hydrology

Article

Quantification of Precipitation and Evapotranspiration
Uncertainty in Rainfall-Runoff Modeling

Faisal Baig 1-2(", Mohsen Sherif ** and Muhammad Abrar Faiz 2

check for
updates

Citation: Baig, F; Sherif, M.; Faiz,
M.A. Quantification of Precipitation
and Evapotranspiration Uncertainty
in Rainfall-Runoff Modeling.
Hydrology 2022, 9, 51. https://
doi.org/10.3390/hydrology9030051

Academic Editor: Abdullah
Gokhan Yilmaz

Received: 27 January 2022
Accepted: 9 March 2022
Published: 21 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Civil and Environmental Engineering Department, College of Engineering, UAE University,

Al Ain P.O. Box 15551, United Arab Emirates; 201990038@uaeu.ac.ae

2 National Water and Energy Center, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
abrarfaizQuaeu.ac.ae

*  Correspondence: msherif nwec@gmail.com or msherif@uaeu.ac.ae

Abstract: Mountainous watersheds have always been a challenge for modelers due to large variability
and insufficient ground observations, which cause forcing data, model structure, and parameter
uncertainty. This study employed Differential Evolution Adaptive Metropolis (DREAM) algorithm
which utilizes Markov Chain Monte Carlo (MCMC) approach to account for forcing data uncertainty.
A conceptual degree day snowmelt model, MIKE 11 NAM (Nedbor Afstromnings Model), was used
to simulate snowmelt runoff from Ilgaz basin, with an area of 28.4 km? area, located in the northern
part of Turkey. The mean elevation is around 1700 m and the basin is covered with broadleaf forest
and has mainly brown soil with a high water holding capacity. Precipitation and evapotranspira-
tion (ET) values were optimized in combination with model parameters conditioned on observed
discharges and corrected values of input data were utilized for calibration and validation. Results
showed that the observed precipitation was over-estimated by almost 10%, while evapotranspiration
calculated by Penman-Monteith method was underestimated. The mean values of storm and ET
multipliers were obtained as 1.14 and 0.84, respectively. When only parameter uncertainty was
considered, calibration did not yield Nash—Sutcliffe Efficiency (NSE) greater than 0.64. However,
when forcing data uncertainty was incorporated in the DREAM approach, an improved value of
NSE (0.84) was obtained. After calibration and treatment of forcing data errors, the model yielded
reasonable prediction uncertainty bounds and well-defined posterior distributions of NAM model
parameters. Main objectives of the study are to assess the applicability of MIKE 11 NAM model to
the selected catchment. In addition, the importance of errors in the input forcing variables to the
model is demonstrated.

Keywords: uncertainty; hydrological modeling; NAM; DREAM

1. Introduction

A multitude of hydrological models have been developed to simulate physical pro-
cesses of catchments. Despite the fact that several models maintain a decent sophistication
in temporal and spatial complexity, they all transform the complex basin characteristics
into naiver theoretical storages and transfer procedures. Characterization of catchment
properties is usually accomplished by assessing the model parameters through calibration
by tuning the model parameters such that the difference between the observed and mea-
sured responses becomes minimum. The parameters thus optimized efficiently represent
the complex and distributed watershed properties. A key flaw of such calibration approach
is the premise to ascribe all uncertainty sources to model parameters in an implicit manner.
However, in addition to the uncertainty associated with model parameters, several other
sources also affect model predictions including initial and boundary conditions, input data
errors and structural deficiencies in model [1]. Therefore, it is not justified to implicate all
sources of uncertainty to model parameters only considering the variable and complex
nature of hydrologic system.
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Lately, noteworthy studies have been conducted to develop a structured framework
for uncertainty treatment [2]. Although a considerable number of studies laid emphasis on
enumerating parameter uncertainty only [3-10], a few studies, however, also dealt with
uncertainty related to input data [11-16], while other studies combined errors related to
model structure as well [2,17]. Computational burden and time consumption are some of
the issues related to incorporation of input data errors to be explicitly treated. However,
proficient algorithms have been developed for complex distribution sampling [9,18] to
approximate uncertainty in various sources and processes in modeling process.

Treatment of input uncertainty usually dealt with only rainfall uncertainty as this
was considered as a major forcing factor for hydrological models [9]. However, one
cannot disregard the influence of errors in other input sources, such as potential evapo-
transpiration (ET). Evapotranspiration is a key factor of water accessibility in combination
with rainfall [19-21]. Therefore, regional energy balance and water balance are highly
linked with the unambiguous estimation of ET. The land surface models (LSMs) and
satellite remote sensing along with the Penman-Monteith approach for the quantification
of ET have uncertainties due to numerous factors [21-24]. In this study, the ET uncertainty
was treated explicitly along with precipitation uncertainty and it is shown that it can
prominently increase the efficiency of model outputs.

This paper uses an advanced Markov Chain Monte Carlo (MCMC) approach within
a Bayesian framework for the assessment of posterior probability density functions of
parameters. This approach is known as differential evolution adaptive Metropolis (DREAM)
originally introduced by [16] and reintroduced as a full MATLAB package [25]. The DREAM
algorithm simultaneously utilizes several chains for global investigation, while balance
and direction of the proposal distribution are automatically tuned during the evolution
process. The algorithm is adapted from a global optimization algorithm named as the
Shuffled complex evolution Metropolis [9] which maintains the comprehensive stability and
ergodicity. Ref. [26] have shown that DREAM can be successfully used for analyzing input
rainfall errors, while dealing with additional latent variables for the rainfall events. They
were able to decrease the uncertainty in model outputs with the explicit treatment of rainfall
errors along with hydrological model parameters. This study extended their approach to
incorporate the ET uncertainty by adding latent variables in the model hypothesis and to
show the simultaneous effects on model output uncertainty.

The proposed scheme is based on the premise that observed discharge contains all
the necessary information which can be extracted to do the backward hydrology [27].
Bayesian total error analysis (BATEA) approach of [14,28] forms the basis of this scheme.
However, the quantification of rainfall, model parameters, and ET multipliers is accom-
plished by utilizing an unlike inference approach to delineate forcing data errors. The
simultaneous treatment of rainfall and evapotranspiration uncertainties along with model
parameter uncertainties would somehow make the calibration as resource extensive and
high dimensional procedure. Therefore, an efficient iteration sampling scheme (MCMC)
was used which will provide the constrained posterior distribution despite the multitude
of parameters to be optimized. A conceptual rainfall runoff NAM model was used to
quantify uncertainty in model simulations. NAM is a lumped, deterministic model which
makes use of ten parameters for the simulation of runoff and has been exploited by many
researchers [29-32].

In the following section, first, a short depiction of the conceptual NAM model and
DREAM approach is outlined which is essential for the successful implementation of the
methodology, followed by the approach used to incorporate rainfall and evapotranspiration
multipliers. The approach extends the work of [12,26] and the application of DREAM
to mitigate the input uncertainty for the model output of conceptual NAM model is
demonstrated through various case studies. A summary is presented as a conclusion.
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2. Materials and Methods
2.1. Hydrological System and Data Used

llgaz catchment (28.4 Km?) of Turkey is used for this study with a mean elevation
1700 m above the sea level. Snowmelt is the main cause of the peak flow in the catchment,
which usually occurs in April. The annual average temperature for the study duration
was 5.70 °C with a yearly snow depth accumulation of 36 cm. Likewise, yearly mean
flow from the basin flow for the duration of study was 14 hm?. The rainfall in the study
area is maximum in the months of June-July with average monthly rainfall reaching to
more than 70 mm per day while November is considered as the driest month with average
monthly rainfall of as low as 22 mm per day. Overall, the area receives a fair amount of
rainfall throughout the year. Figure 1 depicts the site of the study area together with the
flow measuring station, meteorological station, and elevation zones. The meteorological
station used in the catchment lies at 33°43'05, 4104’15’ E at an elevation of 1775 m. Whereas
Kastamonu station is located at 1000 m elevation above mean sea level and at 41°23'51” N,
33°43'5" E. The area comprises mainly of coniferous forests with a small share experiencing
farming practices.
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Figure 1. Location of the study area; (a) the geological map of Turkey. (b) The location of meteorolog-
ical station and catchment outlet and (c) the elevation zones present in the catchment area.

Daily discharge and rainfall data from 1 October 2012 to 30 June 2017 was utilized in
the study (Figure 2). Climatological data were acquired from the weather station situated
inside the catchment. However, some of the data were missing, which were consequently
acquired from a nearby Kastamonu station, which has an elevation of 1000 m above sea
level. Owing to the elevation difference between both the stations and to make us believe
in using data from a lower elevation meteorological station, the Spearman rho statistical
correlation and Mann-Kendall tests were employed, which exhibited good correlation to



Hydrology 2022, 9, 51 40f19

approximate the missing data. Daily evapotranspiration values were estimated by using
Penman—-Monteith method using R environment.
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Figure 2. Hydro meteorological data of the catchment from 2013-2017 water years.

2.2. NAM Rainfall Runoff Model

A lumped, conceptual rainfall runoff code NAM (Nedbor Afstromnings Model) is
utilized in this study. The water content from the overland flow, interflow and base flow
is usually accounted by this model [33]. NAM simulates the lateral flow in the MIKE 11
module of Danish Hydraulic Institute (DHI), Denmark [1]. Figure 3 delineates the physical
processes of the model that govern the runoff simulation and reflecting each sub-catchment
as a single unit, hence the parameters and variables typically characterize mean values
for the whole sub-catchments. A continuous runoff time series is achieved as an outcome
of the model during the modeling period. Therefore, both base and peak flow states are
yielded by the NAM model accounting for antecedent soil moisture conditions.
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Figure 3. Simple process diagram for NAM model without soil moisture profile.
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2.3. Markov Chain Monte Carlo Scheme

Markov chain Monte Carlo (MCMC) approach was originally presented by [34] to
approximate the expectancy of any function f of a distribution 7 i.e., Ex f(x). Markov chain
forms the basis of such techniques by exploring the search space through a random walk
and successively visiting stable solutions [16]. MCMC algorithm executes experimental
moves starting from the existing initial state of the chain to the next state z. Random Walk
Metropolis (RWM) is known as the simplest kind of MCMC approach. First, a nominee
point (z) is tried out based on the current position, x;_1, and it is also symmetric i.e.,
q(xt—1,2) = q(z,X¢—1). Additionally, the nominee point can be rejected or accepted on the
basis of Metropolis acceptance probability Equation (1):

x(Xt-1,2) = { L [”E;(tz—)l) ’ 1} ifn(x-1) > 0 (1)
1 if (x¢—1)=10
where 7 (.) symbolizes the probability density function (pdf) of the aimed distribution.
Accordingly, the chain travels and advances to z if the proposal is recognized, or it rests at
its recent location x;_1.

The proposal of RWM can jump both ways in equal probability and hence defined as
the symmetric property of RWM. Equation (1) was further exploited by [35] to integrate
asymmetrical proposal distribution as q(x(_1,z) # q(z,X(—1), which prevents the converse
leaping of the proposal. This addition is termed as Metropolis Hastings (MH) algorithm,
and many prevailing MCMC sampling structures have their basis on MH algorithm. MH
algorithm competence generally relies on the orientation and scale of the proposal distribu-
tion. For instance, too many candidate points could be discarded owing to the larger width
of the proposal distribution, and as a result, slow convergence and ineffective mixing of the
chain toward target distribution may occur. Conversely, a narrow distribution could accept
all candidate points. Therefore, proposal distribution selection is acute and governs the
efficacy of MCMC simulations [36].

Most of the problems relating to suitable jumping distribution can be handled by
tuning the proposal distribution automatically. This strategy exploits the sampling his-
tory information to constantly adjusting the size and shape of the proposal distribution
and advancing the sampler competently toward a restraining distribution. Examples of
such methodologies are Adaptive Proposal (AP), Delayed Rejection Adaptive Metropolis
(DRAM) algorithms, and Adaptive Metropolis (AM) [37-39]. The covariance adaptation
strategy used in AM, AP, and DRAM is suitable for comparatively simple inference prob-
lems and does not work well when heavy tailed and multifaceted posteriors are included.
Therefore, a single chain is incapable to deal with these complications. Owing to the above
mentioned limitations of MCMC schemes, Differential Evolution-Markov Chain (DE-MC)
method was introduced by [40] which runs N different Markov Chains simultaneously
in parallel. DE-MC potentially resolves two main problems in MCMC sampling. Appro-
priate balance and direction of the proposal distribution are automatically selected and
heavy-tailed and multimodal target distributions are efficiently accommodated.

2.4. Differential Evolution Adaptive Metropolis (DREAM)

Vrugt et al. 2009 demonstrated that an accustomed and self-adaptive evolution scheme
with subspace randomized sampling could enhance efficiency of DE-MC scheme. This
suggested scheme preserves a comprehensive stability and is known as Differential Evolu-
tion Adaptive Metropolis (DREAM). This method is an extension of the Shuffled Complex
Evolution Metropolis algorithm [9] and preserves comprehensive stability and ergodicity
while demonstrating outstanding competence on multifaceted, extremely non-linear, and
high dimension distributions [18]. The detailed DREAM algorithm can be found in [16]
and therefore is not included in this manuscript.

The DREAM methodology initiates with a preliminary population points to extract
possible answers. Multiple regions of highest attraction are approached by using a number
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of various chains with unlike starting points. The search progress of individual chains
is globally shared within the population of points. Therefore, the survivability of indi-
vidual chains is improved and the generated MCMC sampler conducts a vigorous and
competent pursuit of the parameter space. MCMC samplers are prone to the outlier chains,
which are required to be excluded for improved convergence. Interquartile range statistic,
IQR = Qy — Qy, is calculated for this purpose and Q7 and Q; symbolize the upper and lower
quantiles of the N different chains, respectively. The removal of outliers affects the detailed
balance of the process and therefore, it is usually accomplished during the burn-in period.

2.5. Inference Methodology

Imitation of the system under consideration by the assessed parameters is vital in
catchment modeling. Most of the model parameters are approximated through calibration
of catchment models. Figure 4 reveals numerous sources of uncertainty and depicts the
common calibration methodology. The key notion in calibration is to relate simulated and
observed outcomes and improve the parameter accuracy by curtailing the error between
the outcomes. Preferably, the observed and simulated values dissimilarity should be as
close to zero, which becomes difficult due to the existence of errors at various phases of the
modeling scheme. Likely, the initial presumed parameter ranges might contain an intrinsic
uncertainty and the uncertainty in the forcing data measurement as well. Likewise, the
errors due to poor structure of model can cause uncertainty in the modeled results and
eventually, the observed values or calibration data might be subjected to measurement
discrepancies. The incongruity between simulated and observed outcomes is typically
ascribed to the parameter ambiguity and the influence of forcing data errors is generally
ignored which can potentially increase overall uncertainty of the model outputs.

_

parameter uncertainty optimize calibration
> parameters <+

process

[
A
‘ ’ Sinlulatea Iesponse -

forcing data uncertainty model structure errors

Figure 4. Schematic diagram for model calibration and error propagation in catchment modeling.

2.6. Precipitation Forcing Data Error

A hydrological model, whether conceptual or physical, can be approximated as
Equation (2)
Y =f 0,19,D) (2)

where Y ={y1, ..., yn} is the simulated response of the model to forcing D (rainfall, ET, etc.,)
and initial conditions 5. Function f : D, 5 — Y. represents the model hypothesis which
can be either deterministic or stochastic bounded by the parameter vector 6. The effect of
initial conditions g usually plummets as the time elapses after the start of simulation and
therefore a warm up period is defined at the start of simulation to lessen the effect of state
value initialization [16]. The suitability of function f is usually guaranteed by matching its
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output with observed measurements Y= {¥1, ..., ¥n} and the residual vector is achieved
by taking the difference between Y and Y:

0¥, D,n)=y; (8| D,n)—9; i=1,...,n 3)

The error in Equation (3) should be principally close to zero but it cannot be material-
ized due to various error sources in the observed forcing data and initial conditions and
due to the structural deficiencies in the model. The inappropriate selection of parameter
vector 6 also contributes to the total error. The sum of squares of residuals (SSR) is a
commonly utilized measure to be minimized with simultaneous tuning of parameters
without explicitly treating other sources of errors:

SSR(6]Y,D,y) = Y, &(6]Y,D,p)? (4)

Equation (4) can be optimized through numerical optimization methods, but these
methods usually provide only the finest optimized parameter set without furnishing the
requirement of the posterior probability density function of 6, p(6| Y, D, ). Bayesian
paradigm is a fruitful way to associate various probability distributions through Bayes the-
orem and once coupled with the Monte Carlo sampling, it can handle various error sources
systematically. The suitability of this technique in quantifying the errors in environmental
modeling has been shown by many studies [9,16,18,41-43]. Equation (3) can be written as
a log-likelihood function after making some assumption [16] and the final form becomes
as follows:

16] Y, D, y) = ~ 5 In(27) ~ 2 In(0?) = 202 X YL, (i(6ID, ) - 5 )
Equation (5) does not consider the forcing data uncertainty explicitly. However, it
can be modified to incorporate the precipitation uncertainty by a similar approach used
by [26] who showed that the forcing error could be treated in hydrological modeling by
allocating precipitation multipliers to each rainfall event rather than making every single
precipitation value as a latent variable. So, first, the distinct rainfall events are recognized
from the careful observation of hydrograph and hyetograph. In every event where k =1,
..., ¢ is allotted a dissimilar rain multiplier i, and then integration is done in the vector
of model parameters to be optimized. So, Equation (5) can be written in a modified form as
shown in Equation (6):

. n n 1 .
10,6/ ¥, D, p) = =3 In(27) = SIn(02) = 502 X YL, (wi(0ID, m) =7:)°  (6)

2.7. Evapotranspiration Forcing Data Error

The above approach was extended in this study to treat the uncertainty in evapotran-
spiration data explicitly. To avoid over parametrization and complexity in the calibration
scheme, ET values were considered constant for each month, although daily values were
used in the hydrological model. This approach would confine the ET parameters to 12 per
year which can be optimized using the prevailing algorithm. Each monthj=1, ..., was
assigned a different multiplier ¢; and the corresponding values were integrated in Equation
(6) in a similar manner as rainfall multipliers were added. So, Equation (7) would now take
the following form:

1

& n n — n ~
106,51 ¥, D, 1) = =5 In(27) = 21n(0?) = 20,2 X YL (6D, ) = 9,* @)

2.8. Case Studies

To exemplify the robustness of the method, the NAM conceptual model was utilized
for streamflow forecasting. NAM is usually developed with ten parameters which are
described with their prior uncertainty ranges in Table 1.
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Table 1. Description and initial ranges of NAM rainfall runoff model.
Parameter Range Definition
Umax (Mmm) 1-50 Surface storage water content (maximum)
Imax (mm) 1-1000 Root zone storage water content (maximum)
CQOF 0-1 runoff coefficient for overland flow
ckIF (h) 0.01-1000 Interflow time constant
ckio (h) 3-100 Overland flow routing time constant
Tof 0-0.99 Overland flow threshold value for root zone
Tif 0-0.99 Inter flow threshold value for root zone
ckbf (h) 0.01-5000 Time constant for routing base flow
Tg 0-0.99 Groundwater recharge threshold value for root zone
Csnow (mm/d/°C) 0.5-10 Degree day coefficient

Keeping in view the addition of so many latent variables in terms of precipitation
and evapotranspiration multipliers, we excluded some of the non-sensitive parameters
of NAM model from the optimization algorithm. Based on the expert judgment and
extensive sensitivity analysis results, which were carried out by the authors in their previous
work, three parameters were not included, namely, root zone threshold value for overland
flow (TOF), root zone threshold value for interflow (TIF), and root zone threshold value
for groundwater recharge (TG). These parameters were set to a fixed value from their
prior ranges.

We selected first 4 years of data for calibration and the remaining data were utilized
for validation. The time series data in hand, albeit not in good quantity, provided quite
reasonable results for a small catchment under consideration. In addition, using longer
time series data would cause computational issues as with every added water year, and a
greater number of multipliers would be incorporated into the calibration scheme. For the
calibration period of 4 years, a total of ¢ = 170 storm events and ¢ = 48 evapotranspiration
months were distinguished. The prior uncertainty ranges or lower and upper bounds
for the storm multipliers were adopted from [26] as [0.25 2.50] while the range for the
evapotranspiration multipliers was set as [0.25 1.25]. The justification for the range for
evapotranspiration multipliers will be discussed in the coming sections. Table 2 presents
the ranges of NAM model parameters and storm and ET multipliers to be optimized.

Table 2. Prior uncertainty ranges of the parameters for optimization.

Parameter Range Definition
Umax (mm) 1-50 Max W.C in the surface storage
Lmax (mm) 1-1000 Max W.C in root zone storage
CQOF 0-1 Overland flow runoff coefficient
CKIF (h) 0.01-1000 Time Constant for Interflow
CKjp (h) 3-100 Time constant for routing overland flow
oxk=1,...,¢ 0.25-2.5 Storm multipliers
CKBF (h) 0.01-5000 Time constant for routing base flow
gi=1....¢ 0.25-1.25 Evapotranspiration multipliers
Csnow (mm/d/°C) 0.5-10 Degree day coefficient

The prior distribution of parameters in Table 2 was set as uniform, as is the usual
practice during iterative calibration schemes. However, ref. [28] raised objections for using
the uniform prior for storm multipliers, as they believed that the resulting parameter
estimation could not be well posed which is pertinent in inverse problems. But [26] did not
seem to second this surmise while treating input rainfall uncertainty using the DREAM
methodology and showed that DREAM could reasonably handle the less informative prior
for the rainfall multipliers. Therefore, the prior uniform distribution was used both for
storm and evapotranspiration multipliers in this study.
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In the first stage, NAM parameters were estimated without incorporating forcing data
uncertainty to set a benchmark for our further scenarios (case 1). Then, the estimation of
NAM parameters along with precipitation multipliers is done (case 2) and finally evapo-
transpiration multipliers were estimated (case 3) to see the impact on model efficiency and
corresponding uncertainty ranges.

3. Results and Discussion
3.1. Classical DREAM Simulation (Estimation of NAM Parameters Only)

In this case, the NAM parameters (modified) were assessed explicitly. Marginal
posterior probability distributions of the estimated NAM parameters are shown in Figure 5.
Almost 500,000 simulations were generated and the final posterior distributions were
obtained utilizing the last 25 percent of the samples after reaching a convergence threshold.

1,
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100 200 300 400 500 350 4 450 500
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Figure 5. Histograms of posterior probability distribution of NAM parameters (modified) from
DREAM without explicit treatment of forcing data error. Optimum parameter value is represented
by the cross mark.

Prevalent asymmetry can be seen in the rightly skewed marginal probability dis-
tribution of most of the parameters. However, CKBF and Cgspow parameters posterior
distribution is relatively normal depicting the mean value close to the middle. The presence
of other sources of inherent uncertainties is evident from the deviance of Lmax, CQOF,
Umax, CK12, and CKIF from the normal distribution and therefore, instigates to explic-
itly judge those sources, which might be because of model structure or forcing data. Yet,
a prominent aspect of these posterior distributions is the occupancy of shorter regions,
irrespective of the prior ranges.

95% prediction uncertainty band are shown in Figure 6 portraying the rendering
of model parameter uncertainty into prediction uncertainty. Explicit representation of
validation and calibration periods are shown in Figure 6a,b. Even though the simulated
uncertainty bands shadowed a matching pattern with the observed stream discharges
(calibration period), some large incompatible portions were still present and it looked like
the uncertainty bands could not hold maximum observation points. Unexpectedly, the
patterns were highly incompatible during the validation period with a broader shaded
area, demonstrating the inefficiency of assessed parameters in the validation period. The
shaded portion was comparatively thinner during the calibrating stage, but it failed to
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capture the maximum flows most of the time and the model results were underestimating
the observed flow. These results triggered the intuition of having further error causes that
could reinforce the surmise of handling the input forcing data errors in an explicit manner.
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Figure 6. 95PPU of classical calibration using DREAM. Solid blue lines represent observed flow while
the shaded region shows the 95PPU.

3.2. Estimation of Storm Multipliers along with NAM Parameters

The simultaneous estimation of storm multipliers and NAM parameters was done
to explicitly inculcate precipitation uncertainty. For the calibration period, a total of
0 = 170 precipitation multipliers were optimized from the selected range [0.25 2.5] us-
ing Latin hypercube sampling. In this case, DREAM was prepared to optimize d = 177
parameters as 6 = 170 precipitation multipliers were fused with seven NAM parameters. A
population size of N = 2d was set, based on the literature [25]. For this case, 500,000 simula-
tion runs were performed and the last 20% simulations were used after DREAM converged
to the threshold limit. For this case, the evapotranspiration values were kept constant for
the whole calibration period just to observe the sensitivity of evapotranspiration for Ilgaz
catchment. Figure 7 reveals the marginal posterior density graphs with explicit treatment
of precipitation uncertainty.

The marginal pdfs of the parameters were well defined and most of the parameters
sustained quite normal distribution, except Umax, which was still in the truncated form



Hydrology 2022, 9, 51

11 0f 19

with most of the density toward the left side. In addition, after explicitly treating the
precipitation uncertainty, the mode of parameters had also shifted to different values and it
was evident that the estimated value for the overland flow runoff coefficient CQOF was
now under physically viable range, which was previously very low. The values for the
degree-day coefficient Csnow were now properly distributed around the mean and the
mode was in a reasonable range. Interestingly, the mode of Umax remained almost the
same toward the lower value and it seemed that it was still hungry for the extension of
the range toward the lower side of the hypercube that cannot be further relaxed without
harming the rather realistic behavior of the model.
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Figure 7. Histograms of modified NAM parameters with simultaneous estimation of precipitation
multipliers. Cross marks represent the optimized parameter values.

Similarly, the 95% prediction uncertainties are shown in Figure 8a,b. It is observed that
the exclusive treatment of precipitation errors not only compensated for the mismatches
between the peaks, but it also provided quite reasonable and narrower 95% prediction
bounds (Figure 8a). The peaks that were dominantly underestimated in Figure 6a, were
somehow in good agreement, although the peak for the water year 2015 still could not be
reached. Moreover, there were also some small portions where the model was showing
underestimation. The validation period did not conform to the observed stream flows and
the 95% prediction intervals were wider with less coverage of the observed data. These
discrepancies implied that there was still some margin that other sources of errors might
still be contributing toward the model prediction uncertainty, which could be treated such
as evapotranspiration and model structure error.

Figure 9 presents the histograms of all the precipitation multipliers combined. It is
evident that the observed precipitation was largely underestimated, as the mean value of
precipitation multipliers was approximately 1.37. This means that the observed precipi-
tation was significantly underestimating the actual precipitation by almost 37%. As we
have set the evapotranspiration values as constant for the whole calibration period just
to check the sensitivity of model to evapotranspiration, the mean value of 1.37 might be
for the compensation for that fact. Figure 6a also supports the evidence of the existence of
some considerable errors in the input forcing, investigation of which deemed unavoidable.
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Figure 9. Histograms of all the precipitation multipliers combined for the Ilgaz catchment.



Hydrology 2022, 9, 51

13 0of 19

For stream flow prediction, the similar concept can be deployed to treat the precip-
itation uncertainty for the validation period. This can be materialized by creating the
ensemble of precipitation values for the validation period. From the precipitation multi-
plier histogram, a single multiplier for individual storms would be sampled, followed by
combining this vector of multiplier with observed rainfall data. In this way, an ensemble of
precipitation values would be achieved which can be grouped with the already estimated
model parameter values and stream flow hydrographs outside the calibration period can
be realized. The approximated stream flow hydrographs include an explicit treatment of
precipitation data error.

3.3. Explicit Treatment of Evapotranspiration Uncertainty

In this section, the results of simulations with an explicit treatment of forcing data
(precipitation + evapotranspiration) error are discussed. Equation (9) was used to explicitly
incorporate evapotranspiration uncertainty along with precipitation and model parameter
uncertainty. The evapotranspiration data error mainly affects the dry months’ period and
it will be rather easier if evapotranspiration multipliers for those months are estimated.
However, it was decided to include the whole water year instead of using the dry season
only. The justification for this approach could be the weakness of the model simulation
for the low flow seasons and since evapotranspiration is usually governed by many other
factors than sunshine itself.

Figure 10 presents the posterior parameter distributions of NAM parameters. The
simultaneous estimation of precipitation and evapotranspiration multipliers did not affect
the posterior pdfs of NAM parameters, except that the mode of overland flow runoff
coefficient CQOF increased and shifted closer to 0.5. Moreover, the maximum water
content in the surface zone storage shifted to a higher value with overall high probability
density region (HPD) in a very small range.
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Figure 10. Histograms of modified NAM parameters with simultaneous estimation of precipitation
and evapotranspiration uncertainty. Cross marks represent the optimized parameter values.

The explicit treatment of evapotranspiration uncertainty resulted in over-estimation
in the measured evapotranspiration values, which surpassed the actual evapotranspira-
tion by almost 14%. The mean value for evapotranspiration turned out to be 0.86 with
some of the multipliers still in the close vicinity of 01. This can be seen in the combined
histogram figures of evapotranspiration multipliers (Figure 11). Although the incorpora-
tion of evapotranspiration multipliers in the monthly evapotranspiration values did not
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cause a significant effect on the NAM parameters distribution and streamflow prediction,
however, the uncertainty in the precipitation values was considerably lessened with a new
mean value of 1.14 (Figure 12). It means that the explicit treatment of evapotranspiration
data largely compensated for the uncertainty in the precipitation data errors for the Ilgaz
catchment that supported our argument that both input sources should be given an explicit

treatment.

30
25
20

15

Density

10

5

0
[0.78, 0.815] (0.815, 0.85] (0.85, 0.885] (0.885, 0.92] (0.92, 0.955] (0.955, 0.99]

Evapotranspiration Multipliers

Figure 11. Histograms of all the evapotranspiration multipliers combined for the catchment.
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Storm Multipliers

Figure 12. Histograms of all the precipitation multipliers combined for the Ilgaz catchment after

explicit treatment of evapotranspiration multipliers.

The translation of parameter uncertainty toward stream flow prediction can be de-
picted from Figure 13 which was simply 95% prediction uncertainty range for calibration
and validation periods. It seemed that the explicit treatment of ET just compensated for the
over estimation of precipitation values, thus improving the output hydrograph. However,
it still improved certain underestimation for simulated discharges. For instance, in April
2013, the peaks were a bit matching, while before, there was an abrupt drop. The gap in
the month of January 2015 reduced considerably. The same was the case with August 2015
where the peaks tended to match. However, the 2015 peak (April) was not reached by the
model. The mismatch for the month of May 2016 was also compensated for.
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Figure 13. 95% prediction uncertainty ranges with explicit treatment of precipitation and evapotran-
spiration uncertainty for the Ilgaz catchment.

Finally, Table 3 shows the summary statistics of all the case studies considered sepa-
rately for calibration and validation periods. The tabulated values correspond to the mean
discharge values from the ensemble of outputs obtained from the posterior pdfs derived
through DREAM using 4 years of calibration period. For the evaluation periods, stream
flow was simulated by generating a precipitation ensemble for each storm by utilizing
various storm multipliers drawn from the marginal posterior distribution graphs. The
acquired precipitation records were combined with the NAM parameters posterior pdfs
(obtained through calibration) to be subsequently used for prediction. The values in Table 3
revealed that case study 3 could achieve the best performance when precipitation and
evapotranspiration uncertainty were treated explicitly. Case study 1 showed the least
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performance, even though an efficient iterative method (DREAM) was utilized for the
calibration purpose. This led to the need for extra measures for the explicit treatment of
other sources of errors, such as input or model structure uncertainty. In this study, the focus
was given to input data uncertainty and precipitation and evapotranspiration errors were
treated simultaneously with the NAM parameters. The results were appealing, as for the
calibration (case study 2), the NSE value escalated to 0.778 from 0.6 falling in the acceptable
region. The RMSE value also dropped significantly from 0.32 to 0.22. The results for the val-
idation period for case study 1 were not at par with quite a disagreement between observed
and simulated discharges and a wider range of 95% prediction uncertainty intervals. This
was compensated to some extent in the validation results for case study 2, where the NSE
approached 0.7 from 0.45 while a significant decrease in RMSE value was also observed.
Lastly, for case study 3, the efficiency measures were improved slightly, especially for the
validation period as the integration of evapotranspiration error largely compensated for
precipitation uncertainty.

Table 3. Summary statistics during calibration and validation periods for different scenarios *.

Calibration Period Validation Period
NSE RMSE Correlation NSE RMSE Correlation
Case Study 1 0.61 0.32 0.7 0.45 0.4 0.5
Case Study 2 0.778 0.22 0.88 0.70 0.24 0.8
Case Study 3 0.84 0.18 0.93 0.77 0.20 0.83

* Case study 1: classical calibration problem without explicit treatment of forcing data uncertainty. Case study 2:
simultaneous estimation of parameter and precipitation data uncertainty. Case study 3: simultaneous estimation
of parameter, precipitation, and evapotranspiration data uncertainty.

Table 4 contains the optimized and mean values of the modified NAM parameters,
precipitation multipliers, and evapotranspiration multipliers. The table shows that the
inclusion of precipitation and evapotranspiration multipliers changed the mode for most of
the parameters while uncertainty range of the some of the NAM parameters also increased.

Table 4. Posterior maximum probable (MAP) and mean values of modified NAM parameters,
precipitation multipliers, and evapotranspiration multipliers for different scenarios *.

Case Study 1 Case Study 2 Case Study 3
MAP MEAN MAP MEAN MAP MEAN
Umax 5 52 5.05 51 10.2 10.3
Lmax 1.9 2.1 1.76 1.81 1.76 0.81
CQOF 0.01 0.01 0.14 0.14 0.48 0.45
CKIF 145 156 70 75 70 75
CK12 12 12.5 20 23 21 24
CKBF 420 425 685 692 685 691
CSNOW 1.6 1.62 3.1 3.16 3.10 3.16
5 - - - 1.37 - 1.14
3 - - - - - 0.86

* Case study 1: classical calibration problem without explicit treatment of forcing data uncertainty. Case study 2:
simultaneous estimation of parameter and precipitation data uncertainty. Case study 3: simultaneous estimation
of parameter, precipitation, and evapotranspiration data uncertainty.

4. Conclusions

The estimation of model parameters and structural or input forcing errors require a
proficient and robust algorithm, which can tune the posterior probability density function of
the parameters. The MCMC algorithm used in this paper can competently estimate the pos-
terior pdf from a high-dimensional and complex parameter space. The MATLAB package
DREAM used in this study utilizes MCMC approach, runs simultaneous chains, and auto-
matically tunes the scale and orientation of the proposal distribution during the sampling
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procedure. The DREAM has the capability to maintain the detailed balance and ergodicity
and better depicts the efficiency in non-linear, multimodal, and complex distributions. The
applicability of DREAM was projected by application to a small catchment, which has the
contribution from snow melt runoff too. Therefore, the usefulness of the method for the
catchments having inherent complexity and un-evenness is also demonstrated.

A conceptual rainfall runoff model, containing ten parameters, is used for streamflow
prediction. To tackle over-parametrization and to reduce the computational burden, some
of the parameters were set to the fixed values through extensive sensitivity analysis. As
a major objective of this study, rainfall and evapotranspiration uncertainty was treated
explicitly which significantly tuned the posterior distribution of model parameters. It not
only helped in finding the optimized parameters of the model, but also highlighted the
percentage of error in the forcing data.

Three case studies were considered in this study. First, the conceptual model pa-
rameters were calibrated only followed by combined rainfall and model parameters and
combined rainfall, evapotranspiration, and model parameters. These case studies were set
to set a benchmark for prediction results and the posterior distribution of parameters. Seven
parameters were used in the case study 1 while in the second case, 170 rainfall multipliers
were detected and incorporated in the model. Next, the evapotranspiration multipliers
(12/year) were also added in the modeling hypothesis to materialize case study 3. For
case study 2, rainfall showed an underestimation by almost 37%, which was a significant
number. However, the treatment of rainfall uncertainty tuned the posterior distribution
and lessened the width of uncertainty bounds for streamflow prediction. The inclusion
of evapotranspiration multipliers did not have a significant effect on model parameters.
However, the rainfall uncertainty was minimized and the mean value for the rainfall multi-
pliers was reduced to 1.14. The evapotranspiration error treatment likewise showed that
the measured values of ET were over estimated by 14%.

Although the inference methodology could give reasonable results and reduce the
errors due to forcing data uncertainty, the improvement in the methodology still was a
question. Keeping in mind the computational efficiency, the evapotranspiration multipliers
were set to 12/year which could be further refined. The number of simulation runs may also
affect the posterior distributions of parameters. The present study provided satisfactory
results for the catchment under consideration, but the regionalization of the study approach
is highly required. The main limitation of the study include the curtailed amount of time
series data and a small study region. Nevertheless, the model still performed well in both
calibration and validation showing the efficacy of MIKE 11 NAM model over the study
area. Moreover, the applied methodology in this research could also be performed for other
geographical regions in the world in order to make the work more generalized. It can offer
a useful insight to the water resources managers about the errors present in the forcing
data and allow them to make substantial measures to effectively collect and acquire the
climatic inputs for hydrological models while minimizing the inherent errors.
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