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Abstract: High spatio-temporal resolution and accurate long-term rainfall estimates are critical
in sustainable water resource planning and management, assessment of climate variability and
extremes, and hydro-meteorology-related water system decisions. The recent advent of improved
higher-resolution open-access satellite-based rainfall products has emerged as a viable complementary
to ground-based observations that can often not capture the rainfall variability on a spatial scale. In a
developing country such as Nepal, where the rain-gauge monitoring network is sparse and unevenly
distributed, satellite rainfall estimates are crucial. However, substantial errors associated with such
satellite rainfall estimates pose a challenge to their application, particularly in complex orographic
regions such as Nepal. Therefore, these precipitation products must be validated before practical
usage to check their accuracy and occurrence consistency. This study aims to assess the reliability of
the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) product against ground-
based observations from 1986 to 2015 in five medium-sized river basins in Nepal, namely, Babai,
Bagmati, Kamala, Kankai, and the West Rapti river basin. A set of continuous evaluation metrics
(correlation coefficient, root mean square error, relative bias, and Kling-Gupta efficiency) were used
in analyzing the accuracy of CHIRPS and categorical metrics (probability of detection, critical success
index, false alarm ratio, and frequency bias index). The Probability of Detection and Critical Success
Index values were found to be considerably low (<0.4 on average), while the false alarm ratio was
significant (>0.4 on average). It was found that CHIRPS showed better performance in seasonal
and monthly time scales with high correlation and indicated greater consistency in non-monsoon
seasons. Rainfall amount (less than 10 mm and greater than 150 mm) and rainfall frequency was
underestimated by CHIRPS in all basins, while the overestimated rainfall was between 10 and 100 mm
in all basins except Kamala. Additionally, CHIRPS overestimated dry days and maximum consecutive
dry days in the study area. Our study suggests that CHIRPS rainfall products cannot supplant the
ground-based observations but complement rain-gauge networks. However, the reliability of this
product in capturing local extreme events (such as floods and droughts) seems less prominent. A
high-quality rain gauge network is essential to enhance the accuracy of satellite estimations.

Keywords: detection; rainfall estimation; satellite products; CHIRPS

1. Introduction

Rainfall is one of the crucial components of the global hydrologic cycle [1,2]. The
spatial and temporal variation of rainfall amount and rainfall rate modulate the Earth’s
ecosystem, hydrology, and climate system [3]. Therefore, high-resolution, accurate rainfall
estimates are crucial for managing hydro-meteorological hazards, planning water resource
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infrastructures, and adapting to likely climate changes [3–7]. Further, monitoring and
understanding the rainfall variability is filled with challenges and uncertainties [8]. The
standard rainfall measurement technique uses a ground rain gauge, which is an accurate
approach [9,10]. However, the network of these ground rainfall stations is insufficient and
randomly distributed [11], in particular in developing countries, such as Nepal [12].

A realistic portrayal of the rainfall behavior of a region needs a dense network of
rain gauges. It also demands higher monitoring costs, which is challenging in the case of
developing countries. Although weather radars can fill the data gaps between gauges, they
are expensive [13]. In addition, radars have limitations due to errors from beam blockage,
range effects, and the imperfect relationship between rainfall and backscatter [8,9]. With the
significant development of remote sensing technology, satellite-based rainfall estimation is
emerging as an alternative source of rainfall data [9]. The satellite sensors can estimate the
rainfall data of remote regions with a good temporal and spatial resolution overcoming
the limitations of ground-based observations [14,15]. These remotely sensed estimates
are blended with ground-based observations to reduce biases [16–18]. Several gridded
global precipitation datasets exist [19]. Some popular multi-satellite-based rainfall products
are the Tropical Rainfall Measure Mission (TRMM), Multi-satellite Precipitation Analysis
(TMPA; [20]), the Integrated Multi-Satellite Retrievals for Global Precipitation Measure-
ment (GPM) mission (IMERG; [21]), the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN; [22]), Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS; [23]), the Modern-Era Retrospective Analysis
for Research and Applications (MERRA; [24]), the Climate Prediction Center Morphing
method (CMORPH; [25]), the Global Satellite Mapping of Precipitation (GSMaP; [26]), and
the Multi-Source Weighted-Ensemble Precipitation (MSWEP; [27]).

In most cases, rainfall data obtained from the in situ rain gauges are spatially sparse,
particularly in less-developed regions. Weather radar can give rainfall information at a
high spatio-temporal resolution and has a real-time monitoring ability. Still, its coverage is
limited over high mountainous areas and rough terrain [28]. Similarly, satellite-derived
rainfall estimates have several errors because of a weak connection between satellite signals
and rainfall rate [29]. All rainfall data, whether from a ground observation, weather radar,
or satellite product, have some degree of uncertainty and are subject to bias [30]. Therefore,
the satellite rainfall product should be compared and validated with ground observations
for certain applications. A few studies [31–34] have compared satellite products with
ground measurements in Nepal. A study by Duncan and Biggs [35] assessed the accuracy
of TRMM satellite estimates by comparing them with the APHRODITE data. They found
the TRMM satellite products overestimated rainfall, and a high error was observed mainly
during the monsoon season. Further, they reported that the extreme events, the number of
rainy days, and the intensity of rainfall during the monsoon seasons were inadequately
detected. Similarly, four satellite products, i.e., TRMM, GSMaP, CMORPH, and PERSIANN,
were evaluated by Krakauer et al. [36] over mountainous terrains in Nepal. Among these,
TRMM showed better consistency with the ground observations than the rest of the satellite
products. TMPA and IMERG satellite products were evaluated in the Himalayan regions
of Nepal in a study by Sharma et al. [33], where IMERG products performed better for
daily time steps than TMPA for monthly time steps. Sharma et al. [33] reported that the
IMERG product effectively captured extreme events, i.e., floods and droughts. A recent
study by Talchabhadel et al. [12] reported the applicability of all three products of the
IMERG run (i.e., IMERG Early, Late, and Final) by employing several extreme rainfall
indices across Nepal.

Past studies were mainly focused on TRMM, PERSIANN, IMERG, and GSMaP for
evaluating satellite precipitation products over ground observations [33]. CHIRPS has a
spatial resolution of ~5 Km, and it would be helpful to evaluate the use of CHIRPS products
in hydrologic modeling and water resources planning, management, and decisions. The
CHIRPS product has been used globally and regionally for several applications, including
forecasting [37], agriculture [38], and drought monitoring [39]. Further, there have been
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few comprehensive studies using CHIRPS data in Nepal. For instance, Shrestha et al. [39]
evaluated the performance of CHIRPS products monthly for three decades (1981–2010) in
the Koshi basin of Nepal using ground measurements. CHIRPS products performed better
in low-elevation regions compared to high-elevation regions. Talchabhadel et al. [34] used
high-resolution products, including CHIRPS, to force a hydrologic model in a medium-
sized river basin in western Nepal. Similarly, Khatakho et al. [40] used several products,
including CHIRPS, in the Karnali River basin, one of the major river basins of Nepal.
Lamichhane et al. [41] used CHIRPS data to characterize the hydrometeorology of a high
mountain river basin to look at transboundary multihazard dynamics in Tibet (China)
and Nepal.

More validation is needed to better understand the applicability of the CHIRPS prod-
uct [9]. Thus, this study aims to evaluate the performance of CHIRPS rainfall data by
comparing it with ground station rainfall data from the Department of Hydrology and
Meteorology (DHM), Nepal. We evaluate magnitude agreement and occurrence consistency
against the ground rainfall data over medium-sized river basins in Nepal. Water availability
in medium-sized rivers is highly dependent on rainfall occurrence and magnitude. As
these river basins have almost negligible snow components, the rainfall to runoff dynamic
is highly correlated with rainfall across the basin. Our study aims to answer three major
questions: (1) How well does the CHIRPS product capture rainfall amount?; (2) What type
of rainfall in what regions are best represented by the CHIRPS data?; and (3) Does the
CHIRPS product capture the local extremes?

2. Materials and Methods
2.1. Study Area

Nepal is a landlocked country surrounded between the Himalayas and the Gangetic
plain. It comprises the Himalayas in the north, mountains/hills in the mid, and lowlands
in the south [35]. The topography and climatic features vary significantly from north to
south, causing high rainfall variation throughout Nepal [42]. The study domain includes
Nepal’s five different basins (West Rapti, Babai, Bagmati, Kankai, and Kamala), as shown in
Figure 1. These five basins are categorized as medium-sized basins based on their area and
origin [43]. The summary information, including location, catchment area, and elevation of
all basins, are tabulated in Table 1.
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Table 1. Summary information on basins.

Basin Name Longitude Latitude Elevation Catchment Area Climate References

Babai 81◦14′ E to
82◦38′ E

27◦56′ N to
28◦32′ N 147 to 2880 3270 Sub-tropical [44]

Bagmati 85◦02′ E to
85◦58′ E

26◦42′ N to
27◦50′ N 30 to 2715 3750 Warm and cool temperate

to sub-tropical [45]

Kamala 85◦50’ E to
86◦36’ E

26◦36’ N to
27◦15’ N 50 to 2107 2183 Temperature to tropical

Kankai 87◦41’ E to
88◦8’ E

26◦25’ N to
27◦6’ N 75 to 3679 1330 Cold tropical to sub-tropical [46]

West Rapti 81◦40’ E to
83◦10’ E

27◦40’ N to
28◦35’ N 100 to over 3600 6500 Temperate to tropical [34]

There are mainly four different seasons, i.e., pre-monsoon (March–May), monsoon
(June–September), post-monsoon (October–November), and winter (December–February).
The average annual rainfall in five basins ranges from 1300 to 1800 mm per year, with an
average of about 1500 mm per year, where the summer monsoon rainfall accounts for more
than 80% of total annual rainfall. Table 1 briefly describes the basins considered in this
study, including the number of meteorological stations.

2.2. Datasets
2.2.1. Rain Gauge Data

The daily rainfall observations of 119 meteorological stations were obtained from the
Department of Hydrology and Meteorology (DHM), Nepal. The data were collected for the
study period of 30 years, from January 1986 to December 2015. Manual rain gauges are
dominant, so there may be human or instrumental errors. The altitude varies between 80
and 2314 m above sea level (masl). The monthly, seasonal, and annual rainfall values were
accumulated from daily observations to validate the CHIRPS rainfall data.

2.2.2. Satellite Data from CHIRPS

Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) environmental
record is a new precipitation dataset developed by the US Geological Survey (USGS) and
the Climate Hazards Group at the University of California, Santa Barbara (UCSB). Pentad
is the main computational time step of CHIRPS data that can be disaggregated into the
daily time step using the daily Coupled Forecast System (CFS), which is at a resolution of
0.05 [23]. Further, the CHIRPS datasets are aggregated to monthly and decadal timesteps.
Further, CHIRPS is a blended product of the Climate Hazards Precipitation Climatology
(CHPClim), TIR (Thermal Infrared) satellite observations, atmospheric model rainfall fields
from the NOAA (National Oceanic and Atmospheric Administration) Climate Forecast
System, version 2 (CFSv2), the TRMM (Tropical Rainfall Measuring Mission) 3B42 product
from NASA, and in situ rainfall observations from national and regional meteorological
services [23,47].

2.3. Methodology

Validation of CHIRPS products was conducted for the study period (1986–2015), con-
sidering 119 rain gauge stations in 5 different basins and their performances for detecting
extreme hydrological events, such as droughts and floods were evaluated [33]. Rainfall
interpolation was less preferred in the study area due to complex topography and the
uneven distribution of ground-based rain gauge stations [33,48]. The CHIRPS products
were extracted for the point-based station locations rather than interpolating the rain gauge
measurements into grids [47]. Comparing CHIRPS products and rain gauge observations
was performed at three temporal scales, i.e., monthly, seasonal, and annual. The daily
rainfall data were aggregated on monthly, seasonal, and annual scales. The comparison
was also extended to four different seasons, as mentioned above. Spatial and temporal con-
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sistencies were evaluated by comparing the monthly, seasonal, and annual rainfall datasets
for all five basins and are represented by scatterplots. Error evaluation was conducted on
a basin-scale through boxplots. Spatial maps for different statistical metrics for different
basins were prepared using the Quantum Geographic Information System (QGIS).

2.3.1. Distribution Pattern of Daily Rainfall

Based on the rainfall amount per day, the rainfall rate was categorized into five
different classes, similar to Prajapati et al. [49], as shown in Table 2. The percentages of
rainfall contribution to total annual rainfall by different rainfall rate classes per year were
calculated for all stations. Further, the percentages of frequency of rainy days of different
rainfall rate classes to total annual rainy days were calculated for all stations. A combo-chart
of a bar graph and a line graph was prepared to demonstrate the relationship between
average daily rainfall and rainfall frequency of various rainfall rate classes for each basin.
Dry days (DD) refers to the days when all the stations in the basin measure zero rainfall per
day, and the number of maximum consecutive dry days is known as maximum consecutive
dry days (MCDD). The temporal variations of DD and MCDD for both CHIRPS product
and rain gauge observations for all five basins were evaluated and presented through
line plots.

Table 2. Classification of rainfall rate based on rainfall amount per day (mm) [49].

Rainfall Rate Class Rainfall Amount per Day (in mm)

A 0.1–10
B 10–50
C 50–100
D 100–150
E >150

2.3.2. Statistical Metrics

Two types of statistics were used to examine the satellite products: continuous eval-
uation statistics and categorical evaluation statistics. The discrepancy between satellite
estimates and observations was measured using continuous statistics, while the precipita-
tion detection capabilities were assessed using categorical validation statistics.

Continuous Evaluation Statistics

The performance of the CHIRPS product versus the ground rain gauge observations
was evaluated through four statistics metrics (i) correlation coefficient (R), (ii) root mean
square error (RMS), (iii) relative bias (BIAS), and (iv) Kling-Gupta Efficiency (KGE). These
metrics were calculated using the following formulae:

Correlation Coe f f icient (R) =
∑n

i=1(Di− D)
(
Ci− C

)√
∑n

i=1 (Di− D)
2
√

∑n
i=1 (Ci− C)2

(1)

Root Mean Square Error (RMS) =

√
1
n

n

∑
i=1

(Ci− Di)2 (2)

Relative Bias (BIAS) = 1− ∑n
i=1(Di− Ci)

∑n
i=1 Di

∗ 100% (3)

where Ci and Di are the values of CHIRPS rainfall data and DHM rain gauge observations
for the ith rain station, respectively. The mean values of the CHIRPS rainfall data and DHM
rain gauge observations were represented by C and D, respectively. The total number of
rain gauges is denoted by n.

Kling Gupta E f f iciency (KGE) = 1−
√
(R− 1)2 + (β− 1)2 + (γ− 1)2 (4)
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β =
σs

σo

γ =
CVS
CVo

=
σs/µs

σo/µo

where R is a Pearson correlation coefficient, β is the bias ratio, and γ is the variability
ratio. R was calculated to evaluate how well the CHIRPS rainfall estimates correlate
with the observed rainfall values of DHM rain gauges. The absolute error between two
rainfall datasets was represented by RMS error values. The degree of overestimation
or underestimation between satellite product and ground-based rain gauge data was
measured through BIAS. The optimal value for correlation coefficient and KGE is 1, and
the minimum value of RMS error denotes a good fit. Ideally, the PBIAS value is close to 0.
A higher negative value of PBIAS indicates underestimation, and a higher positive value
indicates overestimation by CHIRPS.

Categorical Validation Statistics

In this study, four categorical validation statistics, the probability of detection (POD),
critical success index (CSI), false alarm ratio (FAR), and frequency bias index (FBI), were
used to determine the rainfall detection capacity of the CHIRPS product in comparison with
DHM observations. At first, the rainfall detection of CHIRPS with DHM was compared.
When both CHIRPS and DHM show a daily rainfall greater or equal to 1 mm, the detection
is considered to be “a”. In contrast, if the CHIRPS product cannot detect rainfall during
non-rainy days detected by the DHM, the detection is “b”. Likewise, when the CHIRPS
product does not detect rainy days based on DHM, the detection is regarded as “c”. Finally,
if CHIRPS and DHM show a daily rainfall of less than 1 mm, the detection is “d”. Then,
categorical validation statistics were calculated based on the formulas given in Table 3.

Table 3. Categorical validation statistics for rainfall detection evaluation.

Statistics Equation Range Ideal Value

POD POD = a/(a + c) 0 to 1 1
CSI CSI = a/(a + b + c) 0 to 1 1
FAR FAR = b/(a + b) 0 to 1 0
FBI FBI = (a + b)/(a + c) 0 to ∞ 1

POD was calculated to quantify the proportion of correctly predicted rainfall. CSI
evaluates the proportion of predicted rainfall events that are estimated correctly, FAR
indicates the proportion of false alarms by the satellite product, and the FBI determines
whether the satellite rainfall estimates underestimate or overestimate the rainfall events.

3. Results and Discussion
3.1. Analysis of Rainfall Detection Capacity

The POD values for all basins were low, with median values ranging between 0.32
and 0.38, indicating CHIRPS’ inability to detect the rainfall events in the entire study
area (Figure 2). In particular, the Kankai basin shows comparatively higher POD values
(median = 0.38) than the other four basins. The maximum POD was found to be 0.49 in
the Kamala basin; this implies that CHIRPS detects less than 49% of the rainfall events in
the study area. Likewise, the CSI values were not very promising as none of the basins
had values above 0.36. The CSI values were considerably greater for the Kankai basin
(median = 0.31). In contrast, CSI values for three basins (Babai, Bagmati, and Kankai) were
almost similar, with a median of 0.26.
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Figure 2. Performance of rainfall detection capacity of CHIRPS product with respect to rain gauge
observations during 1986–2015 for all five basins, i.e., West Rapti (WR), Babai (BB), Bagmati (BM),
Kankai (KK), and Kamala (KM).

All the basins showed noteworthy false alarms, with values in the range of 0.22 to
0.75, while the FAR for the Kankai basin was comparatively small (median = 0.39). Similar
findings were observed in studies by Talchabhadel et al. [34] in the West Rapti River basin
and in the Tibetan Plateau and its surroundings by Tan et al. [50]. Paredes-Trejo et al. [51]
also mentioned that CHIRPS satellites tend to distinguish poorly between rainfall and non-
rainfall events. Over the orographic regions, CHIRPS is unable to capture rainfall events,
and rainfall is often confused with warm orographic rains and extreme cold surfaces [52,53].

In general, the performance of CHIRPS was observed to be slightly better in the Kankai
basin. In addition, the median of FAR values of CHIRPS seems to be high (>0.4) in the
remaining four basins, with the highest in West Rapti, followed by Kamala, Babai, and
Bagmati basins, which might be because of the over-detection of rainfall events by the
satellite product. Similar findings were observed in a study by Ayehu et al. [9] in the
Upper Blue Nile Basin of Ethiopia and by Mu et al. [54] over the southwestern Brazilian
Amazon. The process of developing the CHIRPS product requires the calibration of infrared
cold cloud duration rainfall estimates using TRMM multi-satellite precipitation analysis
(TMPA 3B42). In this process, there might be the probability of generating too much
light rain, resulting in the overestimation of rainy days by CHIRPS [9,23]. Further, the
CHIRPS algorithm depends on training data from TRMM with a 0.25◦ resolution. When
averaging the training data over a large scale, the occurrence of rainfall events increases [51].
Regarding the FBI, the underestimation of rainfall by CHIRPS based on DHM observations
was noted, with the median for all basins ≤ 0.73.

Based on the categorical evaluation statistics findings, the CHIRPS rainfall estimates
in the study area are not very reliable with respect to the DHM observations; therefore,
some adjustments or corrections should be made before its application.
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3.2. Temporal Evaluation of Rainfall Product

Figure 3 (left column) shows the scatter plots for statistical metrics (R, RMS, BIAS,
and KGE) used to evaluate the performance of CHIRPS versus the observations made
by rain gauges over different timescales from January 1986 to December 2015. Different
colors indicate different time scales and seasons in the plots. CHIRPS performs well for
the seasonal (R = 0.95) and monthly (R = 0.87) time scales with higher average values of
R in comparison to the annual time scale (R = 0.31) (Figure 3). The reason for the good
performance of the CHIRPS dataset might be the inclusion of station data in it [23]. The
errors at the monthly scale are approximately symmetrical and cancel each other out after
aggregation resulting in a higher correlation at the seasonal scale [55]. The average values
from RMS at annual, seasonal, and monthly timescales for all basins were 490.19 (ranging
from 394 to 586.32 mm), 221.3 (ranging from 189 to 257.71 mm), and 95.28 mm (ranging
from 84.3 to 107.64 mm), respectively. In addition, the CHIRPS product underestimates
rainfall over the annual, seasonal, and monthly timescales in all basins with an average
BIAS of −6.63% (ranging from −7.95% to −4.30%) except in the Babai basin (+12.7%).
Similar to the R-value, on average, the scatter plot of KGE shows a good agreement for the
seasonal (KGE = 0.76) and monthly (KGE = 0.72) time scales, whereas a poor relation is
seen for the annual time scale with an average KGE value of 0.21.
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Similarly, the performance evaluations of CHIRPS versus rain gauge observations
through statistical metrics for the four seasons are shown in Figure 3 (right column).
The rainfall estimate of monsoon from CHIRPS has the least agreement with rain gauge
observations of rainfall amount with an average R-value of 0.31 (ranging from 0.26 to 0.38).
The average R-values at pre-monsoon, post-monsoon, and winter seasons for all basins
were 0.51 (ranging from 0.42 to 0.58), 0.52 (ranging from 0.43 to 0.67), and 0.49 (ranging
from 0.41 to 0.54), respectively. The maximum RMSE appears in monsoon with an average
value of 424.2 mm (ranging from 367.52 to 493.88 mm). When the rainfall increases, the
RMSE value tends to be higher [56]. In comparison to the monsoon, CHIRPS has lower
RMSE values in other seasons, with an average of 88.1 (ranging from 58.3 to 115.46 mm),
60.29 (ranging from 44.01 to 76.61 mm), and 38.17 mm (ranging from 29.83 to 45.55 mm),
respectively. The average BIAS values for pre-monsoon, monsoon, post-monsoon, and
winter are −3.71% (ranging from −8.98% to 6.75%), −1.07% (ranging from −6.98% to
15.67%),−11.93% (ranging from−27.31% to−2.02%), and−12.24% (ranging from−35.67%
to −0.45%), respectively. Comparatively, the likely explanation for a BIAS value being
higher in the winter season is because of the high number of cloudy days and no to very
little rainfall during that period [57]. In addition, the value of KGE ranged from 0.25 to
0.45 in pre-monsoon, 0.14 to 0.30 in monsoon, 0.14 to 0.42 in post-monsoon, and 0.05 to
0.36 in winter seasons. The lower KGE score could be attributed to uncertainties in rain
gauge-based estimates due to limited gauge density in the basins [58]).

We found that the RMS values of the non-monsoon periods were less than those of
the monsoon period, whereas the R-values of the non-monsoon periods were higher than
the monsoon period. These results indicate greater consistency between CHIRPS and rain
gauge observations during non-monsoon periods. Prajapati et al. [49] observed similar
findings in the Karnali River basin, where satellite-based rainfall products (including
CHIRPS) showed better performance in dry seasons compared to wet seasons compared
to the ground-based observations. The probable reason for better performance in the non-
monsoon months might be less cloud cover, which helps increase the visibility of satellite
sensors. Moreover, the results showed that CHIRPS could effectively capture the seasonal
patterns of rainfall characteristics over the study area.

3.3. Spatial Distribution of Statistical Metrics

The annual and seasonal scale spatial distribution between CHIRPS satellite product
and in situ rain gauge observation are presented in Figures 4–7 for statistical metrics R,
RMSE, percent bias, and KGE, respectively. Figure 4 displays the spatial variations of
R over the five basins of Nepal. The CHIRPS data showed a better correlation for the
northern part (Kathmandu Valley) of the Bagmati Basin. However, most rain gauges are
concentrated on the northern side of the basin [59], so a spatial estimation of the entire
basin is quite challenging. Further, weakly positive (negative) linear relationships were
observed in all seasons in isolated parts. Further, the northern part of the Kamala basin
has a comparatively good correlation in pre-monsoon, post-monsoon, and winter seasons
compared to the south-eastern parts. In other basins, no significant spatial variability
was observed.

Figure 5 shows the spatial variations of RMSE. No significant trend in the spatial
variation of RMSE was seen in all basins. A high RMSE value was seen in the north-eastern
part (mainly) of the West Rapti River basin, mostly during the monsoon season. The
probable reason can be explained by the fact that satellites are unable to measure extreme
precipitation in these areas. In contrast, lower RMSE was obtained in other seasons, which
could be related to the increased frequency of no rainfall recorded by both CHIRPS and
ground-based observations [60]. In terms of PBIAS, a mix of over and underestimation
(Figure 6) was observed in the study area. Among all basins, rain gauge observations of
the Babai basin showed good agreement with CHIRPS data. The increase in PBIAS by
around 20% could be attributable to the varied topography, which includes flat and elevated
regions, resulting in a difference in the performance of satellites even over short distances.
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Moreover, a challenge that prevails is accurate satellite rainfall estimates over mountainous
terrain due to the orographic effect [53]. Figure 7 shows the spatial distribution of KGE. The
KGE value for the pre-monsoon period ranged from 0.09 to 0.76 (median = 0.44), 0.04 to
0.67 (median = 0.35), −0.29 to 0.70 (median = 0.25), 0.11 to 0.43 (median = 0.25), and −0.05
to 0.59 (median = 0.27) for Bagmati, Babai, Kamala, Kankai, and West Rapti, respectively.
The negative KGE values indicate the poor performance of the satellite products in some
stations. The lowest average KGE value was seen in the Kankai (0.05) and Kamala basins
(0.09), both in the winter seasons, while the highest was seen in the Bagmati river basin
(0.44) in the pre-monsoon season.
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3.4. Distribution Pattern of Daily Rainfall

CHIRPS was also analyzed to evaluate the performance of different rain intensities
on an annual scale. The amount and frequency (number of days) of rainfall contributed,
in percentage (% of total annual rainfall), by various rainfall rate classes for both CHIRPS
and rain gauge observations are shown in Figure 8 for all basins. Even though the average
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rainfall frequency of class ‘A’ for all basins was 55%, it contributed only 15% of total rainfall.
Class ‘B’ contributed around 56% of total rainfall, although class ‘B’ frequency was about
39%. While class ‘C’ only had a frequency of around 5%, it contributed about 20% of
total rainfall. Extreme rainfall events in classes ‘D’ and ‘E’ were infrequent (around 1%),
contributing about 8% to total rainfall. Figure 8 demonstrates that half of all rainy days
were class ‘A’ (light rain), contributing less than one-fifth of total rainfall. Around one-third
of total rainfall was contributed by classes ‘B’ and ‘C’, whereas the frequency of these
classes was about 45% of the total number of rainy days.

Hydrology 2022, 9, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 8. Contribution of rainfall frequency (%) and cumulative rainfall (%) of CHIRPS and rain 
gauge observations (DHM) for various classes of rainfall rate at different basins, (a) West Rapti, (b) 
Babai, (c) Bagmati, (d) Kankai, (e) Kamala, and (f) Average. A description of different classes is 
shown in Table 2. 

Both rainfall frequencies and amounts of class ‘A’ and class ‘E’ were underestimated 
by CHIRPS for all the basins. The average rainfall frequencies and amounts of class ‘A’ 
and class ‘E’ for rain gauge observations were more than double CHIRPS for all the basins. 
This shows that CHIRPS could not detect extreme rainfall events of greater than 150 mm 
per day and light rainfall events of less than 10 mm per day and determine the rainfall 
amount of those events. Moreover, CHIRPS should be avoided for drought monitoring as 
it underestimates rainfall frequency and amount of class ‘A’. The underestimation of class 
‘A’ rainfall might be due to the sensors’ inability to track localized light rainfall as their 
spatial resolution is much smaller than the point locations of rain gauges [52]. CHIRPS 
overestimated both rainfall frequencies and amounts of class ‘B’ and ‘C’ in all the basins 
except the rainfall amount of class ‘C’ in the Kamala basin. This suggests that CHIRPS 
might be useful for monitoring the floods caused by high rainfall events with rainfall in-
tensity of less than 100 mm per day. In the case of class ‘D’, CHIRPS underestimated the 
rainfall amount in all basins except Bagmati. The rainfall frequencies of class ‘D’ were 
overestimated by CHIRPS in all basins except Kamala and Kankai. In the case of rainfall 
frequency, there were high differences (greater than 25%) between the percentage contri-
bution of CHIRPS and rain gauge for classes ‘A’ and ‘B’. In contrast, the differences were 
smaller (less than 4%) for other classes. Similarly, the percentage differences for rainfall 
amount were slightly higher (around 8%) for classes ‘A’ and ‘B’ compared to other classes 
(less than 5%). Smaller basins, i.e., Kankai and Kamala, had larger percentage differences 
for class ‘B’ rainfall amounts than other larger basins. The results indicated that CHIRPS 
was better at reporting the rainfall amounts than the occurrence of rainfall. This might be 
because the rainfall amount represents the cumulative sum of rainfall on an annual scale, 
and the frequency represents the number of rainy days [61]. In general, the performance 
of CHIRPS improves significantly with temporal aggregation [55]. 

Figure 9 shows the temporal distribution of dry days (DD) and maximum consecu-
tive dry days (MCDD) in different basins for the study period (1986–2015). The average 
number of DD for CHIRPS and DHM rain gauge observations were 226 (ranging from 209 

Figure 8. Contribution of rainfall frequency (%) and cumulative rainfall (%) of CHIRPS and rain
gauge observations (DHM) for various classes of rainfall rate at different basins, (a) West Rapti,
(b) Babai, (c) Bagmati, (d) Kankai, (e) Kamala, and (f) Average. A description of different classes is
shown in Table 2.

Both rainfall frequencies and amounts of class ‘A’ and class ‘E’ were underestimated
by CHIRPS for all the basins. The average rainfall frequencies and amounts of class ‘A’
and class ‘E’ for rain gauge observations were more than double CHIRPS for all the basins.
This shows that CHIRPS could not detect extreme rainfall events of greater than 150 mm
per day and light rainfall events of less than 10 mm per day and determine the rainfall
amount of those events. Moreover, CHIRPS should be avoided for drought monitoring as
it underestimates rainfall frequency and amount of class ‘A’. The underestimation of class
‘A’ rainfall might be due to the sensors’ inability to track localized light rainfall as their
spatial resolution is much smaller than the point locations of rain gauges [52]. CHIRPS
overestimated both rainfall frequencies and amounts of class ‘B’ and ‘C’ in all the basins
except the rainfall amount of class ‘C’ in the Kamala basin. This suggests that CHIRPS
might be useful for monitoring the floods caused by high rainfall events with rainfall
intensity of less than 100 mm per day. In the case of class ‘D’, CHIRPS underestimated
the rainfall amount in all basins except Bagmati. The rainfall frequencies of class ‘D’
were overestimated by CHIRPS in all basins except Kamala and Kankai. In the case of
rainfall frequency, there were high differences (greater than 25%) between the percentage
contribution of CHIRPS and rain gauge for classes ‘A’ and ‘B’. In contrast, the differences
were smaller (less than 4%) for other classes. Similarly, the percentage differences for
rainfall amount were slightly higher (around 8%) for classes ‘A’ and ‘B’ compared to other
classes (less than 5%). Smaller basins, i.e., Kankai and Kamala, had larger percentage
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differences for class ‘B’ rainfall amounts than other larger basins. The results indicated
that CHIRPS was better at reporting the rainfall amounts than the occurrence of rainfall.
This might be because the rainfall amount represents the cumulative sum of rainfall on an
annual scale, and the frequency represents the number of rainy days [61]. In general, the
performance of CHIRPS improves significantly with temporal aggregation [55].

Figure 9 shows the temporal distribution of dry days (DD) and maximum consecutive
dry days (MCDD) in different basins for the study period (1986–2015). The average number
of DD for CHIRPS and DHM rain gauge observations were 226 (ranging from 209 to
246) and 98 (ranging from 77 to 118), respectively. Similarly, the average numbers of
MCDD for CHIRPS and DHM rain gauge observations were 34 (ranging from 25 to 54)
and 22 (ranging from 16 to 33), respectively. The CHIRPS product overestimated DD and
MCDD by around 130 % and 55 %, respectively. For the first fifteen years (1986–2000),
the average number of DD was 110, which decreased by −23% to 85 during 2001–2015
for DHM rain gauge observations. In the case of CHIRPS products, it decreased by only
−7% from 235 (1986–2000) to 218 (2001–2015). The number of MCDD was decreasing for
DHM observations (−10%). In contrast, it increased for CHIRPS products (14%) in the
second half of the study period compared to the first one. It is worth noting that there was
a significant decrease in the number of DD in all the basins. The results concluded that
CHIRPS products are not useful for estimating the number of rainy days.
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dry days of CHIRPS (DD_CHIRPS: green), maximum consecutive dry days of DHM (MCDD_DHM:
orange), and maximum consecutive dry days of CHIRPS (MCDD_CHIRPS: red) for (a) West Rapti
basin, (b) Babai basin, (c) Bagmati basin, (d) Kankai basin, (e) Kamala basin, and (f) Average of all
five basins.

Our findings show the potential application of CHIRPS for monitoring the spatio-
temporal rainfall variability in Nepal to fill the data gaps of ground-based rain gauge
networks. Both ground-based rain gauge and satellite data have their limitations. Rain
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gauge data may have several drawbacks, such as missing data, mechanical and manual
measurement errors, etc. In contrast, satellite data may have errors due to changes in orbit
or detection devices, the presence of contaminants in the atmosphere, etc. [30]. Satellite data
cannot supplant the rain gauge observations but rather supplement them, and the lack of
long-term rain gauge observations poses significant challenges when validating data from
satellite estimates [62,63]. Hence, the existing rain gauge network is still inadequate and
should be expanded, considering the diverse topography. We should consider the results of
the performance evaluation of satellite data through statistical metrics before its application.
In general, satellite data with high R and low RMS are chosen. The underestimations
of rainfall events and amounts are not preferred for flood predictions and hydrological
studies, whereas the overestimations are less preferred for drought monitoring [47].

4. Conclusions

In this study, the rainfall estimates from a satellite product (CHIRPS) were com-
pared and evaluated with ground-based observations (DHM) over five medium-sized
basins—West Rapti, Babai, Bagmati, Kankai, and Kamala—from 1986 to 2015. Both con-
tinuous and categorical evaluation statistics were used to analyze the performance of
CHIRPS at different time scales—monthly, seasonal, and annual. Notably lower POD
values (<0.38) and CSI values (<0.36), significant false alarms, and underestimation of
rainfall were observed in all basins. The categorical evaluation statistics suggest that the
ability of the CHIRPS product to estimate rainfall is not reliable compared to in situ rain
gauge observations, demanding certain adjustments/corrections in the CHIRPS datasets
before its operational use.

The rainfall estimates of CHIRPS showed a better agreement with ground-based
observations in terms of both R and KGE for seasonal (R = 0.95, KGE = 0.76) and monthly
(R = 0.87, KGE = 0.72) time scales than for the annual time scale (R = 0.31, KGE = 0.21).
CHIRPS underestimated the rainfall throughout the study area over all time scales, as the
average BIAS value was −6.63%. A higher consistency was observed between the CHIRPS
product and ground-based observations during the non-monsoon periods with greater
R-values (0.41 to 0.67) and remarkably lower RMS values (29.83 to 115.46 mm). In summary,
CHIRPS was found to effectively record the seasonal variation of rainfall in the study area.

In all basins, the average number and frequency of rainfall less than 10 mm (class A)
and higher than 150 mm (class E) of the in situ observations were double CHIRPS observa-
tions, indicating the inability of CHIRPS to detect slight rainfall and severe rainfall events.
Furthermore, the rainfall frequencies and amounts were underestimated by CHIRPS for
class A and overestimated for rainfall events of 10 to 100 mm per day (class B and C). In
general, CHIRPS can be used to monitor flooding events triggered by rainfall of less than
100 mm per day, whereas it is not appropriate to monitor drought scenarios.

This study concludes that the CHIRPS can serve as an alternative to monitor the spatio-
temporal variation of rainfall, complement existing ground-based stations, and fulfill the
existing data gaps. Our study can serve as a reference for CHIRPS users to evaluate the
performance of CHIRPS regarding ground-based observations.
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