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Abstract: Global warming together with environmental pollution threatens marine habitats and
causes an increasing number of environmental disasters. Periodic monitoring of coastal water quality
is of critical importance for the effective management of water resources and the sustainability of
marine ecosystems. The use of remote sensing technologies provides significant benefits for detecting,
monitoring, and analyzing rapidly occurring and displaced natural phenomena, including mucilage
events. In this study, five water indices estimated from cloud-free and partly cloudy Sentinel-2
images acquired from May to July 2021 were employed to effectively map mucilage aggregates on
the sea surface in the Izmit Bay using the cloud-based Google Earth Engine (GEE) platform. Results
showed that mucilage aggregates started with the coverage of about 6 km2 sea surface on 14 May,
reached the highest level on 24 May and diminished at the end of July. Among the applied indices,
the Adjusted Floating Algae Index (AFAI) was superior for producing the mucilage maps even for
the partly cloudy image, followed by Normalized Difference Turbidity Index (NDTI) and Mucilage
Index (MI). To be more specific, indices using green channel were found to be inferior for extracting
mucilage information from the satellite images.

Keywords: marine mucilage; remote sensing; Google Earth Engine; Sentinel-2; mucilage index; AFAI

1. Introduction

According to Global Risk Report 2020, the top five risks in terms of likelihood are
extreme weather, climate action failure, natural disasters, biodiversity loss, and human-
made environmental disasters. Water crises, including water pollution and other water
issues, is ranked in the top 10 risks in terms of their impacts. In this regard, water pollu-
tion has become a major issue, particularly in developing countries. On the other hand,
global warming and climate change, rising average temperatures causing extreme weather
conditions, have become a major concern that has been investigated for their reasons
and drastic outcomes. They have caused a surge in natural disasters, including melting
glaciers, volcanic movements, forest fires, desertification, floods, and landslides. Marine
mucilage also called “sea snot”, which usually outbreaks after the eutrophication period
and is caused by stressed phytoplankton communities, is another harmful effect of global
warming. The increased amount of domestic and industrial pollution, excessive fishing
and the existence of invasive species in the aquatic environments may be given as other
major factors for its occurrence [1]. Based on in situ observations, it is also reported that
there is a strong relationship between the system that triggered the mucilage event and
the high abundance of jelly-like organisms in the environment [2]. Mucilage events cause
substantial economic losses and destroy the balance in the aquatic ecosystem, adversely
affecting all species in the sea, particularly the ones on the seabed. Floating, sticky and
mucilaginous macroaggregates can be found in different forms, colors, and dimensions,
which are categorized into ten specific types in terms of their size ranging from centimeter
to kilometer, and shape together with their relative position in the water [3].
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Although marine mucilage events have been observed in the oceans since 1729, un-
certainty remains about the reasons for their emergence under different water and envi-
ronmental conditions. They generally appear after sudden changes in the biogeochemical
properties of the water and occur with long-lasting calm weather conditions, weak water
circulation in spring and fall terms, and reduced levels of nutrient (nitrogen and phospho-
rus) supply coming from rivers. Therefore, stability along the water column and sudden
increase in water temperature can be given as the leading causes of mucilage events when
intensive production processes and stable meteorological conditions exist [4–7]. For the
continuity of mucilage events, temperature changes, wind speed, and amount of rainfall
are the most effective factors [8].

With frequent appearances in the Adriatic and Tyrrhenian Seas, mucilage events have
been observed in different parts of the world [7,9–12]. In the Turkish seas, after the first
reported mucilage occurrence observed in the water column around Erdek Bay in 1992,
a massive mucilage event occurred in the Sea of Marmara between October 2007 and
February 2008, severely affecting the Bosporus and Dardanelles Straits [13–15]. In the
Çanakkale Strait, mucilage events were also observed between September 2007 and July
2008, and then more severely in March 2021. Another mucilage outbreak was reported in
the water column of the Dardanelles in December 2020 [16]. Following the extreme fishery
activities in 2018, increased populations of Salpa colonies, Rhizostoma pulmo, Aurelia aurita
species, and decreased phytoplankton and zooplankton populations were observed in the
Sea of Marmara [2]. In Spring 2021, a major mucilage event was recorded in the Sea of
Marmara that turned into a natural catastrophe. The organic structure of the mucilage
cover was much more intense, and the effect was more severe compared to 2007–2008 [17].
Floating sticky and gelatinous mucilage aggregates controlled by the wind and currents
accumulated on the coasts and diminished recreational suitability. Intensive fieldwork
was conducted by both by Turkish Ministry of Environment, Urbanization and Climate
Change (TMEUCC) and the municipalities to collect the aggregated from the sea surface
(>11,000 m3). Underwater observations conducted for several months revealed that the
mucilage was spread throughout the water column, decreasing the visibility, and then
collapsed to the seabed.

The Sea of Marmara (11,350 km2) connecting the Black Sea with the Aegean Sea
through the Straits of Bosporus and Dardanelles has an exceptional two-layer circulation
system [18]. The hydrodynamics of the Sea of Marmara is much more complex than that of
other seas in the world [19]. Its complex structure is caused by the water bodies moving
in layers within the system. Since the salinity in the Black Sea is lower compared to the
Aegean Sea, an upper stream of water with low salinity (~0–25 m) is formed from the Black
Sea towards the North Aegean Sea. Similarly, a high salinity bottom water flow is observed
in the opposite direction from the Mediterranean Sea to the Sea of Marmara. In addition to
the salinity layers, there are also temperature layers that show seasonal changes due to the
heating under the influence of solar radiation. It should be pointed out that its eutrophic-
mesotrophic upper layer is highly prone to anthropogenic and natural disturbances [20].
Many anthropogenic activities including heavy industrialization, urbanization and intense
fishing activities take place around the Sea of Marmara, which is surrounded by mega
cities including Istanbul, Kocaeli, Bursa, and Çanakkale. These activities certainly have
harmful effects on the welfare of the ecosystem. According to the official statistics provided
by The Turkish State Meteorological Service, while the mean water temperature in the
Sea of Marmara was 15 ◦C, it increased to 16.8 ◦C in the last decade (https://mgm.gov.tr,
accessed on 10 March 2021). Considering the monthly mean temperatures between 1970
and 2021, the hottest May was in 2021 at 19 ◦C (https://mgm.gov.tr, accessed on 10 March
2021). Ref. [20] underline the potential risk of an increase in the number and extent of the
phytoplankton blooms that may result in a total collapse of the water ecosystem. To protect
and improve the ecosystem in the Sea of Marmara, TMEUCC declared a conservation
action plan including 22 governmental actions.

https://mgm.gov.tr
https://mgm.gov.tr
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In the case of Izmit Bay, which is selected for this study, heavy industrialization and
urbanization have taken place during the past several decades [21]. The coast of the study
site is full of industrial factories and facilities, including petroleum refineries, cement,
fertilizer, metal, pesticides, detergent, and dye factories. The area is also subject to intense
shipping activities all year round [14,22]. All these activities cause water pollution, resulting
in frequent eutrophication events after the observation of potentially harmful species that
have a tendency for blooming [23–27]. In fact, a series of red tides were observed in the
Bay in 2015.

Monitoring sea surface mucilage and mapping its spatial distributions provide valu-
able information to the local authorities and decision-makers in developing prevention
and rehabilitation strategies. Since the 1970s, remote sensing has been the most effective
approach for detecting and monitoring water quality and water pollution. Spectral, spatial,
temporal, and polarization signatures are major characteristics of the remote sensing sen-
sors, helping to measure water characteristics [28]. Marine remote sensing is a subfield of
remote sensing with a continuously expanding agenda. Various studies include ecosystem
characterization, biodiversity assessment, oil spill detection, monitoring algal blooms, and
modeling seasonal and annual ocean circulation patterns. With recently launched sensors,
finer spatial resolutions, more spectral bands, higher radiometric resolutions, and shorter
temporal resolutions can be achieved, opening new horizons for researchers to investigate
biophysical aspects of the oceanic and nearshore environments. For detecting and monitor-
ing water quality (i.e., dissolved organic matter, chlorophyll, and total suspended matter)
the use of satellite data with visible and infrared spectra together with hyperspectral im-
agery has already been proposed by researchers (e.g., [28–31]). A recent study conducted
by [31] presents the spectral signatures of clear water and floating mucilage in Izmit Bay
(Figure 1). Band widths of Sentinel-2 imagery at 10 m and 20 m spatial resolution are shown
on the figure. As can be seen from the curves, they are extremely distinct from each other.
On the other hand, the spectral signature curve of mucilage resembles the reflectance of
algal blooms with higher reflectance in the near-infrared channel.
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In recent years, there have been noteworthy developments in storing, processing, and
analyzing data in cloud computing systems. Cloud-based Google Earth Engine (GEE) is a
new technology platform that enables planet-scale monitoring, measurement, and analysis
of changes in the Earth with its extensive data catalog, and large-scale computation system
optimized for parallel processing of geospatial data. It provides a basis for studies in many
fields due to its large data archive, code editor interface programmed to develop algorithms,
and online access without being connected to a single computer. In this study, the GEE
platform was used to produce mucilage maps of the Izmit Bay by applying water and
mucilage indices. Six cloud-free and one cloudy Sentinel-2 images for the period of May to
July 2021 acquired at 5-day intervals when mucilage outbreak was observed in the Sea of
Marmara were obtained from the Copernicus hub and employed for further analyses. In-
house JavaScript codes were developed in the GEE environment for retrieving, processing,
and mapping the Sentinel-2 images using the selected water and mucilage indices.

2. Study Area and Data

The Marmara Sea, which is a semi-closed basin, has a two-layer water system formed
as a result of the water exchange between the Black Sea and the Aegean Sea. Since the
salinity levels in neighboring seas are different, the salinity of the Black Sea waters flows in
the thin layer on the surface of Marmara (0–25m), and below this layer, salty waters enter
from the Aegean Sea. Surrounded by highly urbanized and industrialized cities, the Sea of
Marmara, located on the main transportation route is under high pressure from household
and industrial pollution. For several decades poorly treated wastewater of mega cities
has been discharged into the sea. As selected for this study, Izmit Bay, located in the east
part of the Sea of Marmara (Figure 2), is under the constant pressure of pollution. The
Bay has a weaker circulation compared to the other parts of the Marmara Sea [32]. The
deepest point is 208 m, located in the central part of the Bay. The main reason for the low
oxygen content in the Bay is a load of organic matter deposited from the upper layer and
the oxygen consumed because of the metabolic activities of the organisms in the lower
layer [2].
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In this study, Sentinel-2 images acquired by European Space Agency (ESA) were
used as the main data source. The Sentinel-2 mission started in 2015 and has a twin
satellite constellation providing images at 5-day intervals. Both satellites carry Multi-
Spectral Instrument (MSI) providing 4-bands at 10 m spatial resolution, 6-bands at 20 m
spatial resolution, and 3-bands at 60 m spatial resolution with 12-bit radiometric resolution
(Table 1). Radiometrically and atmospherically corrected Level-2A images acquired on May
14, 19, 24, and July 13, 18 and 28 having no clouds and June 13 having thin clouds were
obtained from Sentinel’s Scientific Data Hub (https://scihub.copernicus.eu/dhus/#/home,
accessed on 30 July 2021). It should be mentioned that June 2021 was generally cloudy and
rainy, which makes optical satellite images impossible to be used in such a study. Due to
these weather conditions and 5-day satellite acquisition frequency, cloud-free images could
not be obtained for June 2021. However, for testing the effectiveness of considered indices
in the delineation of mucilage-covered areas when thin or small clouds exist, an image
acquired on 13 June 2021, was employed in this research.

Table 1. Technical specifications of Sentinel-2 products.

Band Number Band Name Central Wavelength
(nm)

Spatial Resolution
(m)

1 Coastal Blue 443 60
2 Blue 490 10
3 Green 560 10
4 Red 665 10
5 Vegetation Red-Edge 705 20
6 Vegetation Red-Edge 740 20
7 Vegetation Red-Edge 783 20
8 NIR 842 10

8A NIR (narrow) 865 20
9 Water Vapor 945 60
10 SWIR-Cirrus 1375 60
11 SWIR-1 1610 20
12 SWIR-2 2190 20

3. Methodology

This study was carried out on the cloud-based GEE platform, using the JavaScript
coding language. In the first step of the study, satellite images acquired in May, June and
July 2021 were selected and downloaded from the hub considering the cloud ratio. Since
both cloud and mucilage may give spectrally similar reflectances, obstructing the separation
via spectral indices and classifiers, cloud-free images were firstly downloaded from the
database. In addition, an image including clouds was employed to test the performances of
the considered water indices. For this purpose, five water-related indices were employed
to extract mucilage-covered areas from the Sentinel-2 images.

3.1. Google Earth Engine

Launched by Google towards the end of 2010, Google Earth Engine (GEE) is an open-
access cloud computing platform that primarily enables the management, processing, and
analysis of publicly available big geospatial data. The GEE platform contains more than
40 years of remotely sensed raster data up to petabytes (e.g., Landsat, Sentinel, MODIS and
ALOS) [34] as well as vector-based spatial data representing some social and demographic
information [35]. The users take advantage of the high-speed parallel processing of Google
system architecture without needing a high-performance supercomputer system. With
an online code editor, which is one of the important components of the platform, users
can write scripts, develop complex file commands, and debug them. In addition, the
system API allows users to employ a series of operational tools such as machine learning
algorithms, data visualization, and feature collection through client libraries within the
Python and JavaScript programming languages.

https://scihub.copernicus.eu/dhus/#/home
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Until now, the GEE platform has been actively utilized in many geospatial data science
and remote sensing practices, including wetland mapping and monitoring [36], albedo
trend [37], land use land cover mapping [38], crop yield estimation [39], natural disaster
identification and prediction [40], and drought monitoring [41], chiefly because of its
promising prospects mentioned above. In this regard, Ref. [42] reported that the use of this
cloud-based platform has significantly increased in recent years, and it is expected that
this upward trend will continue in the future due to the potential engagement in different
domains [43].

3.2. Spectral Water-Related Indices

In remote sensing, many water-related indices (e.g., ABDI, ANDWI, AWE, FAI,
MNDWI, NDAVI, NDCI, NDTI, SWI, WI) have been proposed and applied by researchers
for the extraction of different characteristics of water. While some of them focus on the
detection of algal blooms, some others focus on the clarity or turbidity of the water. Consid-
ering the research question in this study, separation of mucilage, particularly low-density
mucilage, from the clear water surface and algal types is a difficult task due to the spec-
tral similarity, revisit frequency, and spatial resolution of the sensors. It should be also
mentioned that mucilage is commonly observed in thin and long lines or tracks on the
water surface.

Attempts have been made by researchers to analyze the color of the oceans and
extract information about the objects on the top layer of the water. Since researchers
usually study the colors of open oceans, indices were mainly developed for lower spatial
resolution imagery, particularly for MODIS imagery. To the best of the author’s knowledge,
the spectral index solely developed for detecting mucilage formation in the literature
was the Mucilage Index (MI) proposed by [44] who successfully applied the index to
the MODIS images of the Adriatic Sea to map mucilage events occurring in the summer
of 2004. The numerator of the formula enhances the decrease of reflectance typical of
mucilaginous material in the channel 3 compared to the average values of the channels 2
and 4. The low reflectance in the band 3 (459–479 nm) and the highest reflectance in band 4
(545–565 nm) are confirmed by measurements in situ with radiometers made in previous
studies. The channel 6 in the formula is at the denominator because it usually has a very
high value in case of the clouds and very low in case of mucilage [7]. It was reported by [44]
that MI values ranging from 0 to 5 correspond to the occurrence of mucilage. However,
Ref. [7] determined the optimal MI range as between 0.05 and 0.45 applying to the ARPA
Campania dataset. At this point, it should be mentioned that the MI index and Floating
Algae Index (FAI) [45] were originally developed for MODIS data. However, they can be
easily adapted to Sentinel-2 imagery by considering the bandwidths of the corresponding
bands. An improved version of FAI called adjusted FAI (AFAI) proposed by Ref. [46]
was also employed in this study. The formulation is different to FAI, where the center
wavelength is ignored since algae floating on the water surface have higher reflectance
in the NIR than in other bands. On the other hand, recent indices including Normalized
Difference Water Index (NDWI) and Normalized Difference Turbidity Index (NDTI) were
developed and applied to higher resolution imagery. Green and NIR bands are employed
in the estimation of NDWI with similar formulation to NDVI. Green and NIR wavelengths
were selected to: (1) maximize the typical reflectance of water features by using green
light wavelengths; (2) minimize the low reflectance of NIR by water features; and (3) take
advantage of the high reflectance of NIR by terrestrial vegetation and soil features [47].
Although the NDWI may not distinguish between suspended sediments and chlorophyll a,
it can provide information about the overall turbidity. On the other hand, clear water has a
distinct reflectance of weak response in the green, very small in the red and almost zero
response in the near infrared wavelength. Green and red wavelengths were used in the
NDTI formulation to estimate different degrees of turbidity.

In this study, surface mucilage aggregates were mapped using the above-mentioned
spectral indices. The formulations of these indices with corresponding references are given
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in Table 2. It should be mentioned that two versions of NDWI proposed by [47,48] were
employed in this research. Quantitative and qualitative assessments were performed on
the thematic maps produced by applying index equations to the selected Sentinel-2 images.

Table 2. Water-related indices formulated with Sentinel-2 spectral bands and used in this study.

Index Equation Reference

AFAI B8 − B4 − 0.5 × (B11 − B4) [46]
MI (((B8 + B3)/2)− B2)/B11 [44]

NDTI (B4 − B3)/ (B4 + B3) [49]
NDWI (B3 − B8)/ (B3 + B8) [48]

NDWIGao (B8 − B11)/ (B8 + B11) [47]

4. Results

To meet the objectives of this study, five spectral indices were firstly derived from six
cloud-free Sentinel-2 images obtained in May and July 2021. The indices were calculated
using equations given in Table 2 for all the images on the Google Earth Engine platform.
Specific GEE code was developed to produce the index map and then reclassify the pixel
values into 0-1 range, which ensured standardized representation of all figures with the
same scale. Whilst pixel values of 0 represent no mucilage, values of 1 show high mucilage
density shown with red color. Through the developed code, all index maps were created
separately and then combined to make common analyses and interpretations. Whilst the
thematic maps of AFAI and MI are given in Figure 3, those of NDTI, NDWI, and NDWIGao
are shown in Figure 4. It should be noted that some thematic maps have a diagonal line,
resulting from the combination of different tracks by the Sentinel data center.
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Thematic maps produced for the 14 and 19 May images showed a starting stage of
mucilage bloom densified in several locations in the Bay. For these particular days, the
clearest detection of mucilage aggregates was performed by the AFAI. Although the MI
detected the same locations much more clearly, it identified more mucilage accumulated
on the east coast (Figure 4). According to the results, the highest mucilage coverage was
on May 24, when the whole Bay was under the severe effect of a mucilage bloom. Once
again, the thematic map produced by FAI indicated the dense population of mucilage more
correctly. It was also observed that the NDWI index detected denser mucilage formations
accumulated in the southern part of the Bay. When the thematic maps produced for July 13
and 18 were considered, it was noticed that the mucilage bloom diminished although the
images show high turbidity, which can result from winds. Due to the existence of turbidity
in the water, NDTI produced the most acceptable results for these days. Compared with
these images, the image taken on July 28 was clearer and had very limited turbidity.
However, all indices detected distinct features on the water surface, which could be high
algal concentrations just after the mucilage appearance. It can be concluded from the
produced results that the index of AFAI produced the clearest maps of mucilage for both
high-and low-density mucilage coverages, especially in the blooming period. Although the
index of MI was proposed especially for the detection of mucilage-covered areas, it was
found to be inferior to AFAI. Another important result is that the indices using the green
channel in their formulations (i.e., MI, NDTI, NDWI) had confusion in the separation of
mucilage and algal bloom pixels since they have similar reflectances in the green channel
compared to the blue and red channels.

For the second part of the study that aimed toe test the performance of indices for an
image including clouds and their shadows, an image taken on 13 June 2021 was employed.
There were two groups of cumulus clouds on the southern part of the Izmit Bay, which are
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indicated by red circles. In addition to the clouds, their shadows also created problems
when extracting information underneath. All index formulations were applied to the image
and the results were thus produced (Figure 5). All indices except for AFAI detected clouds
as dense mucilage coverage and the whole area was defined as mucilage at different degrees
of densities. Considering that the index values over 0.5 represent moderate and high
densities of mucilage aggregates, almost the whole Bay was under the effect of mucilage
bloom. In the thematic maps produced by the NDWI and NDWIGao indices, cloud-covered
areas were determined as solid polygons with the highest density of mucilage. On the
other hand, compared with the original image by visual interpretation, the AFAI index
correctly detected the mucilage formations with high density, and other parts of the Bay
were described as very low risk of mucilage coverage. In terms of its performance in
cloud-covered areas, while disregarding the shadow effect, it identified dense cloudy zones
as high-density mucilage. Overall, the best performance was again performed by the AFAI
index compared to the performances of the other indices.
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Temporal analysis of mucilage coverage on Izmit Bay was conducted using the best
performing AFAI index by merging the detected mucilage areas on the seven dates consid-
ered in this study (Figure 6). Since the results were overlaid to each other, areas detected as
mucilage by different indices were shown with the color of the latest date, which results in
suppression of previous dates. For instance, eastern coastal areas were shown with blue
color showing the mucilage-covered areas on 28 July, but these zones were also detected by
the index from the 13 and 18 July images. As shown in the figure, a mucilage bloom was
mostly observed on the north-west coast of the Bay, and then a thin creamy surface layer
with a few kilometers long appeared throughout the Bay on 19 May. On 24 May, mucilage
reached its maximum level covering a large proportion of the water surface.
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Mucilage entrance to the Bay from the Sea of Marmara due to the dominant streams
and winds should be particularly mentioned for this time period. According to the map of
currents in the Sea of Marmara (Figure 7), main current enters the Izmit Bay and secondary
currents leaves the Bay, which can explain the movement of mucilage towards the Bay.
Wind speed gradually increased mainly in the eastern direction between 19 and 21 May,
then started to increase again after 21st of May. Irregularly changing its direction, winds
were mostly in the eastern and southern directions between 22 and 24 May, which resulted
in the movement of mucilage towards the Bay (Figure 8). Although the mucilage in the
shape of waves continued to enter the Bay from the Sea of Marmara, the AFAI index failed
to properly discriminate the clouds from mucilage; thus, cloud covered areas were detected
as mucilage on the coasts of Karamursel district of Kocaeli on the image acquired on 13
June. After this date, mucilage lost its effect, particularly on the open waters, but gathered
on the shores of the Izmit Bay.
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After the production of index maps, areal estimations for coverage of mucilage aggre-
gates were conducted by considering index values over 0.5 as mucilage and values lower
than 0.5 as water. In addition to acreages, ratios of mucilage areas in relation to the whole
water surface of Izmit Bay were estimated (Table 3). According to the results, whilst the
highest mucilage concentration was found on the 24 May image, which corresponds to
almost 13% of the whole study area, the least mucilage coverage was detected on 18 July,
corresponding to approximately 1% of the study area. It is interesting to notice that the
amount of mucilage formations slightly increased (by about 4 km2) after 18 July. At this
point, it should be noted that a similar amount of mucilage was estimated for 13 July and 18
July images. Considering the cloudy image taken on 13 June, about 20 km2 of the water sur-
face was identified as high-density mucilage. With the elimination of cloud-covered regions
on the image, about 16 km2 of the water surface was calculated to be mucilage covered.

Table 3. Mucilage-covered areas estimated from index maps. * Note that all images except for the
image taken on 13 June were cloud-free images.

Image
Date

AFAI MI NDTI NDWI NDWIGao

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

Area
(km2)

Ratio
(%)

14 May 6.05 2.11 6.39 2.22 5.66 1.97 8.86 3.08 4.82 1.68
19 May 8.45 2.94 10.78 3.75 11.21 3.90 11.71 4.08 10.43 3.63
24 May 32.12 11.18 34.93 12.75 36.07 12.55 39.22 13.65 25.27 8.79

13 June * 21.99 7.65 21.92 7.63 21.75 7.57 22.30 7.76 13.03 4.53
13 July 2.45 0.85 3.72 1.30 5.08 1.77 3.20 1.11 2.13 0.74
18 July 2.06 0.72 3.32 1.16 4.76 1.66 2.78 0.97 1.95 0.68
28 July 6.06 2.11 8.53 2.97 10.63 3.70 7.58 2.64 4.41 1.53

5. Discussion

The literature review revealed that almost all indices related to water were designed
either to delineate surface water bodies, such as rivers, lakes, and reservoirs from satellite
images (e.g., [51–54]), or to determine the quality of the water in lakes or rivers (e.g., [55,56]).
Except for the MI index, no index was proposed to specifically extract areas covered
with mucilage formations. The results of this study revealed that the performance of MI,
originally developed for MODIS imagery, was inferior, especially when compared to the
results of AFAI. Since the spectral reflectances of algal blooms and mucilage are similar in
green bands, water indices using green bands fail to discriminate between mucilage and
algal blooms. This can cause a major problem since mucilage occurs in water conditions
that are suitable for algal blooms. In some cases, it is reported that they follow each other
in their occurrences.

www.meteoblue.com
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Finding an optimal threshold is a crucial step to identify algal blooms in clear water
bodies. In general, visual interpretation has been usually conducted in many scenarios [46].
Similarly, the major problem encountered was determining the threshold level to decide on
high-density mucilage in the determination of mucilage-covered water surfaces using water
indices. Although a fixed threshold level of 0.5 was set to estimate mucilage aggregates
on the water surface, it is best to design a daily in situ measurement on the study area to
calibrate the optimal threshold value. As it was noticed that each index extracts different
features on the water surface, the threshold optimization or determination process must be
performed for each method separately. Whilst [57] investigated the NDWIs to determine
the best performing index and to establish appropriate thresholds for clearly identifying
water features, Ref. [46] suggested different threshold levels for Landsat (0.01–0.02) and
MODIS (0.05–0.12) in the application of AFAI instead of a single threshold on all images.

For the delineation of mucilage-covered areas, validation of the results is a major
concern since floating gelatinous materials move fast on the sea surface, making the in
situ collection of ground reference data an impossible task. To be exact, the problem is not
similar to the ground reference data collection for land use and land cover classification
(e.g., for vegetation types). The analyst is faced with either measuring the locations of high
mucilage covered areas accurately (e.g., using a GPS) on the sea surface at the same time as
the satellite acquires the image or collecting mucilage-covered areas from the satellite image
using the spectral reflectance information when it is available through spectral signature
analysis of pixels. The first option is not likely to be feasible for a study analyzing dynamic
or moving objects on the water surface. For such cases, the best option is to collect pixels as
samples using spectral signatures of the features when a spectral library is available. In
the spectral library approach, fieldwork is not required at the time of image acquisition
since preliminary spectral information is available [58]. As underlined by [59], knowing
the spectral characteristics of a cover or species allows the use of different classification
methods, based on the identification of those specific characteristics previously identified
in the signatures. The possibility of identifying these characteristics is maximized when
detailed spectral information is available. For instance, supervised image classification for
detecting mucilage-covered areas was conducted by [60] for Izmit Bay by collecting sample
pixels using spectral signatures of clear water and mucilage. Their results showed that
whilst mucilage covered an area of 15.13 km2 on 19 May, it covered an area of 20.13 km2

on 24 May. On the other hand, Ref. [61] employed supervised classification on the GEE
platform for mucilage mapping in the Sea of Marmara using visually selected water and
mucilage pixels in that they used histogram analysis for the collected samples. It was
reported that thematic maps with very high accuracy (over 98%) were produced.

Since the satellite programs have different visiting frequencies, it is difficult to find
cloud-free images to study the suddenly appearing natural phenomenon of mucilage
bloom. As it is well-known that mucilage events occur in spring or fall terms with the
fast-changing weather temperatures, it is likely to have cloudy or rainy days that hinder the
usability of optical satellite images. Therefore, to eliminate the effects of clouds and their
shadows from the images, either a preprocessing stage or a new water index suppressing
the disruptive effects is required to produce reliable and valid thematic maps and areal
estimations. In the current study, the performance of the AFAI index was more successful
than the other indices for the areas covered with clouds and shadows. In fact, the thematic
maps produced with the AFAI index revealed its effectiveness in disregarding the shadow
effects on the water pixels.

After visual interpretation of the produced water index maps, the AFAI index pro-
duced the clearest maps of mucilage-covered areas, followed by the MI index, which is
developed for the purpose of mucilage mapping. NDTI index produced similar results
to the MI index. However, the NDWI index was not found to be effective for extracting
mucilage formations as it was mainly identifying other features of water, especially algal
bloom concentrations. This finding suggests the development of more sophisticated indices
or analysis tools for mucilage mapping.
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6. Conclusions

In this study, five popular water indices were employed to extract non-water items (i.e.,
mucilage aggregates) to unroll the extent of the natural disaster of the extensive mucilage
outbreak witnessed in spring 2021 in the Sea of Marmara. The results of this study revealed
some important conclusions about the effectiveness of water indices for mucilage mapping
and GEE performance in terms of coding and processing performance. Firstly, differences
in the thematic maps for the detection of mucilage on the GEE platform showed varying
performances of the considered water indices. Among the considered water indices, the
AFAI index was superior, followed by the NDTI and MI indices. Performances of NDWI
and NDWIGao indices were inferior as they detected more features in the water, particularly
the existence of algal blooms. It should be stated that the NDWI index detected more
pixels as mucilage than the others. Secondly, temporal variation of mucilage in Izmit Bay
was also analyzed through areal estimations. According to the findings, after starting to
bloom on 14 May, the mucilage event reached its peak point on 24 May, then started to
disappear day by day. Considering that the 13 June image included two sections with
clouds and shadows, the mucilage-covered water surface was about 15 km2 (about 5 km2

was disregarded). Furthermore, mucilage formations covered about 2 km2 on 13 and
18 July. Although mucilage slightly increased on the image taken on 28 July, it was not
detected in the following images, that is, no mucilage was detected afterward. Another
finding in this study is that mucilage and algal blooms show higher reflectance in the
green band compared to blue and red bands due to the chlorophyll concentration. This
could be the main reason that the available water indices considering green bands in their
formulas detect areas covered with algae concentrations as mucilage formations. Because
of this, thematic maps of AFAI were the best ones representing the mucilage-covered areas
and to some extent distinguishing areas covered with algal blooms. On the other hand,
generated mucilage maps showed variation in the amount of mucilage aggregates on the
sea surface, which validates the high sensitivity of phytoplankton to atmospheric and
environmental conditions.

With the developed JavaScript code, mucilage aggregates on the sea surface together
with other objects (algal bloom, platform, etc.) can be extracted in a very short time in the
cloud environment of the GEE without downloading any large-sized imagery. It should be
also pointed out that the basic level of hardware is sufficient to perform the operations and
run the code, and no remote sensing software is required for pre-processing the imagery
or applying the indices and other estimations and reporting procedures. It provides
the opportunity to work in different computer environments at any time. This study
introduces a novel methodology including all steps for extracting mucilage-covered areas
from Sentinel-2 imagery. The written code can be easily adapted to produce the thematic
maps of other water indices and conduct other image processing tools or methods. The
analysis of Sentinel-2 images with water indices on the GEE cloud computing platform can
offer new opportunities to users at different experience levels for providing cost-effective
and timely production of mucilage maps. The GEE platform provided convenience at all
stages of the application with its ready-to-use tools and flexibility in developing customized
codes. The results of this study convey the weakness of the considered water indices for
mapping mucilage-covered areas as they did not coincide with each other, nor with the
results of [60], who employed image classification with machine learning algorithms.
Therefore, it is concluded that more research supported by in situ measurements is needed
to develop new models or indices to accurately map mucilage aggregates on the water
surface, which is of critical importance for mitigation studies conducted by authorities.
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18. Beşiktepe, Ş.T.; Sur, H.İ.; Özsoy, E.; Latif, M.A.; Oǧuz, T.; Ünlüata, Ü. The Circulation and Hydrography of the Marmara Sea. Prog.

Oceanogr. 1994, 34, 285–334. [CrossRef]
19. Alpar, B.; Yüce, H. Sea-Level Variations and Their Interactions Between the Black Sea and the Aegean Sea. Estuar. Coast. Shelf Sci.

1998, 46, 609–619. [CrossRef]
20. Tas, S.; Kus, D.; Yilmaz, I.N. Temporal Variations in Phytoplankton Composition in the Northeastern Sea of Marmara: Potentially

Toxic Species and Mucilage Event. Mediterr. Mar. Sci. 2020, 21, 668–683. [CrossRef]
21. Kavzoglu, T. Determination of Environmental Degradation Due to Urbanization and Industrialization in Gebze, Turkey. Environ.

Eng. Sci. 2008, 25, 429–438. [CrossRef]
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