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Abstract: The presence of dust on the snowpack accelerates snowmelt. This has been observed
through snowpack and hydrometeorological measurements at a small study watershed in south-
western Colorado. For a 13-year period, we quantified the annual dust-enhanced energy absorption
(DEAE) and used this information to model the snowpack melt-out under observed (with dust
present) and clean conditions (no dust). We determine the difference in snow cover duration between
actual (dust present) and simulated ideal (clean) snowpack (∆SAG) to characterize the shifts in melt
timing for each year. We compute the center of mass of runoff (tQ50) as a characteristic of snowmelt.
DEAE, ∆SAG and tQ50 vary from year to year, and are dictated by the quantity of snow accumulation,
and to a lesser extent the number of dust events, the annual dust loading, and springtime snowfall.

Keywords: dust-on-snow; snowpack melt-out; snow-all-gone; Senator Beck Basin; snowpack energy
budget; water resources management; snowmelt timing

1. Introduction

Shortwave radiation provides most of the energy for melt in continental mountain
snowpacks [1,2]. Deposition of light absorbing particulates (LAPs), such as dust, ash,
black carbon, needles and tree litter, onto the snowpack reduces its albedo (reflectance
as measured by the ratio of incoming vs. reflected shortwave radiation) and alters the
snowpack energy balance [2–12]. Airborne dust from deserts deposited on a Colorado
snowpack [13] have been shown to reduce the surface albedo [14], especially in the visible
portion of the shortwave radiation spectrum (Figure 1). This reduction in albedo accelerated
the timing of snowmelt by 18 to 51 days [2,15]. Across much of the Upper Colorado River
Basin (UCRB), the transport of aeolian dust is a regular occurrence [16,17], particularly
onto the snowpack [18–20]. Thus, streamflow forecasting in the UCRB benefits from
incorporating albedo reduction resulting from aeolian dust deposition.
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Figure 1. Clean vs. dust present albedo and the difference between the two albedos for modeled
clean snow and measured snow, as a function of wavelength with a dust concentration of 0.37 mg/g
(data from Painter et al. [21]).

Current National Weather Service (NWS) Upper Colorado River Basin streamflow
forecasting is based on a coupled temperature-index snowmelt model (SNOW-17) [22]
and soil moisture model (Sac-SMA) [23]. Temperature-index models have a limited abil-
ity to account for the radiation components of continental mountain snowpack energy
balance [24,25]. The combination of dust loading with variations in magnitude of snow
water equivalent (SWE) and meteorological factors each season modifies snowpack energy
balance and introduces variations in melt timing [13,26]. These variations may cause con-
siderable uncertainty in operational streamflow forecasting [27]. Changes in the timing
of snowmelt will alter streamflow characteristics [28], particularly with the interplay of
a changing climate [29–31]. Here, we present patterns of dust loading and snowpack
energy absorption over 13 years to better characterize the magnitude of dust influence on
snowmelt timing.

Understanding how snow accumulation amounts [32,33] and snowmelt rates [34]
influence streamflow timing is important for hydrologists for runoff forecasting [35,36].
Various metrics have been used to simplify the assessment of runoff timing. The simplest
being the center of mass of runoff for a water year (WY, from 1 October to 30 September
in the U.S.), which is the date when 50% of the annual runoff volume (tQ50) has passed
the gauge [37,38]. For snow dominated systems, tQ50 is used to represent the peak of a
snowmelt input into a stream [33,39,40], and tQ20 has been used to show the beginning of
snowmelt [38].

We determine the patterns of additional snowpack energy absorption and snow melt
acceleration due to dust over 13 years (2007 to 2019) at a small study basin in the San Juan
Mountains. The specific objectives of this paper are as follows: (1) compare the shortwave
radiation, snowpack, and runoff characteristics for a light (2015) and heavy (2009) dust year;
(2) quantify dust-enhanced absorbed energy (DEAE) for each year; (3) determine the
difference in snow cover duration between the actual (dust present) and simulated ideal
(clean) snowpack to characterize the shifts in melt timing for each year; (4) determine the
timing of subsequent snowmelt streamflow in terms of the occurrence of the center of
mass of the runoff; and (5) assess potential drivers of interannual patterns in snow melt
acceleration and runoff characteristics due to dust loading, snowpack characteristics, and
meteorology. The term DEAE is used here to define the additional shortwave radiation
added, rather than the term radiative forcing or RF used by Skiles et al. [15], as the authors
feel that RF implies all shortwave radiation, regardless of the presence of dust or not. The
snow cover duration in objective 3 is assessed using the date of complete snowmelt, or
snow-all-gone (SAG).
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2. Study Site and Datasets
2.1. Study Basin and Automated Data

We examined dust and snowpack characteristics over 13 WYs from 2007 through 2019
at a study site in the San Juan Mountains of southwestern Colorado. Senator Beck Study
Basin (SBB) is a 2.91 km2 continental high-elevation (3362 to 4118 m) research watershed
that sits at the headwaters of the Uncompahgre River [41] in the UCRB (Figure 2). Two
micrometeorological towers measure data including radiation fluxes and energy balance
summarized in 1-h, 3-h, and 24-h arrays, with a period of record from 2005 to present. The
towers are located at 3371 m (Swamp Angel Study Plot, SASP) and 3714 m (Senator Beck
Study Plot, SBSP) representing the two principal terrains of the study basin (subalpine
forest and alpine tundra, respectively) [41]. Manual snow profile assessments are collected
at both sites approximately weekly during ablation within an undisturbed study plot
directly alongside each automated tower, and those measurements are archived by the
Center for Snow and Avalanche Studies (CSAS) <https://www.snowstudies.org> (accessed
20 December 2021).

Figure 2. Location map of (a) the Uncompahgre River at Ouray and (b) Senator Beck Basin within
the state of Colorado (middle-upper inset with the study basins identified by the black dot), within
the U.S. (right-upper inset). The locations of SBSP and SASP are illustrated within SBB in (b). The
10-m digital elevation model was obtained from the National Elevation Dataset via the USDA-NRCS
Geospatial Data Gateway (https://datagateway.nrcs.usda.gov/, accessed on 1 March 2021) and the
land cover data are the 2016 National Land Cover Database (https://www.mrlc.gov/, accessed on 1
March 2021).

2.2. Snowpack Development and Dust Timing

Peak SWE for WY2007 to 2019, estimated using snow depth from CSAS and snowpack
density from the nearby snow telemetry (SNOTEL) station, ranged from 543 mm (WY2018)
to 936 mm (WY2011) with an average peak SWE of 719 mm (Figure 3a). The average date
of peak SWE for the period was 13 April, with earliest peak SWE occurring on 18 March in
WY2012 and latest peak SWE on 1 May in both WY2011 and WY2019 (Figure 3a). Date of
peak SWE for each individual WY is the defining threshold to characterize precipitation
quantities (Figure 3b) and dust events (Figure 3c) as pre- or post-peak SWE. The timing of
dust deposition during snowpack development is connected to potential dust-enhanced
energy absorption, as the nominal depth of shortwave radiation penetration into the
snowpack is around 30 cm [21]. Later-season dust events can remain closer to the snow
surface and have an earlier effect on snow albedo [2,21]. The timing and magnitude
of snowfall events is directly connected to snowmelt timing and magnitude, which are
influenced by the presence of dust at the study site [14,20,26,27,42].

https://www.snowstudies.org
https://datagateway.nrcs.usda.gov/
https://www.mrlc.gov/
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Figure 3. Snow and related data from WY2007 to WY2019 illustrating (a) daily SWE from Red
Mountain Pass SNOTEL highlighting WY2019 as the maximum peak SWE, WY2009 as a high dust
year, WY2015 as a low dust year, and WY2018 as the minimum peak SWE for the period of record
(other years are in grey), (b) annual total precipitation at SASP divided as pre-peak SWE, and post-
peak SWE divided into during and after (summer) snowmelt, (c) the annual runoff volume at SBB
and the Uncompahgre River (UC), (d) the year-end dust concentrations, and (e) the number of dust
events recorded at SASP observed pre- and post-peak SWE. The mean for each time series is noted
on the top or right vertical axis.

2.3. CSAS Snow Stake Data

Snow accumulation, wind redistribution, and heterogeneous snowmelt can change
the gradient of the snow surface around the towers [21]. Therefore, assuming a level
snow surface and calculating snow albedo with uncorrected visible incoming shortwave
radiation (HK-IN, called irradiance by Painter et al. [21]) can be erroneous. To estimate
the local slope and aspect of the changing snow surface, CSAS staff manually recorded
snow depths from the snow stake arrays at both SASP and SBSP from WY2006 to WY2012.
The SASP site had four stakes arranged around the central tower whereas the SBSP had
six stakes due to greater snow surface variability from stronger wind redistribution [21].
We determined the plane of best fit to these snow depth arrays to use in combination with
seasonal solar position to correct albedo incident angle.
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2.4. CSAS Snow Pit Data

In addition to the automated continuous micrometeorological tower data, CSAS staff
collect approximately weekly manual measurements of snow profile characteristics at
both sites. These profile assessments consist of excavating a snow pit to the ground and
collecting a temperature profile, describing snowpack stratigraphy (including layer interval,
grain shape and size) and liquid water content, and measuring bulk SWE using methods
described in Elder et al. [43] (also see [41]). Bulk snow density is calculated from the depth
and SWE measurements. If dust layers are present, dust stratigraphy (depth, number of
layers) is measured, and dust characteristics (approximate grain size, color) are recorded
(see [41]). CSAS assigns numbers to each perceptible dust layer within the snowpack to
allow tracking throughout accumulation and ablation. Bulk dust samples (all layers merged
or ALM) are collected towards the end of each snow season.

2.5. SNOTEL Site and Data

Daily SWE and snow depth data were retrieved from the Red Mountain Pass (RMP)
SNOTEL station from the Natural Resources Conservation Service (NRCS) <https://www.
nrcs.usda.gov> (accessed 20 January 2022). RMP is located approximately 1.8 km SSW of
the study basin at 3413 m elevation in a forested clearing with a western aspect. Bulk snow
density was calculated at RMP and used to derive daily SWE at SASP from the measured
depth, as density is less spatially variable than SWE or snow depth [44–46].

2.6. Streamflow Data

Water level is gauged hourly at a broad-crested weir at the outlet of SBB, starting
prior to onset of snowmelt input and late into the fall [41]. These water level data are
converted into hourly streamflow using a rating curve based on field measurements of
streamflow and concurrent water level measurements <https://www.snowstudies.org>
(accessed 20 December 2021). Here, mean daily streamflow data were used. A similar
method is used by the U.S. Geological Survey (USGS) to compute streamflow on the
199 km2 Uncompahgre River at Ouray station (USGS number 09146020) (Figure 2a). This
station was used instead of the downstream Uncompahgre River at Ridgway (station
number 09146200) since the former (at Ouray) is entirely within the persistent seasonal
snow zone [26,47]. Data were obtained from the USGS National Water Information System
<https://nwis.waterdata.usgs.gov/nwis> (accessed 25 January 2022).

3. Methods
3.1. Albedo Correction

Calculating snow albedo with uncorrected radiation flux measurements assumes a
level snow surface, which can be erroneous given wind redistribution, snow accumulation
patterns, and heterogenous snowmelt [21]. We retrieved the slope and aspect of the snow
surface from snow stake array observations (Figure A1). Such data were available from 2007
to 2012; since they were not available from 2013 to 2019, approximation from the first time
period were applied to the second time period (Appendix A; Figure A2). The time series of
slope and aspect was linearly interpolated between each weekly set of measurements to
approximate a daily snow surface [21]. In addition to the geometric correction of a non-level
snow surface, we corrected for seasonally shifting solar position (see Appendix A). Of
the two sites, the alpine site (SBSP) has a more continuous record of incoming shortwave
radiation (HK-in) since it experiences higher wind speeds which regularly clear the snow
off the up-facing pyranometers [41]. When HK-in data from the sub-alpine site (SASP) were
not available, they were estimated as the ratio of the outgoing shortwave radiation (HK-out)
at SASP to the albedo of the alpine site (αalpine) [15].

https://www.nrcs.usda.gov
https://www.nrcs.usda.gov
https://www.snowstudies.org
https://nwis.waterdata.usgs.gov/nwis
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3.2. Dust Concentration

Total dust concentrations were determined from the ALM samples collected towards
the end of each ablation season. Bulk samples were processed by the U.S. Geological
Survey of Colorado to yield dust loading and geochemical properties [48]. Dust loading
(in mg/g) was transformed to end-of-year dust concentration using the 3 cm × 0.5 m2

sample volume [2] and the bulk snow density observed on the collection date.
Dust detection is accomplished by tracking the weather forecast for wind or storm

events that may be conducive to dust mobilization in the source regions (see https://www.
codos.org, accessed on 1 March 2022). During these events, the Colorado dust-on-snow
(CODOS) program views camera images located in these areas for the presence of dust.
These cameras are operated by the department of transportation in their respective states
(Colorado, Utah, Arizona and New Mexico). As well, the USGS’s dust detection camera
network that has six cameras deployed in identified dust producing areas of the southwest
U.S. (https://gec.cr.usgs.gov/dustdetection/, accessed on 1 March 2022). Concurrently,
satellite imagery products that are designed to detect airborne dust are inspected by CODOS
for mobilization and spatial extent of a dust event. Another valuable tool are observations
from citizen scientists communicating with CODOS via email or social media.

3.3. Absorbed Energy Calculations

There is an interaction with the acceleration of grain growth and the earlier exposure
of darker substrate [49], but the greater divergence of LAP-influenced snow surface albedo
from that of clean snow occurs within the visible spectrum [50] (Figure 1). Thus, we
calculated the DEAE based on snow surface albedo within visible wavelengths. The visible
DEAE (DEAEVIS in W/m2) at the surface was calculated as the product of the incoming
shortwave radiation in the visible portion of the spectrum (HK-in-VIS) and the difference
between broadband HK-in and NIR/SWIR HK-in (∆VIS) [15]. This difference (∆VIS) was
computed from the observed visible albedo for dust-free or clean snow (αVIS-clean) at the
study site (assigned a value of 0.92 by Skiles et al. [15]) minus the visible albedo estimated
from tower measurements (αVIS-measured). This study also used an αVIS-clean of 0.92 for
fresh snow.

Previous studies also calculated the additional NIR/SWIR energy absorption due to
dust based on an empirical relation to grain coarsening in the absence of dust developed
with two years of dust and snow observations in the study basin [2]. The total energy ab-
sorbed from the combined direct visible effect and indirect NIR/SWIR effect was identified
as dust radiative forcing [2,15,20]. Daily mean visible DEAE is calculated from 1 April to
help estimate the SAG for each year, and springtime incoming shortwave radiation and
precipitation are totaled over the same interval. While dust-enhanced energy absorption
may begin earlier in the season, this period captures typical snowpack ablation from peak
SWE to complete melt-out when DEAE has the greatest effect on melt timing.

3.4. Snow Energy Balance Model

We used the point-based snow energy balance SNOBAL to model hypothetical snow-
pack at the sub-alpine site under actual hourly conditions (dust present) and snowpack
with the dust effect removed (clean) to understand differences in melt timing, since this is
the same model previously used at this site by Skiles et al. [15]. SNOBAL approximates the
snowpack as two layers: the upper 25 cm layer exchanges energy with the atmosphere, and
the underlying remainder of the snowpack acts as an energy and mass storage layer [51,52].
We ran the model for each spring melt season at the sub-alpine site using data from man-
ual snow assessments and automated tower collection. The starting snow conditions of
each model run were determined from the field measurements collected closest in time
to 13 April (average date of peak SWE for the study plot). The model calculated hourly
changes in snow state variables using observed hourly forcing variables (Table A1) and
precipitation inputs. Dust present model runs were completed with actual recorded condi-
tions. Clean model runs modified the hourly net shortwave radiation inputs by subtracting

https://www.codos.org
https://www.codos.org
https://gec.cr.usgs.gov/dustdetection/
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the DEAE on an hourly time step. For all runs, total precipitation mass recorded by an
electronic weighing gauge at the sub-alpine site was partitioned into rain or snow based on
dewpoint temperature, as defined by Susong et al. [53] in SNOBAL [52] (Table A2).

Percentage of precipitation falling as snow and fresh snow density were assigned
based on specific quantities (Table A2). All model runs set soil temperature to 0◦C since soil
temperatures are generally ~0 ◦C at time of peak snow accumulation and are considered to
have a relatively negligible contribution to snowpack energy balance [51]. Snow surface
aerodynamic roughness (z0) was set to 0.001 m [54] for all model runs based on the
determination of Skiles et al. [15] who found the model results not highly sensitive to
reasonable z0 values (<0.005 m).

The accuracy of modeled SWE was assessed by comparing dust present SWE to two
observations of SWE: derived and manually measured. Derived SWE is a combination of
the calculated daily bulk snow density at Red Mountain Pass SNOTEL and the observed
daily snow depth at the study site. The manual measurements of SWE were collected on an
approximately weekly basis by CSAS staff during snow pit assessments. The difference in
melt-out dates (∆SAG) between the modeled dust present scenario and the modeled clean
scenario is a measure of melt acceleration due to amount of DEAE, since the two scenarios
are otherwise modeled with identical snow state variables and meteorological inputs.

3.5. Timing of Snowmelt Runoff

While the tQ50 is often computed based on the entire WY [33,34,39,40,55], others have
examined a shorter time period since fall and winter streamflow often varies much less
than the snowmelt contribution [32]; Bryant et al. [27] used the period from 1 January to
30 September while Dudley et al. [56] used 1 January to 31 July. Here, we computed tQ50
for 1 January to 30 September to compare results to Bryant et al. [27].

At Senator Beck Basin, streamflow gauging begins in March, prior to the onset of melt
observed at the SNOTEL station (Figure 3a) when baseflow is the only contribution to
streamflow. The exception was 2019 when streamflow monitoring started after the onset of
melt, due to the large amount of snow as illustrated in Figure 3a [57]. The median baseflow
is 0.0022 m3/s (0.066 mm/d) at the start of stream gauging (this is less than 0.5% of the
median peak flow at SBB 0.48 m3/s). The ungauged portion of the hydrograph (i.e., before
gauging begins in March) at SBB was estimated from the Uncompahgre River at Ouray
time series using a quadratic fit (R2 = 0.80); the minimum daily flow was set to 0.002 mm/d,
as streamflow has been observed over the entire year [57].

3.6. Drivers of Dust Present vs. the Clean Snow Energy Balance Model

As summarized above, SNOBAL requires much data preparation. Thus, to consider
using DEAE or ∆SAG as decision variables for operational streamflow forecasting models,
we assessed their potential drivers. Six variables were individually compared to DEAE
and ∆SAG: the concentration of dust (measured in mg/g), the number of dust events (as
a count), the cumulative incoming shortwave radiation from 1 April to SAG (in MJ/m2),
the total precipitation from April 1st to SAG (in mm), the 1 April SWE (in mm), and the
percentage of the dust events that occurred after peak SWE. For each of these evaluations,
outlier years were identified and assessed as to why they were outliers based on dust,
snowpack and meteorology of that year. The cross-correlation between the variables was
computed to evaluate any redundancy among variables. A multi-variate linear regression
was used due to the limited number of study years (e.g., Fassnacht et al. [58]) compared
to other methods where more data are available [59]. Variables were standardized by
dividing each annual value by the largest observed quantity in the 13-year time series.
Using the linear regression approach, the magnitude of coefficient will represent the relative
importance of each variable.
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4. Results
4.1. Light and Heavy Dust Years

Over the 13 study years, peak SWE, precipitation quantities, number of dust events,
and the cumulative concentration of dust varied (Figure 3; Table A3). Two years were
chosen to illustrate the inter-annual differences from 1 April through to 31 May (Figure 4):
WY2015 had low dust deposition (0.79 mg/g) and the shortest ∆SAG (11 days) and WY2009
had the most dust deposition (4.55 mg/g) and a long ∆SAG (31 days) (Figure 3). While
WY2015 had less than the 13-year average peak SWE, peak SWE occurred the latest due
to snow accumulation in May (Figures 3a and 4b). Conversely peak SWE in WY2009 was
larger than average (Figure 3a) but melt-out occurred much more rapidly than other years
(Figures 3a and 4d). The mean daily incoming shortwave radiation was similar for both
focus years (dotted orange lines in Figure 4a vs. Figure 4c), but the DEAE was much
greater in 2009 (1 April to SAG mean of 46.9 W/m2, Figure 4c) than 2015 (1 April to 31
May at a mean of 25.5 W/m2, Figure 4a). In 2015, there were only three dust deposition
events (in April) and they were buried by numerous snowfalls (Figure 4a,b). There were
ten dust deposition events in 2009, prior to peak SWE, and then two more once the melt
began (Figure 4c). The presence of dust in 2009 yielded a lower albedo (mean of 0.42 in
the visible from 1 April to SAG) than in 2015 (mean of 0.52 in the visible over the same
period) (Figure 4c vs. Figure 4a). Further, once the snowpack is fully melting, i.e., SWE is
continuously decreasing, the melt rate in 2009 (mean of 39.1 mm/d) is almost twice that of
2015 (mean of 23.8 mm/d); even when the increase in SWE on 7 June 2015 is disregarded,
the mean melt is 26.2 mm/d.

Figure 4. Summary of April through SAG illustrating (a,c) snow surface albedo (black dashed), daily
mean DEAE (red), incoming shortwave radiation in the visible portion of the spectrum (orange
dotted), and the occurrence of dust events (brown lines), and (b,d) snow depth (solid blue), daily
precipitation inputs (blue vertical bars), and estimated SWE (dash-dot blue). The date and amount
(in parentheses) of peak SWE at the nearby SNOTEL station is shown with a fine black dashed
line. The date when the snowpack begins to melt consistently is denoted by a yellow circle and the
estimated SWE at that time is stated. The average melt per day from that point to SAG is stated as
melt. (a,b) represent WY2015 with the shortest ∆SAG (11 days), the fewest dust events (3) and a low
end-of-year dust concentration (0.79 mg/g); (c,d) represent WY2009 with the longest ∆SAG (31 days),
the most dust events (12), and a high end-of-year dust concentration (4.55 mg/g).
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4.2. Daily Mean Visible DEAE

For WY2007 to WY2019, the daily mean visible DEAE was 39.8 W/m2 during ablation
and ranged from 31 W/m2 (WY2015) to 50 W/m2 (WY2019) (Figure 5a; Table A3). The
large DEAE in WY2019 corresponds to a high peak SWE (Figure 3a) and a long period of
snowmelt that occurred later (Figure 5b). Although melt started later in WY2015 due to late
season snowfall (Figure 4b), peak SWE was low (Figure 3a) and the melt period was the
shortest (Figure 5b) yielding the lowest DEAE; the last dust event in 2015 occurred 42 days
prior to peak SWE (Figure 4a) and the total dust concentration was the lowest over the
period of record (Figure 3c).

Figure 5. Annual (a) estimated daily mean visible dust enhanced energy absorbed (DEAE), (b) ob-
served peak SWE (Figure 3a) and snow-all-gone (SAG) date, (c) peak SWE, and (d) modeled difference
in SAG (∆SAG) for a clean vs. dust present snowpack. The mean for each time series is noted on the
right vertical axis.

4.3. Modeled SWE and Snow Cover Duration

Overall, SNOBAL simulated observed SWE well (Figure 6). The difference between
modeled and derived SWE (from CSAS snow depth and SNOTEL density) is 34 mm
greater than between modeled and manually measured SWE (statistics beside the legend
in Figure 6). Typically, model comparisons are poorer for shorter timesteps than for longer
timesteps [60]; the derived SWE data had a daily time step while the manually measured
SWE had approximately a weekly time step. However, the modeled SWE under actual
(dust present) conditions (red lines in Figure 6) matches the seasonal patterns of manually
measured bulk SWE (black points in Figure 6) fairly well, in particular capturing late-season
melt rates. Modeled clean snowpack has slower melt rates than modeled dust present
snowpack (Figure 6). Some divergence between modeled and observed SWE is more
apparent in years with late-season precipitation events during snowmelt (e.g., WY2013 in
Figure 6g and WY2016 in Figure 6j). For all years, the derived SWE is consistently lower
than manually measured SWE at the snow pits (with an average difference of 93 mm).

Snow-all-gone was modeled to occur later than observed for the first six study years
and later for the last seven (Figure 6; Table A3). Simulations for 8 years modeled that dust
present SAG was less than 2 days different than observed SAG, with 3 years being within
3 days (WY2008, WY2014, WY2018). There was a 3.5 difference in modeled vs. observed
melt-out for WY2016 (Figure 6j); the outlier was WY2019 which modeled melt-out 16 days
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earlier than observed (Figure 6m). The greatest degree of melt acceleration due to the
presence of dust was in WY2009 (31 days earlier; also see Figure 4c,d) and the least melt
acceleration was in WY2015 (11 days earlier; also see Figure 4a,b), with an average of about
20 days (Figure 5d).

Figure 6. Modeled and observed SWE from mid-April to snowpack disappearance curves for
snowmelt season (a–m) 2007 to 2019. SWE is simulated using the SNOBAL model for clean conditions
(blue), dust-present conditions (red). Derived SWE is calculated from observed snow density at Red
Mountain Pass SNOTEL and observed snow depth at CSAS study plot (dashed brown lines), and
manually measured bulk SWE (black points). The date of the observed snow-all-gone is presented as
a dotted vertical grey line. The modeled dust present vs. clean (∆SAG) is presented in the lower right
corner of each figure. The statistics of the model dust-present SWE vs. the derived and manual SWE
observations are presented beside the legend as root mean square error (RMSE) and the Nash–Sutcliffe
Efficiency (NSE) coefficient.

4.4. Streamflow Timing

The streamflow on the Uncompahgre River at Ouray (Figure 7a) has similar patterns
as the Senator Beck Basin (Figure 7b), except that there is a greater runoff volume from the
smaller basin (SBB). The inter-annual variability shows early peak flows in dusty years
(2009) and low snow years (2018), with late peak flows in low dust years (2015) and high
snow years (2019), due to early and late melt, respectively. The timing of tQ50 varies by
35 days at SBB (22 May in 2012 to 28 June in 2019) (Figure 7d and Table A3). The tQ50 occurs
2 to 10 days earlier on the Uncompahgre River at Ouray compared to SBB (Figure 7c).
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Figure 7. Daily runoff for the two extreme snow year (low 2018 and high 2019) and the two focus years
(shortest ∆SAG 2015 and longest ∆SAG 2009) at the (a) Uncompahgre River at Ouray and (b) Senator
Beck Basin streamflow gauging stations, and cumulative runoff for all years at (c) Uncompahgre River
at Ouray and (d) Senator Beck Basin. The cumulative runoff plots include the half runoff volume
date (tQ50).

4.5. Drivers of DEAE, ∆SAG and tQ50

Daily mean visible DEAE is driven by a variety of factors (Figure 8 and Table 1).
There is some correlation (R2 = 0.22) with dust concentration (Figure 8a), but as mentioned
above, WY2019 is an outlier in terms of modeled vs. observed melt-out date (Figure 6m).
Removing WY2019 improves the correlation (R2 = 0.55). The number of dust events and
cumulative springtime (1 April to SAG) precipitation each correlate to DEAE (Figure 8b
and 8e, respectively) when WY2019 is not considered. While both related to energy, there is
no correlation between DEAE and cumulative springtime incoming shortwave radiation
(Figure 8c), with or without WY2019. Overall, the strongest correlation for a single variable
and DEAE is 1 April SWE (R2 = 0.41; Figure 8c), but WY2019 drives much of the correlation;
excluding that year reduces the explained variance by almost half (R2 = 0.23).

Figure 8. Comparison of daily mean visible dust-enhanced energy absorption (DEAE), as a function
of (a) end-of-year dust concentration, (b) number of dust events, (c) 1 April SWE, (d) cumulative
springtime (1 April to SAG) incoming shortwave radiation, (e) cumulative springtime (1 April to
SAG) precipitation, and (f) the fraction of the dust events after peak SWE.
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Table 1. Cross-correlation as the coefficient of determination (R) between climate variables (HK-IN

is the incoming shortwave radiation, dust conc. = concentration, ΣP is cumulative from 1 April to
SAG), daily mean DEAE, and ∆SAG. The values of R are given rather than R2 to indicate the sign of
the correlation. Note: # is used to denote correlations where R2 > 0.29, and * where R2 > 0.5.

∆SAG DEAE Dust [] # Events HK-IN ΣP 1 April
SWE

Dust Events
Post-Peak SWE

tQ50 0.314 0.110 −0.234 −0.413 0.961 * 0.813 * 0.637 # −0.512
∆SAG 0.613 # 0.371 0.543 # 0.290 0.360 0.657 # 0.163
DEAE 0.471 0.382 0.162 −0.138 0.637 # 0.450

Dust conc. 0.541 # −0.415 −0.307 −0.091 0.033
# events −0.432 −0.206 −0.090 0.328

HK-IN 0.786 * 0.715 * 0.077
ΣP 0.396 −0.263

1 April SWE 0.378

The average between modeled dust present vs. clean (∆SAG) is significantly (p < 0.05)
correlated to DEAE (R2 = 0.38; Table 1). The SWE amount of 1 April explained the most
variance of all variables (R2 = 0.43; Table 1; Figure 9c). The number of dust events (R2 = 0.29;
Figure 9b and Table 1) is more correlated to ∆SAG than the dust concentration (R2 = 0.14;
Figure 9a and Table 1). For each dust variable, one dusty year was an obvious outlier; when
the dust concentration in WY2013 (largest end-of-year dust concentration) was excluded
the explained variance almost increased threefold (R2 = 0.39; Figure 9a). When the number
of dust events in WY2012 (with most events post-peak SWE) was excluded, the explained
variance more than doubled (R2 = 0.63; Figure 9b). Cumulative springtime (1 April to
SAG) incoming shortwave radiation (HK-IN) and ∆SAG (Figure 9d) have little correlation
(R2 = 0.08; Table 1) for all years. The extreme years (Figure 4) influenced the correlation
between HK-IN and ∆SAG; exclusion of WY2009 increased R2 to 0.31, and exclusion of
WY2009 and WY2015 increased R2 to 0.47 (Figure 9d). Cumulative springtime precipitation
(ΣP) and ∆SAG (Figure 9e) have no significant correlation for all years (0.13). As with HK-IN,
WY2009 and WY2015 were outliers for the correlation between ΣP and ∆SAG; exclusion of
WY2015 increased R2 to 0.35, and exclusion of WY2009 and WY2015 increased R2 to 0.62
(Figure 9d).

Figure 9. Comparison of snow cover duration difference in terms of modeled snow disappearance for
clean vs. dust-present (actual) conditions as the change in snow-all-gone (∆SAG) date, as a function
of (a) end-of-year dust concentration, (b) number of dust events, (c) 1 April SWE, (d) cumulative
springtime (1 April to SAG) incoming shortwave radiation, (e) cumulative springtime (1 April to
SAG) precipitation, and (f) the fraction of the dust events after peak SWE.
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Similar to the correlations shown for DEAE or ∆SAG, 1 April SWE explains a signifi-
cant amount of the inter-annual differences in tQ50 (Figure 10c). However, tQ50 is poorly
correlated to DEAE or ∆SAG (Table 1). The correlation of dust concentration (Figure 10a)
and number of dust events (Figure 10b) improves when specific outliers are removed,
and there is limited correlation to the fraction of dust events after peak SWE (Figure 10f).
Cumulative springtime incoming shortwave radiation explains 93% of the variance in tQ50
(Figure 10d) while cumulative springtime precipitation alone explains 66% of the variance
(Figure 10e).

Figure 10. Comparison of half flow date (tQ50), as a function of (a) end-of-year dust concentration,
(b) number of dust events, (c) 1 April SWE, (d) cumulative springtime (1 April to SAG) incoming
shortwave radiation, (e) cumulative springtime (1 April to SAG) precipitation, and (f) the fraction of
the dust events after peak SWE.

While some variables, such as 1 April SWE, have a significant correlation with DEAE
or ∆SAG, individually they explain less than 50% (Table 1; Figure A3). There is cross-
correlation between some variables, specifically HK-IN vs. ΣP (R2 = 0.62) and HK-IN
vs. 1 April SWE (R2 = 0.51) (Table 1). Thus, HK-IN was excluded in the multi-variate
regression (Table 2). For DEAE, the optimal model (Figure A3a) included 1 April SWE, dust
concentration, ΣP, and then number of dust events; adding the fraction of number of dust
events after peak SWE did not improve the correlation (Table 2). Based on the magnitude
of the standardized coefficients, a majority of the variance was explained by 1 April SWE
(58%). Cumulative springtime precipitation (Figure 8d) decreased DEAE in the regression,
i.e., had a negative coefficient.

The optimal ∆SAG model also included the percentage of number of dust events
(the five variables included on the right side of Table 2) and explained almost all of the
inter-annual variability (Figure A3b). The model statistics are similar without the per-
centage of the number of dust events (the four variables included on the right side of
Table 2). However, this is because ∆SAG is modeled better WY2008 and WY2010 with four
variables but does not perform quite as well for the shortest and longest (Figure 4) ∆SAG
(Figure A3b).

Cumulative springtime (1 April to SAG) incoming shortwave radiation explains almost
all of the variation (R2 = 0.93) in tQ50 (Figure 10d). Excluding this variable (HK-IN), the
correlation with multiple variables yielded similar statistics as DEAE (Table 2), with the
same R2 (0.80), a slightly improved NSE (0.86) and the same four variables. Adding the
fraction of dust events after peak SWE (5th variable) reduced the R2 and increased the
standard error. For tQ50, cumulative springtime precipitation was most important (largest
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coefficient), followed by 1 April SWE, and number of dust events. The number of dust
events was negatively correlated with tQ50 (Figure 10c).

Table 2. Progression of multi-variate linear regression as the R2 values increased between mean daily
DEAE (left side of table), ∆SAG (middle), tQ50 (right side) and the independent variables from Table 1,
plus the fraction of dust events that occurred after peak SWE (Figure 3d). The standard error (with
units of W/m2 for DEAE, days for ∆SAG, tQ50 as day of year) and the Nash–Sutcliffe Efficiency (NSE)
coefficient are included. The optimal models are presented in bold face (four variables for DEAE,
five for ∆SAG, and four for tQ50). The coefficients were derived from standardizing the independent
variables to a value between 0 and 1. All regressions are significant at p < 0.05.

Mean DEAE ∆SAG tQ50

Statistics

Variables
included

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

R2 0.41 0.69 0.77 0.80 0.80 0.43 0.80 0.85 0.88 0.94 0.66 0.78 0.79 0.80 0.77
Standard error 4.35 3.30 3.01 2.98 3.18 4.67 2.93 2.68 2.50 1.92 7.07 5.79 5.19 5.09 5.43
NSE 0.41 0.69 0.77 0.80 0.80 0.43 0.80 0.85 0.88 0.94 0.66 0.78 0.84 0.86 0.86

Coefficients

Intercept 25.0 21.0 23.0 20.1 19.9 3.21 −8.63 −10.7 −10.6 −12.5 140 126 136 136 136
1 April SWE 20.9 22.5 26.4 26.6 27.3 23.6 25.6 22.2 21.8 28.9 25.5 25.3 24.8 24.9
# of dust events 4.78 5.15 15.2 16.3 13.4 17.2 −12.0 −16.5 −17.0
ΣP −8.24 −8.07 −8.53 7.05 8.47 3.73 43.6 35.6 32.9 35.1 35.5
Dust conc. 9.72 8.13 6.11 5.91 4.55 2.48 7.09 7.13
Dust after peak −0.55 −5.64 0.69

5. Discussion
5.1. Inter-Annual Variability

The snowpack (Figure 3a) [61,62], snowfall (Figure 3b) [63], the quantity of dust
deposited onto the snowpack (Figure 3c) [16], and the number of dust events (Figure 3d) all
vary inter-annually [21]. After peak SWE, the timing of dust events (Figure 3) and snowfall
events influence melt characteristics (Figure 4) [15]. Specifically, the amount of additional
shortwave radiation increases (Figure 5a) due to decreased albedo (Figure 4) from dust
(Figure 1) [15]. This enhanced melt also hastens disappearance of the snowpack, or SAG
(Figure 6) [2], and yields earlier snowmelt runoff [14,20,26,27,42]. At this study site [64] and
another small watershed in Northern Colorado [65], the timing of SAG has been directly
linked to the date of peak streamflow. Future conditions could be quite different than
recent observations [14], with warming causing earlier snowmelt [31]. The increased dust
deposition and the corresponding decreased albedo (Figure 4) could offset less incoming
shortwave radiation [29] if melting occurred early in the year.

5.2. DEAE Computation

DEAE calculations for all years relied on a snow surface correction to albedo which
was observed for WY2007 to 2012 and approximated for WY2013 to 2019 (Appendix A).
Generally, the incoming visible shortwave radiation calculated with the approximated
snow surface correction compared well to the HK-IN with the observed correction (RMSE
of 8 W/m2). The greatest difference was in May of WY2008 which had high SWE and
above-average spring wind speed creating a complex snow surface not fully represented
by the approximated value (Figure A1). We investigated the effect of under-estimation and
over-estimation of HK-IN on a high-dust year (WY2013) and found that daily mean visible
DEAE could range from 39.5 to 45.5 W/m2. A similar investigation of a low-dust year
(WY2017) found a range from 32.5 to 38 W/m2. Despite the potential scale of uncertainty
for daily mean visible DEAE calculations for WY2013 to WY2019, the overall pattern of
DEAE response to increases in dust concentration would remain a logarithmic correlation.
The DEAE data were used with the SNOBAL model, and while there was a large difference
between observed and modeled SAG for 2019 (Figure 6m) (there was a 3.5-day difference in
2016), the model results for other 5 years were as good as the first 6 years (WY2007 to 2012).
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The magnitude of our DEAE calculations (Table A3) compares well to other regional
studies across the Upper Colorado River. Remote sensing of particulate-enhanced energy
absorption from four days in WY2011 over the Uncompahgre Basin found the average
instantaneous pixel value ranged from about 50 W/m2 in mid-May to 200 W/m2 in mid-
June [66]. This range is likely in part due to their inclusion of all light-absorbing impurities,
assumption of homogeneous snow grain size, and spatial variability due to resolution
(13.8 m pixel size). We found hourly visible DEAE to range up to 234 W/m2 during June
of WY2011. Additionally, Bryant et al. [27] retrieved daily mean radiative forcing from
dust in the visible spectrum only and found a range from 20 to 80 W/m2 (over WY2000
to WY2010).

At SASP, Skiles et al. [15,20] and Skiles and Painter [67] computed a mean daily DEAE
that had the same inter-annual pattern for seven overlapping years (WY2007 to WY2013),
especially compared to dust concentrations (Figure 8a). However, this study yielded on
average 28% lower (range of 22 to 38%) DEAE than Skiles and Painter [67]. Subsequently,
Skiles and Painter [67] computed a mean DEAE of about 30 W/m2 for 2013 compared to
the previous estimate of 65 W/m2 and the estimate here of 44 W/m2 (Figure 5; Table A3).
These differences are due in part to a different date over which the mean daily DEAE was
computed (here 1 April to SAG and Skiles et al. [15,20] used 15 April to SAG); HK-IN is
less, and dust is typically less present (albedo is higher) over the first two weeks of April
yielding a lower DEAE. We used an earlier start date than Skiles et al. [15,20], since peak
SWE occurred prior to 15 April in 4 of the 13 years. Further, the specific snowpack albedo
formulation will influence DEAE. Skiles and Painter [68] used a more detailed snowpack
albedo model (the snow, ice, and aerosol radiative model or SNICAR, [69] coupled to
the multilayer snow model SNOWPACK (see [70] and subsequent papers), but this still
tended to over-estimate albedo by about 0.04 compared to measured values (mean of
0.64). Specifically, modeled albedo decay was too slow while fresh snow albedo was too
low, which has been shown using a simple albedo model calibrated with SASP data that
divides and treats visible (400 to 700 nm) and NIR/SWIR (700 to 2500 nm) wavelengths
separately [71]. This is relevant since changes in broadband snow albedo are controlled
by the dust-induced decrease in the visible portion of the spectrum more than NIR/SWIR
(Figure 1), such as during the highest dust-loading year on record (WY2013; Figure 3c) [11].
A new version of SNICAR [72] may improve albedo modeling.

5.3. Modeling of Snow Cover

The inter-annual modeled difference between SAG for dust present and clean snow
conditions follows a similar pattern to DEAE (Figure 5a vs. Figure 5d) with a significant
(p < 0.05) R2 of 0.38 (Table 1). As with DEAE, the seven overlapping years investigated by
Skiles and Painter [67] yielded on average 40% longer ∆SAG, but with wider range from 15
to 63%. The shorter ∆SAG modeled here are partially a function of lower DEAE values and
modeling assumptions. Estimates of ∆SAG rely on the accurate representation of snowpack
evolution by the energy balance model SNOBAL [52]. Rather than simulating the snowpack
for the entire winter, modeling focused on the melting of the snowpack. Simulations
started with observed snowpack state variables in approximately isothermal conditions at
approximately peak SWE and ran through to SAG [73]; this reduces divergence between
the modeled and observed snowpack [74] and reduces errors associated with the model
energy and mass transfers. The energy balance simulation of accumulation is complex [75]
and is subject to greater uncertainty due to rapidly changing or inconsistent early-season
snow state variables, such as snow depth.

Two consistent approximations made across all SNOBAL runs may have influenced
∆SAG results. First, a maximum hard-coded model upper limit on net shortwave radiation
(HK

*) of 800 W/m2 [51] could affect melt rate. While the mean springtime HK
* was less

than 500 W/m2, each year a maximum springtime net shortwave radiation greater than
800 W/m2 was computed on a few days for the dust present model runs [76]. This limit
does not accurately represent the radiation-dominated continental climate of the San Juan
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Mountains, which experience relatively high incoming shortwave radiation compared to
other climates such as the cloudy Pacific Northwest [21].

Second, the SWE of spring snowfall seems to be consistently under-estimated resulting
in either divergence between modeled and observed SWE (e.g., WY2011) or greater inac-
curacy in modeled SAG (e.g., WY2019) (Figure 6). Since there was a 16-day difference in
observed vs. modeled SAG for 2019 (Figure 6m), it could be acceptable to remove this year
from subsequent analyses (Figure 8a). The model runs were initiated with state variables
from a snow plot several meters away from the tower that supplied subsequent forcing vari-
ables, thus some divergence in SWE may be due to spatial variability of snow depth [18,77].
However, the prevalence of the under-estimation indicates a systemic error in precipitation
inputs [78–80]. Precipitation is partitioned to rain or snow in SNOBAL based on dewpoint
temperature and the snow percentages (Table A2) estimated from monitoring in the Cali-
fornia Sierra Nevada [52,53]. The dewpoint temperature is computed from daily maximum
and minimum temperatures and may not capture the dewpoint temperature at the specific
time of a precipitation event, as the model has an hourly timestep, especially in a semi-arid
environment [81]. Based on air temperature only, there is variability in the temperature
threshold between snow and rain among different climates [82,83]. In the semi-arid the
continental climate of Colorado, snow can fall at warmer air temperatures than in more
humid or maritime environments [84,85]. Additionally, the fresh snow density partitioning
in SNOBAL (Table A2) is based on SNOTEL stations in the Wasatch Range of Utah [52].
These densities may not represent the higher elevation, semi-arid climate of the Colorado
where fresh snow can have lighter density compared to wetter environments [86,87].

Overall, the limit on net shortwave radiation and the underestimation of precipitation
inputs may counteract one another yielding a smaller net combined effect on ∆SAG. The
upper threshold on net shortwave radiation restricts the energy available to the modeled
snowpack, slowing melt rates, and lengthening snow persistence. However, the underesti-
mation of precipitation inputs results in lower bulk SWE which would have shorter snow
cover duration regardless of dust presence.

5.4. Streamflow Timing

While this paper did not compare modeled streamflow for dust present (i.e., observed)
conditions vs. clean (i.e., dust removed from the modeled snowpack) conditions (e.g.,
Bryant et al. [27]), we see differences in tQ50 based on the inter-annual in the quantity
of dust that is present (Figure 6c,d). On the Uncompahgre (Figure 7c) and the Senator
Beck Basin (Figure 7d), tQ50 was four and five days later, respectively, for a high dust year
(WY2009) than a low snow year (WY2018). A low snowpack (e.g., WY2012 and WY2018)
begins to melt sooner than an average snowpack (Figure 5b), and the streamflow, such
as measured by tQ50, respond (Figure 7). The timing of peak flow, which is not the same
at tQ50 (see the orange bars in Figure 3b), has been seen to correspond well with SAG
(Figure 3b) [65,66]. Conversely, the response of streamflow for a low dust year (WY2015)
and a high snow year (WY2019) is less similar; the latter tQ50 was 12 days later (Figure 7c,d).

The spatial distribution of dust is also important [19,27]. This may be less important
for SBB than the Uncompahre watershed due to the size difference (2.91 vs. 199 km2) and
spatial variability in dust [26]. However, even in the small SBB, there is spatial variability
in melt patterns due to variability in terrain and its influence on HK

* [25], and differences
in snowmelt in the alpine (SBSP) vs. sub-alpine (SASP) [64], which all impact streamflow
characteristics. For streamflow modeling, especially for forecasting, it is important to
include the influence of dust [27].

5.5. Drivers of DEAE, Snow Cover Duration and Flow Characteristics

For six years (WY2005 to WY2010), DEAE was shown to be highly correlated in a log-
linear manner to dust concentration [15], while we found a weak linear correlation between
DEAE and dust concentration that became significant when 2019 was excluded (Figure 8a).
We found 1 April SWE to have the strongest correlation with DEAE (Figures 7c and A3a),
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but it still only explained about 40% of the variability (Table 1). A multi-variate linear re-
gression increased the explained variance to 80% when three other variables were included
(Table 2). The single variable correlations are not expected to be strong as they simplify
complex snowpack processes [51,52] interacting with dust being deposited, buried by new
snow (Figure 4), and then reappearing near or at the snow surface [11,69]. The bulk dust
samples collected towards the end of each snow season are from all layers combined and
do not consider when the dust event occur; some years all dust is deposited prior to peak
SWE (e.g., WY2015 and W2016; Figure 3d). Light does penetrate into the snowpack, but
this can vary from several to 10 s of cm [88,89], the deeper burial of dust delays its effect
on surface albedo [11]. Further, the presence of LAPs decreases the penetration depth of
light [90], which could confound the computation of albedo [71]. The presence of dust
only represents a portion of the decrease in albedo, primarily in the visible portion of the
spectrum (Figure 1), as albedo decrease also corresponds to the increase in snow grain
size [12] and the presence of liquid water.

Less dust and/or more springtime precipitation can yield a higher albedo (Figure 4a,b),
which reduces the daily mean visible DEAE (Figure 7), but as the snowmelt season pro-
gresses the incoming shortwave radiation increases (Figure 8d) which can increase DEAE.
These can combine to change the timing of SAG (Figure 6). While cumulative springtime
precipitation is poorly correlated to DEAE and ∆SAG (Figures 8e and 9e), the direction of
the correlation is opposite (Tables 1 and 2). The number of dust events influences ∆SAG
more than the dust concentration (Table 2).

Low SWE produces a shorter snow persistence regardless of dust (Figure 9c), which
results in lower ∆SAG [15], as seen in WY2012 and WY2013 (Figure 6f,g and Figure 9c) and
in the multi-variate regression (Table 2). WY2015 (Figure 4a,b) and WY2017 are low-dust
years (Figure 3c) which received enough late-season precipitation (Figure 3b) to lengthen
snow cover duration and increase the cumulative HK-IN values while keeping ∆SAG short
(Figure 9d). The late-season snowfall events, such as in WY2105, not only bury exposed
dust but also increase albedo [72] (Figure 4b) and reduces HK-IN (Figure 4a) due to the
presence of cloud cover. Conversely, greater SWE accumulation allows for a longer period
of dust influence, leading to greater divergence in snow cover duration (Figure 9c) [2].
Melt rates are a function of the total energy balance. Here, we focus on the change in the
shortwave radiation component; when dust is present and the albedo is lower, even if melt
occurs earlier and there is less incoming shortwave radiation, melt rates are accelerated
(Figure 4b vs. Figure 4d).

While dust on its own does not correlate with the tQ50 (Figure 10a,b, Table 1), the
number of dust events is about half as important as cumulative precipitation in the optimal
multi-variate regression (Table 2). However, cumulative precipitation itself explains two-
thirds of the variance (Figure 10e, Tables 1 and 2). More significantly, HK-IN explains almost
all (R2 = 0.93) of the variance with tQ50, and ΣP is strongly correlated with HK-IN (R2 = 0.62
in Table 1); the more precipitation in the spring, typically as snow (Figure 4b), then HK-IN
is greater as the sun is higher in the sky, and tQ50, the later, since snowmelt contributes
to streamflow longer [34]. Additionally, tQ50 and SAG are highly correlated (Figure 5c;
R2 = 0.94), as expected. However, this sequence of processes does not relate back to dust
related variables, specifically DEAE is not correlated to HK-IN (Figure 8d) and ∆SAG is
poorly correlated to HK-IN (Figure 9d).

5.6. Implications and Uses of This Work

We found that deposited dust layers can increase the mean visible energy absorbed
by the snowpack up to an additional 51 W/m2 per day during an ablation season in the
UCRB, accelerating melt from at least 11 days to as many as 31 days when only considering
energy in the visible spectrum. Previous studies have found melt advanced up to 51 days
when also considering NIR/SWIR effects [15]. Projected warming in the southwestern
USA will increase potential drought, disturbance, and desertification [91] which can lead
to increased dust loading of southwestern Colorado snowpack. Further investigation of
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the impact of dust on snowpack energy balance is needed since the connection between
dust loading and melt acceleration is not direct.

Dust-enhanced radiative forcing has potentially shortened snow cover in southwestern
Colorado by up to 51 days [15] accelerating timing of snowmelt runoff in the region [14,42].
Accounting for the dust-enhanced radiative effect on the snowpack energy balance will
likely reduce the uncertainty of runoff predictions [25]. However, continued investigation
of interannual and sub-seasonal patterns of dust loading is necessary to better inform
operational snowmelt projections in the UCRB. Our results indicate that dust concentration
magnitude is not directly responsible for accelerated melt rates and that sub-seasonal
combinations of SWE magnitude, irradiance, and precipitation all influence snow cover
duration. Daily analysis of dust, snow, and climate dynamics by Skiles and Painter [11]
over a high-dust and low-SWE ablation season (WY2013) showed that even small dust
concentrations can decrease albedo and snow depth declined 50% faster than years of
similar depth and lower dust. Understanding the relation of snowpack development and
dust concentration may require measurements at a finer temporal resolution than bulk
seasonal averages.

While it has become common to study streamflow patterns using percentages of
flow [34,37–40,56], such as tQ50, these metrics may not be appropriate for examining
the correlation between snowmelt and streamflow [92]. Large individual precipitation
events [33] and inter-annual variability in total streamflow volume can influence changes
in the timing of tQ50 [92]. As such, other streamflow characteristics, such as the actual onset
of snowmelt streamflow should be considered [93].

There is also the need by water managers to expand beyond point-based studies
and ascertain melt acceleration changes across larger basins. Future calibration of remote-
sensing products [26] and forecasting of melt acceleration [27] will depend on direct
monitoring of snowpack energy balance at multiple locations [41]. Recommended next
steps are to understand individual dust layer dynamics [68] in relation to sub-seasonal
snow and climate variables, to incorporate weather forecasts into snowpack energy balance
modeling [94] and develop a real-time dust-enhanced energy absorption forecast product
for operational end-users. Operational streamflow forecasting is challenging [95], and
snowpack and hydrological models are often too complex to be very useful in a forecast
setting [96,97]. A hierarchal decision tree approach [98] could be constructed to prioritize
most important variables as the snow season unfolds. This would likely require a finer
temporal resolution study to examine when and under what conditions melt responds to
the environmental conditions. Intra-annual or sub-seasonal variations, such as the timing
of dust events (Figure 3d) seem to be crucial to be able to determine what are the most
important variables to measure to better develop such as decision tree to be useful to
identify if melt is expected to be accelerated.

There are ongoing efforts to enhance data information at existing stations, such
as adding anemometers and four-component radiometers (shortwave and longwave
incoming and outgoing) at the SNOTEL sites. New data collection systems are being
implemented, such as the U.S. Geological Survey Next Generation Water Observing Sys-
tem <https://www.usgs.gov/mission-areas/water-resources/science/next-generation-
water-observing-system-ngwos> (last accessed 10 February 2022), which includes a portion
of the Upper Colorado River. Finally, new inexpensive sensors are being built in labs and
deployed [99]. Inexpensive commercially available sensors are being used to measure fine
scale variability [100,101] and could be deployed over larger domains.

6. Conclusions

At a site in southern Colorado, the nature of the snowpack varies due to inter-annual
fluctuations, and the snowmelt characteristics are a function of the amount and timing
of dust events together with spring precipitation patterns. The mean daily visible dust
enhanced absorbed energy ranged from 31 to 51 W/m2. It is driven by the quantity of
snow accumulation, often measured as 1 April SWE, and to a lesser extent the precipitation

https://www.usgs.gov/mission-areas/water-resources/science/next-generation-water-observing-system-ngwos
https://www.usgs.gov/mission-areas/water-resources/science/next-generation-water-observing-system-ngwos
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during snowmelt, the end-of-year dust concentration and the number of dust events per
year. Snow cover duration decreased under dust present conditions for all years modeled,
with the range of melt acceleration from 11 to 31 days. A more accelerated melt is partially
driven by daily mean visible DEAE, but is also mostly influenced by 1 April SWE, and to a
lesser extent, the number of dust events. The springtime precipitation, dust concentration,
and the fraction of dust events after peak SWE had a minor influence on ∆SAG. Incorpora-
tion of individual dust layer burial depth, dispersal distance of dust layers throughout the
snowpack, and the relative timing of irradiance and precipitation inputs would potentially
improve simulations of snowmelt. Future development of operational streamflow fore-
casting for the UCRB will benefit from continued monitoring and quantification of those
sub-seasonal effects.
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Appendix A. Albedo Adjustment Procedures

Geometric and solar position adjustments are combined with the following relation
(after Painter et al. [21]):

cos β = cos θs cos θn + sin θs sin θn cos {Φs − Φn} (A1)

where β is the local solar zenith angle, θs is the solar zenith angle for the horizontal surface,
Φs is the solar azimuth angle, θn is the surface slope, and Φn is the surface aspect. The
scalar (Mβ) by which we corrected the measured hourly incoming shortwave radiation
flux values to at-surface irradiances is (after Painter et al. [2]):

Mβ = cos β/cos θs (A2)

https://www.snowstudies.org
https://www.nrcs.usda.gov
https://www.nrcs.usda.gov
https://nwis.waterdata.usgs.gov/nwis
https://nwis.waterdata.usgs.gov/nwis
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Snow surface albedo was calculated from the corrected incoming shortwave radiation
and observed reflected shortwave radiation flux (Figure A1). Snow stake array depth
observations were only collected for WY2007-2012, so the mean slope and aspect for each
calendar day were used to approximate a daily corrective Mβ value for WY2013-2019
(Figure A2). In addition to correcting for non-level snow surface, we also adjusted for snow
deposition on the up-facing pyranometers. Accumulation on the up-facing pyranometers
reduces the measured incoming shortwave radiation compared to the actual incoming
shortwave radiation.

Figure A1. Hourly snow surface albedo was corrected for a non-level snow surface and seasonally
shifting solar position to capture diurnal variation.

Figure A2. Observed snow surface correction values for WY2007–2012 (color lines) and approximated
surface correction value used for WY2013–2019 (black line) over ablation season (April, May, and
June). Vertical dashed line is the latest observed date of SAG (WY2011) for the period.

Appendix B. Model Components

The forcing and state variable for the SNOBAL model runs are presented in Table A1.
The percent of precipitation as snow and the associated fresh snow density used in the
SNOBAL model runs are summarized in Table A2.

Table A1. Required forcing variables and modeled state variables for SNOBAL (after Marks et al. [52]).

Forcing Variables State Variables

Net shortwave radiation (W/m2) Snow depth (m)
Incoming longwave radiation (W/m2) Snow density (kg/m3)

Air temperature (◦C) Snow surface layer temperature (◦C)
Vapor pressure (Pa) Average total snowpack temperature (◦C)
Wind speed (m/s) Average snow liquid water content (%)



Hydrology 2022, 9, 47 21 of 26

Table A2. Precipitation partitioning table and fresh snow density based on dewpoint temperature
(after Susong et al. [53]).

Dewpoint Temperature (◦C) Percentage of Snow (%) Snow Density (kg/m3)

Td < –5 100 75
–5 ≤ Td < –3 100 100

–3 ≤ Td < –1.5 100 150
–1.5 ≤ Td < –0.5 100 175

–0.5 ≤ Td < 0 75 200
0 ≤ Td < 0.5 25 250

0.5 ≥ Td 0 0

Appendix C. Observed and Computed Annual Data

The observed and computed data are summarized in Table A3.

Table A3. Observed (dust concentration to dust events post-peak SWE in columns 2 to 7), computed
(DEAE in column 8), SNOBAL modeled (∆SAG in column 9), and streamflow-derived (tQ50 in column
10) annual data for the 13 study years at SBB, as per the data presented in Table 1.

WY
Dust
Conc.

(mg/g)

Dust
Events

ΣHK-IN
(MJ/m2)

Σprecip
(mm)

1 April
SWE
(mm)

Fraction of
Dust Events

Post-Peak
SWE

DEAE
(W/m2)

∆SAG
(Days)

tQ50
(Date)

2007 1 8 1543 256 508 0.13 33.3 19 11 June
2008 0.88 7 2004 229 780 0.57 40.1 23 21 June
2009 4.55 12 1213 195 729 0.17 46.4 31 30 May
2010 4.35 9 1494 181 675 0.56 45.4 23 9 June
2011 1.78 11 2090 419 623 0.18 37.2 27 25 June
2012 1.35 12 969 93 420 0.58 37.5 13 22 May
2013 7.92 10 1142 128 469 0.20 44.2 18 5 June
2014 5.22 10 1629 223 589 0.30 40.3 24 15 June
2015 0.79 3 1744 313 493 0.00 31.0 11 16 June
2016 1.41 6 1677 207 572 0.00 38.7 19 14 June
2017 0.22 4 1763 183 665 0.25 37.3 14 13 June
2018 0.92 8 1084 134 393 0.13 36.2 14 25 May
2019 0.67 7 2477 304 843 0.43 50.0 23 28 June

Appendix D. Model vs. Observed Model Correlation

The fit between the SWE only and optimal multi-variate linear regression models for
DEAE and ∆SAG are shown in Figure A3a and A3b, respectively.
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Figure A3. Modeled vs. observed (a) DEAE, (b) ∆SAG, and (c) tQ50 for SWE only and the optimal
multi-variate linear regression models (see Table 2).
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