is located in north-eastern Thailand. An inset
map of Thailand shows the location of the Chi Basin within Thailand.

The elevation of the land varies from 1250 m in the Phetchabun mountains to 150 m in
the river flood plains. Most of the land is predominantly flat with land slope of less than
10%. The dominant land use is agricultural (rice, sugar cane, rubber, orchards, vegetables,
and pastures. Other land uses are urbans areas and forests in the mountain regions and in
some lowland areas.

2.2. Radar Data

The Khon Kaen radar station is located at latitude 17.1564 degrees north and longitude
104.1326 degrees east. The Sakon–Nakhon radar station is located at latitude 16.4625 degrees
north and longitude 102.7859 degrees east. Both antenna are 196 m above sea level and
measure at radar angles of 0.5, 1, 1.5, and 2. The radial coverage (as shown in Figure 2) is
240 km. Radar data were measured every 15 min. The rainfall radar data were measured in
units of plan position indicator (PPI).

The Khon Kaen and Sakon–Nakhon radars have common coverage of several provinces,
such as Chaiyapoom, Nakorn Ratchasim, Loei, Burirum, etc. (see Figure 2), and here, the
composite data were used to reduce error and increase the accuracy in reflectivity of the
radar. In the common coverage area in the Chi Basin, the average values of the radar
data were used to calculate a dataset at 2 km altitude. The Barnes filter is used for this
purpose. Barnes [16,17] assumed that a Fourier was integral to describe the distribution of
an atmospheric variable. A filter based on a Gaussian weighting function was proposed to
separate different-scale signals from a 2D field to reduce calculation and computational
time. There are several studies demonstrating its performance in separating signal with
different scales from 2D meteorological field (Morris et al. [18]; Zhang et al. [19]).
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Figure 2. Coverage of Khon Kaen radar (green) and Sakon–Nakhon radar (purple) over the Chi Basin,
showing the overlap between the two radars. Dots mark the center of the coverage where the radars
are located.

2.3. Rainfall Data

The raw dataset used in this study comes in two parts. The first part is the raw data
downloaded from the radars located at Khon Kaen and Sakon–Nakhon. The second part is
rainfall data from meteorological rain gauge stations.

The UF (Universal format) data from radars was developed to the lowest PPI (plan
position index). The reflectivity data at various elevations are projected down to a reference
elevation (2 km) from the ground. The projection, known as a VPR (vertical profile of
reflectivity) correction, is applied to account for the variability in the vertical profile and for
the bright band effect (Elo [20]). A single Z–R relationship was applied at 15 min intervals
to convert reflectivity into precipitation rates. The 15 min precipitation rates were then
accumulated to hourly rates and distributed to the end user as an hourly radar precipitation
rate surface rainfall intensity (SRI) product. This SRI product was used in the present study.

The rainfall data used in this study were from the Thailand Meteorological Department
(TMD) rain gauges at locations shown in Figure 3. There are 129 rain gauge stations in Chi
Basin generally within latitude 15–18◦ North and longitude 101–105◦ East.

The reflectivity is measured by the radar and can be converted to rates of ground
precipitation, typically, using Equation (1).

2.4. Methodology

The two sources of rainfall data from the radar and from rain gauges were merged
using a procedure outlined in the flow diagram shown in Figure 4. The framework shows
the data used and the methods applied in the merging process which was conducted in a
two-step process.
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Figure 3. Location of 129 rain gauge stations in the Chi Basin study area.

Before merging, it is first necessary to apply possible corrections that could enhance
the estimates of radar rainfall rates (Goudenhoofdt et al. [21]). The hourly rainfall rates
were first adjusted with a non-parametric method using data from rain gauges. Since the
rainfall gauge data are at specific positions, a spatial interpolation is required to estimate
rainfall values at grid points. At grid points, rainfall data from the two sources (radar
and gauge) were merged using the estimated combination weights and the 1D-Var bias
correction (see Figure 4). Each step is described in detail in the following subsections.

2.4.1. Rain Gauge Interpolation

The rainfall data from 129 rain gauge stations over the Chi Basin are used to determine
rainfall at specific locations using the Kriging-based interpolation method. The method
uses the spatial association from the radar data to interpolate and determine the rain values
at specific grid points. The equation of ordinary Kriging is shown as Equation (2).

Z0 =
s

∑
i=1

zxwx (2)

where z0 = estimated value at the unobserved location; zx = observed value at the location
x; wx = weight mean average; s = the number of locations used for observation.

The Kriging-based interpolation method predict rain values at ungauged locations
by applying linear weights derived at gauged locations obtained by minimizing the vari-
ance of the error. The rainfall data at various positions are characterized as Gaussian
random variables.
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2.4.2. Radar Dataset Development

The meteorological radar dataset between June and September each year, from 2018 to
2019, was used to estimate rainfall in the study. The Khon Kaen and Sakon–Nakhon radar
data, in the form of text files (.uf files), were used. The .uf files were converted to CAPPI
(constant altitude plan position indicator), which, in this study, was set at an altitude of
2 km. This altitude was set to be clear of rainfall clouds. The conversion was done using
python script and kept in the form of .cdf files.

2.4.3. Z-R Relationship Development

In this study, the Z–R parameters were derived by considering the scattering regime
calculation, which is the profile drop of rainfall size distribution. Radar and rain gauge
station rainfall intensity were at different time periods—the former every 15 min and the
latter every hour. The radar dataset was maintained at 1 h, while rain gauge station data
within 1 h periods were accumulated, so it could be compared appropriately with the
former. In this study, two methods were used. The first method used the radar datasets
and rain gauge station data for the entire year. The second method used a discontinuous
dataset comprising only data from the rainy season (June to September). In both methods,
the radar reflectivity data were filtered for negative values and not a number (NaN) values,
and both were ignored in the processing. Similarly, rainfall NaN values or negative ones
were replaced with unknown and similarly ignored. The aim of trialing the two different
methods is to determine which method gives the smaller error.

Linear regression of the log transformation of R and Z (logR vs logZ) was applied
to find the constants (a, b) of the nonlinear power law equation Z = aRb. Several meth-
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ods were used to find the Z–R relationship in this study, namely the Marshall Palmer
Stratiform method (Equation (3)), Summer Deep Convection method (Equation (4)), and
Regression Model:

Summer deep Convection→ Z = 300R1.4 (3)

Marshall Palmer Stratiform→ Z = 200R1.6 (4)

2.4.4. Validation Methods

‘Continuous statistics’ means criteria that use the full range of values of data distribu-
tion functions of the observed and the forecasted values. This comparison is not sensitive
to the space structure of the fields being compared. It can be complemented by the use of
scatter diagrams, which take into account the structure. The comparison can be reduced
to obtain bulk scores, such as the bias (BIAS), the root mean square error (RMSE), or the
square of the correlation coefficient (R2), as defined in Section 2.4.5.

To determine how well the radar forecast compares, qualitatively, with rain gauge
stations, four different verification indices, i.e., POD, POFD, FAR, and CSI, were studied.
Table 1 defines the parameters used for deriving these verification indices, which were used
for testing the qualitative accuracy of the relationship between radar data (forecast) and
rain gauge station data (observed). A decision threshold for radar was set at <0.1 mm (for
no rain) and ≥0.1 mm (for rain). POD, POFD, FAR, and CSI can be computed as follows.

Table 1. Binary Contingency table for whether or not rain is forecast.

Estimated Rainfall from Radar (Forecast)
2 Radar Combined Field

(Rain) Yes (No Rain) No

Rain gauge station
(observation)
129 stations

Yes (rain) a (YY)
(Hit)

b (YN)
(Miss)

No (No rain) c (NY)
(False alarm)

d (NN)
(Correct negative)

1. Probability of Detection (POD) (Berens et al. [22]) is the ratio of hits (a) to the total
number of hits and miss (a + b).

POD = a/(a +b) (5)

For a perfect forecast, POD is equal to 1, i.e., b, the number of miss, is equal to zero.

2. False-alarm ratio (FAR) (Mason et al. [23]) accounts for the number of false alarms (c)
compared to the number of hits and false alarms (a + c).

FAR = c/(a + c) (6)

For a perfect forecast FAR equal to 0 i.e., c, the number of false alarms, is equal to zero.

3. Probability of false detection (POFD) (Berens et al. [22]) is the ratio of false alarms (c)
to the number of false alarms and correct rejections (c + d).

POFD = c/(c + d) (7)

4. Threat score (TS) (Wilks, [24]) is ratio of hits (a) to observed yes (rain) events plus false
alarms (a + b + c)

TS = CSI = a/(a+ b + c)

The POD, FAR, and CSI scores are qualitative in nature and generally need to be
examined together with quantitative validators. For this purpose, ME, MAE, and RMSE
were calculated.
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2.4.5. Rain Gauge Interpolation Category Merging using Spatial Association of Radar

Radar rainfall is well known for its superior coverage both spatially and temporally.
Methods to merge radar and rainfall gauge data are generally classed as bias reduction and
error variance minimization (Ochoa-Rodriguez et al. [25]). In the merging process, the most
important step is to find the spatial correlation in the error structure model. This process
takes the form that is described in three steps. First, bias adjustment of radar rainfall was
applied; second, radar rainfall and rain gauge data integration methods were applied; third,
rain gauge interpolation methods were applied using radar spatial association as a guide
(Wang. et al. [26]).

In this study, three methods were used as merging interpolation, which are Kriging,
Inverse distance weighting (IDW), and minimum curvature. Several statistical metrics
have been used in literature to assess the performance of the models (or datasets) and to
compare them (Villarini et al. [27]; Hasan et al. [15]). In this study, the performance of
spatial interpolation between rain gauge and radar was also tested using root mean square
error (RMSE), mean absolute error (MAE), mean error (ME), and correlation coefficient
(CC). The mathematical equations of these are described below:

RMSE =

√
1
N ∑N

i=1(Yi −Oi)
2 (8)

MAE =
∑|(Yi −Oi|

N
(9)

CC =
∑N

i=1
(
Yi − Y

)(
Oi −O

)√
∑N

i=1
(
Yi − Y

)2
∑N

i=1
(
Oi −O

)2
(10)

ME = ∑
(Yi −Oi)

N
(11)

where Yi = Rainfall intensity (mm/hr); Y = Average rainfall (mm/h); Oi = rainfall intensity
from measurement (mm/h); O = average rainfall (mm/h); N = number of data.

RMSE represents the forecasting error and estimates the sample standard deviation
of the differences between predicted values and observed values. A RMSE value of zero
indicates a perfect match, whereas higher values represent a smaller match between the
observed and modelled output. It is a good measure when large model errors are not desir-
able. The RMSE is a good measure of overall performance (Hasan et al. [15]). CC indicates
the statistical relationship between two variables (Boddy [28]), conformity with each other,
and their linear dependence. The CC lies between 0 and 1, where 0 means no correlation,
whereas 1 means that the dispersion of prediction is equal to that of the observation. In
general, high CC values and low values for RMSE indicate good model predictions.

2.4.6. Statistical Verification and Evaluation Methods to Compare Radar with Rain
Gauge Stations

Bias correction for 1D-Var is used, in this study, to decrease the error between radar
and rain gauge station data. The bias and variance is given by

Bi = var2
(

var−2
s Si + var−2

R Ri

)
(12)

var =

√(
var−2

s + var−2
R

)−1
(13)

where Bi = Bias of rainfall quantity between the rain gauge station and radar data; var
R = variance of set of rain gauge station data; var S = variance of radar data; Si = Estimation
of quantity of rainfall from radar data; Ri = Estimation of rainfall from rain gauge station.
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3. Results

The study of rainfall intensity was conducted using meteorological radar data from
the Chi Basin collected between June and September in the years 2018 to 2019. The radar
coverage at Khon Kaen and Sakon–Nakhon is shown in Figure 5a,b. Each radar covers a
circular area of a 240 km radius. The composite radar coverage (shown in Figure 2) shows
the area of overlap radar data. In the area where the two radar coverage areas overlap, the
mean average data were calculated and used as inputs for CAPPI. After that, the composite
radar over the Chi Basin, in constant altitude plan position indicator (CAPPI) form, was
found by applying a python script to the two radar input dataset in *.utf file format. Where
there are two radar readings available, the noise from reflectivity radar data, based on
different topography and degree of radar, can be reduced.

Hydrology 2022, 9, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. The output of radar at (a) Khon Kaen weather meteorological radar station and (b) Sakon–

Nakhon weather meteorological radar station on the date of 25 Sep 2019. 

 

Figure 6. The distribution of the telemetered rainfall rate (rain gauge data), with reflectivity for Mar-

shall Palmer Stratiform (blue line), Summer Deep Convection (green), and Linear Log Regression 

(red). Data are for the years 2018 and 2019. 

The new approach was taken by filtering (outlined in Section 2.4.3) the discontinuous 

rainfall data (June to September) of rain gauge stations and meteorological radar to reduce 

the error. Data after filtering were used for regression analysis to develop the Z–R equa-

tion. Figure 7 shows the relationship between rainfall rate and reflectivity after filtering. 

The scatter in the data is greatly reduced. Figure 7a also shows the comparison between 

the three relationships—Marshall Palmer Stratiform, Summer Deep Convection, and the 

Regressed Equation Z = 137.8R1.124—for reflectivity and rainfall rate. The data exclusively 

fits the latter relationship and the accuracy significantly improved. This is because small 

errors significantly affect small rainfall depths that occur during the dry season and sig-

nificantly affect the overall accuracy. The relationship between telemetered rainfall inten-

sity and estimated rainfall derived from reflectivity and the Regressed Equation is shown 

Figure 5. The output of radar at (a) Khon Kaen weather meteorological radar station and (b) Sakon–
Nakhon weather meteorological radar station on the date of 25 Sep 2019.

Figure 6 shows the relationship between rainfall rate and reflectivity in parabolic form
Z = aRb. The figure also shows the comparison between the three relationships: Marshall
Palmer Stratiform, Summer Deep Convection, and one derived by Regression Analysis for
reflectivity and rainfall rate. Linear regression of the log transformation was applied to find
the constants (a, b) in the equation Z= aRb. While the trend in each relationship is the same,
there is a large scatter in the data, which prevents any one relationship from representing
the data well.

The new approach was taken by filtering (outlined in Section 2.4.3) the discontinuous
rainfall data (June to September) of rain gauge stations and meteorological radar to reduce
the error. Data after filtering were used for regression analysis to develop the Z–R equation.
Figure 7 shows the relationship between rainfall rate and reflectivity after filtering. The
scatter in the data is greatly reduced. Figure 7a also shows the comparison between the
three relationships—Marshall Palmer Stratiform, Summer Deep Convection, and the Re-
gressed Equation Z = 137.8R1.124—for reflectivity and rainfall rate. The data exclusively
fits the latter relationship and the accuracy significantly improved. This is because small
errors significantly affect small rainfall depths that occur during the dry season and signifi-
cantly affect the overall accuracy. The relationship between telemetered rainfall intensity
and estimated rainfall derived from reflectivity and the Regressed Equation is shown in
Figure 7b. It shows a significant improvement over the results shown in Figure 6. At higher
intensities, there exist few pieces of data to define the Z–R relationship, and the scatter is
more evident (Figure 7b). This undoubtedly will improve with the collection of more data
that will adequately define the Z–R relationship for high rainfall intensities.
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Figure 7. The relationship between rainfall rate (R) (mm/hr) and reflectivity (Z) in parabolic form.
Data are for between June and September for the years 2018 and 2019. (a) The distribution of
telemetered rainfall rate (rain gauge data) with reflectivity for Marshall Palmer Stratiform (blue line),
Summer Deep Convection (green), and Linear Regression (red). (b) The distribution of telemetered
rainfall (rain gauge data) and estimated rainfall rate based on Regression Equation, Z = 137.8R1.124,
and radar reflectivity.

Table 2 shows that the equation Z = 137.8R1.124 has the lowest RMSE equal to 3.54 with
R2 0.795. By comparison, the Marshall Palmer and Summer Deep Convention methods
had much larger RMSE values. From Table 2, MAE and RMSE are calculated by using
estimating hourly rainfall and telemetering hourly rainfall.
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Table 2. Results of statistical testing of composite radar, comparing with three methods.

ME MAE RMSE R2

Z = 137.8R1.124 0.694 1.221 3.540 0.795

Marshall Palmer −1.591 1.806 5.6458 0.783

Summer Deep Convection −1.858 1.888 5.654 0.753

3.1. Statistics Validation based Contingency Tables

Analysis of data, based on the contingency table (Table 1), gives a qualitative evalua-
tion of the data. Table 3 shows the values of hit, miss, etc., and statistical validation using
POD, TS, etc., for daily cumulative rainfall (24 hrs) during the period 2018–2019.

Table 3. Statistical validation using POD, TS (CSI), FAR, POFD for the period 2018–2019. Only
months between June and September were analyzed.

Month Hit
(a)

Miss
(b)

Corr. Rejection
(d)

False Alarm
(c)

POD
a/(a + b)

TS (CSI)
a/(a + b + c)

FAR
c/(a + c)

POFD
c/(c + d)

June 2018 384 47 2706 683 0.891 0.345 0.640 0.202

July 2018 433 37 2897 569 0.921 0.417 0.568 0.164

August 2018 248 38 3010 665 0.867 0.261 0.728 0.181

September 2018 300 31 2866 500 0.906 0.361 0.625 0.149

June 2019 727 98 2425 613 0.881 0.506 0.457 0.202

July 2019 844 162 2188 689 0.839 0.498 0.449 0.239

August 2019 1368 158 1890 277 0.896 0.759 0.168 0.128

September 2019 837 149 2008 422 0.849 0.594 0.335 0.174

Table 3 shows that the hits (a) are much larger than misses (b), and correct rejection (d)
is much larger than false alarm (c), as should be expected. Misses are much smaller than
false alarms by up to 15 times. False alarms occur when rain is detected by radar and not
by rain gauge, with the latter being more reliable. Rainfall rates derived from reflectivity,
from meteorological radar, are accumulated over 24 h periods and carry errors which
accumulate over that period. Note that an accumulated rainfall intensity over the threshold
0.1 mm/day is counted as rain and can lead to a larger number of false alarms than if a
higher rain threshold was adopted for radar detection. False alarms (c) are more prone to
error than misses (b) (Yates et al. [29]).

The score of POD was high for all months shown and was close to a perfect forecast in
July 2018 (0.921). For a perfect forecast, POD = 1. However FAR was as high as 0.73. For
a perfect forecast, FAR = 0. FAR is the ratio of poorly predicted locations to the locations
where the forecast is above the threshold (0.1 mm/day) (Yates et al. [29]). Except for the
month of August 2019, when FAR was 0.16, values were generally high. When comparing
hit (a) vs false alarms (c) in (Table 3), false alarms were generally high except for August
and September 2019, leading to large FAR values. This was exacerbated in 2018 when hits
(a) were generally low because of fewer incidents of rain events compared to 2019. False
alarms are more prone to error, as noted above, and less reliable than misses (b). In this
respect, POD, which uses misses (b), is a better indicator of reliability than FAR based on
false alarms (c).

POFDs were generally low, which are good results, indicating false alarms (c) are
low relative to correct rejections (d). Even though false alarms are prone to error, their
occurrence is still relatively small compared to correct rejection.

TS were generally higher in 2019 and lower in 2018. This reflects a higher occurrence
of precipitation events in 2019, i.e., hits (a) are higher. Further TS are high when hits (a) are
high, e.g., in August 2019.
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3.2. Result of using Spatial Methods to Interpolate Rainfall over Chi Basin

There were three methods used to interpolate rainfall station data: inverse distance
weighting (IDW), minimum curvature, and Kriging. The statistical tests used to evaluate
and compare the three methods were MAE and RMSE. The results show that Kriging gave
the lowest RMSE and MAE compared with IDW and minimum curvature.

The correlation coefficient (CC) (Equation (10)) is a binary class performance assess-
ment of the methods used in this study. A value closer to 1 means a better fit. In this study,
Kriging gave the highest correlation coefficient of 0.9577 (Table 4). The MAE and RMSE
calculation data are provided by accumulated rainfall radar data after validation for 24 h.

Table 4. Comparison of validation statistical test for spatial interpolation using Kriging, Minimum
curvature (Min. C.), and IDW methods.

MAE RMSE

Kriging Min. C. IDW Kriging Min. C. IDW

June 2018 0.0040 0.1475 0.2091 0.0062 0.4401 0.6763

July 2018 0.0053 0.1681 0.2205 0.0085 0.4719 0.6531

August 2018 0.0027 0.0785 0.1196 0.0043 0.2499 0.4337

September 2018 0.0039 0.1493 0.2149 0.0062 0.4910 0.7283

June 2019 0.0089 0.1848 0.2831 0.0130 0.5027 0.7922

July 2019 0.0125 0.1946 0.3012 0.0176 0.4686 0.7505

August 2019 0.0694 1.2790 1.9069 0.0918 2.7272 3.9253

September 2019 0.0296 0.3681 0.5510 0.0395 0.7876 1.2253

Average 0.0170 0.3212 0.4758 0.0234 0.7674 1.1481

Kriging Min. C. IDW

Correlation coefficient 0.9577 0.9459 0.9382

The statistical test shows that spatial interpolation using Kriging is more suited and,
therefore, was used for the Chi Basin.

3.3. Bias Correction Validation Results

Bias correction was applied by reducing the bias and variance error (Equations (12) and (13))
between radar data and rain gauge station data. The difference after bias correction was
tested using statistical test ME, MAE, and RMSE and the results are summarized in Table 5.

Table 5. The validation of bias correction using statistical test ME, MAE, and RMSE.

After Bias Correction Before Bias Correction

Month, Year ME MAE RMSE ME MAE RMSE

June 2018 0.5723 1.9512 2.0412 −1.06551 2.9195 4.3778

July 2018 1.7635 2.2447 3.0762 −1.33043 3.2471 5.0064

August 2018 1.6142 3.3556 9.0136 −0.58802 6.3269 16.8122

September 2018 1.5790 2.4199 6.1905 −1.0701 5.0421 11.0725

June 2019 0.4525 0.0890 1.7440 −1.68827 0.9429 2.7882

July 2019 0.7961 0.8021 2.1942 −2.10078 2.1979 4.4130

August 2019 0.7096 2.9302 8.3030 −13.4169 5.7401 16.4306

September 2019 0.9794 1.9269 5.6937 −4.45185 3.0547 11.0647

Table 5 shows how much improvement bias correction made to the values of MAE
and RMSE compared to before bias correction. Bias correction reduced the errors inherent
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in the data and, consequently, reduced the residual error in merging spatial interpolation
data in the Chi Basin region. The results of MAE and RMSE in August and September 2018
and, similarly, in August and September 2019 are high because of the extreme events that
occurred (cyclones and typhoons). A part of the reason can be attributed to the few pieces
of data that exist to define the Z–R relationship for high rainfall intensities and, later, the
resulting scatter (Figure 7b). A better definition of Z–R in this region will improve estimates.

3.4. Rainfall Intensities Maps Derived from Meteorology Radar

Figure 8 shows spatial rainfall maps derived from spatial maps based on rain gauges,
together with those from meteorology radar, before and after bias correction. Maps are
shown for three events: 25 June 2018 (Figure 8a–c), 17 July 2018 (Figure 8d–f), and 3
September 2019 (Figure 8g–i).
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Figure 8a–c shows the rainfall spatial distribution maps for the event 25 June 2018.
The distribution of rainfall intensity, based on rain gauge station measurement, varied
between 10–90 mm/h (Figure 8a). The spatial interpolation map derived from radar
reflectivity measurements (Figure 8b) was generally similar, although distinct difference
in the locations of the boundaries of each rainfall intensity contour is evident. After bias
correction (Figure 8c), the spatial rainfall distribution based on rain gauge and based on
radar more closely aligned with evidence from the movement of boundaries of each rainfall
intensity contour shown when Figure 8b,c are compared.

Figure 8d–f shows the rainfall spatial distribution maps for the event 17 July 2018. The
spatial distribution of rainfall intensity, based on rain gauge station measurement varied,
more markedly with the maps based on radar data. The spatial rainfall maps after bias
correction (Figure 8f) more closely resembled the spatial rainfall distribution based on rain
gauge. Radar is better at detecting the spatial distribution of rainfall, although its actual
rainfall intensities are less accurate. Bias correction brings these rainfall intensities to be
more aligned with those based on rain gauge measurement. In this way, the strength of
both measurement methods (radar and rain gauge) is combined where a rainfall spatial
map is produced with the methods used here (i.e., Figure 4).

On 3 September 2019, a cyclone occurred in the Chi Basin (Figure 8g–h). The spatial
rainfall distribution shows that the rain gauge rainfall intensity was very high in the area
south-east of the Chi Basin (Figure 8g). Radar spatial rain intensity resembled the rain
gauge derived distribution, although the high intensity region of the former was more
extensive (Figure 8h). After bias correction, the rainfall intensity based on radar improved
to become similar to that based on rain gauge station measurement (Figure 8i). Even so,
some differences are still evident, particularly in the north-east, which is a mountainous
region. Topography such as mountainous terrain can obstruct the angle of the radar and
limit the effectiveness of radar measurement. The Pupan (north-eastern boundary of Chi
Basin) and Petchaboon (western boundary of Chi Basin) mountains are the upstream
sources of the Chi River Basin. The Pupan (north-east of Chi Basin) mountains are located
near the location of Sakon–Nakhon radar (see Figure 2). Therefore, at some angles, radar
reflectivity may be obstructed. At these locations, spatial distribution maps based on radar
may be compromised. Merging methods between rain stations and radar are better suited
for areas where radar measurement is not limited by terrain such mountainous areas that
can obstruct some radar angles at some locations. A part of the reason can also be attributed
to the few pieces of data that exist to define the Z–R relationship for high rainfall intensities.

Figure 8a–i demonstrates how rainfall intensity spatial maps based on radar reflectivity
data, developed using the method outlined in this paper, showed good agreement with
those derived with rain gauge station data. It is assumed that spatial rainfall distribution
is better, although the magnitude of rainfall may not be as good. In all cases, the spatial
rainfall distribution after bias correct moves closer to the spatial rainfall distribution based
on gauged rainfall that are shown in the first column. This is what can be expected as the
method builds on the better, the magnitude of rainfall measured by gauged rainfall stations
and the better spatial rainfall distribution based on radar rainfall.

The new approach of using the discontinuous rainfall data (June to September) of
rain gauge stations and meteorological radar made it possible to derive the Z–R relation
using the regression method that significantly improved the outcome of spatial rainfall
estimates. The methods of filtering and merging rainfall radar data and rainfall rain gauge
station by ignoring NaN, not recorded and negative value data also helped. The use of
Kriging methods and 1D-Var bias correction data assimilation also made a significant
improvement. Other studies [30,31] observed that, in terms of the scattergram, when the
raindrop diameter was less than 0.7 mm, DSDs of the two rainfalls basically coincided,
while when the raindrop diameter was greater than 0.7 mm, DSDs of convective rainfall
were located above the stratiform rain, including Z–R relationship of radar reflectivity.
Adoption of this approach could help further improve the result.
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4. Conclusions and Discussions

The statistical tools for validation using RMSE, MAE, bias correction, and two con-
tingency table underpinned the model framework used in this study. The use of Kriging
to interpolate rain gauge station data and the application of bias correction to merge with
radar measurement is helpful for small catchments. The interpolation and merging meth-
ods applied gave spatial maps that displayed the same trend in rainfall intensity, including
both those derived from rainfall gauge station and radar measurement.

In this study, a new approach was taken by using the discontinuous rainfall data (June
to October) of rain gauge stations and meteorological radar to reduce the error. This made it
possible to derive the Z–R relation using the regression method that significantly improved
the outcome of spatial rainfall estimates.

The use of NAN filtering between rain gauge station and rainfall radar data also im-
proved spatial merging between radar and rain gauge station. The 1D-Var data assimilation
bias correction showed better results than using spatial merging methods between radar
and rain gauge station alone.

The use of radar rainfall to improve the spatial accuracy of gauged rainfall has not
been shown in the topography and type of rainfall experienced, in regions such as Thailand,
with the infrastructure that is available there. This paper provides the evidence of what is
possible and provides a useful case study.

The radar angle, the radar’s proximity to mountainous regions, and how it can be
affected by mountainous topography are barriers that can limit the accuracy of radar for the
measurement of rain intensities. Furthermore, an improvement to the Z–R relationship for
high rainfall intensities, with the collection of more data, will also provide better outcomes.
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