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Abstract: The Magnitude and occurrence of extreme low flow events are needed in setting minimum
flows to protect the instream users. As the true distribution is not normally known, the identification
of the most appropriate distribution function that describes the extreme low flow data of a catchment
is essential in estimating reliable low flow quantiles at various average recurrence intervals (ARI).
The aim of this study is to conduct a comparative assessment of the performance of three plausible
distribution functions for estimating low flow quantiles. The investigation was carried out by using
27-gauge stations within South Australia (SA), the driest state in Australia. The best distribution
function out of the three selected distributions; Log Normal (LN), Log Pearson Type 3 (LP3), and
Generalized Extreme Value (GEV for each of the three selected annual minima series (7-day, 15-day
and 30-day) at each gauged catchments was identified. The estimated low flow quantiles from using
these three distribution functions were compared using RMSE values estimated through Monte Carlo
simulation studies. For the majority of the selected study catchments, GEV fitted using L moments
was found to be the best method for estimating low flow quantiles at ARIs over 10 years (≥14%),
while at low ARI, LP3 fitted using the Method of Moments (MOM) was shown to outperform (≥17%)
the other methods.

Keywords: low flow; climate change; water resources; sustainable; RMSE; ARI

1. Introduction

The effects of climate change are more evident and becoming a threat to the environ-
mental system. This climate variability may significantly affect extreme weather changes,
for instance, long term droughts or extreme floods [1]. Estimation of the reliable low flow
regime of a stream is essential for water resources planning and management in water
quality and quantity management studies, the planning of water supply schemes, flow
diversions, hydropower generation, wildlife conservation, recreational uses, waste-load
allocations into watercourses, reservoir storage design, and drought management. Many
researchers emphasize that the characterization of the low flow statistics of a stream is im-
portant to improve the ability to predict the extreme low flow events for the water resource
applications listed above [2–4]. Allocating environmental water flow from river systems
is important for habitat protection, after fulfilling the basic demand of consumers [5]. As
such, for some drainage basins, the flows need to be set to fulfil some specific predefined
economic, ecological, or social objective. However, little attention has been directed to-
wards low flow studies compared to flood studies [6]. Furthermore, there is ambiguity
in recommended methods and, as a result, no standard procedure has been developed
for estimating low stream flow statistics of catchments [2]. Therefore, identification of a
suitable methodology for the data at hand and the assessment of low flow potential at
various ARIs is needed for sustainable water resources management.

The availability of water resources in Australia is highly variable both in temporal
and spatial means. This study is based on South Australia (SA), which is considered to be
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the driest state in Australia compared to the other states. Although a considerable amount
of precipitation is received during the winter and early spring, which causes the streams
to run, extreme climatic conditions (high evaporation) and catchment characteristics lead
many streams to dry up entirely; thereby, resulting in streamflow patterns in SA that are
highly variable and ephemeral. Furthermore, the permanent baseflow is reduced year by
year depending on the preceding seasons’ rainfall. Therefore, the main water consumers,
such as agriculture, mining, and energy related industries, need a good understanding of
water availability and its variability for the efficient allocation of scarce water resources.
Consequently, the development of methodologies to make accurate estimates of low flow
regimes in South Australian streams is a fundamental need.

Although there have been some regional low flow studies conducted for South Eastern
Australia [7–9], no such studies have been reported for SA. Hewa [10] conducted at-site
low flow studies for Scott Creek and emphasized the importance of extending the same to
the whole of SA. Therefore, the identification of a suitable methodology to quantify low
flow potential of South Australian Rivers is a necessity.

There are studies that have investigated the applicability of different probability dis-
tribution functions for low flow frequency analyses [11–16]. For instance, the Gringorten
plotting position formula and goodness-of-fit test have been applied to investigate the per-
formance of different probability distribution methods for 25 British river catchments [12].
They recommended the use of P3 or GEV distributions for short durations while General-
ized Pareto (GP) and GEV distribution for longer durations. Furthermore, they confirmed
that the longer duration minima series does not follow the same distribution pattern as the
short duration minima series. The Method of Moments (MOM) process is the oldest and the
most widely understood technique for fitting frequency distributions [17]. Wallis et al. [16]
documented the sample bias associated with skewness, whereas the authors of [17] doc-
umented the bias associated with both the skewness and the coefficient of variation of
small and large samples drawn from highly skewed populations. However, the process of
sampling the properties of bias and variance within these product moment estimators is
distribution dependent [16].

The field of low flow frequency analysis has advanced substantially in recent times and
a large number of techniques for representing the distribution function to a minima series
have been introduced. For instance, fitting Generalized Extreme Value (GEV) distribution
using LH moments [18] and LL moments [19]. The Expected Moment Estimate and Proba-
bility Plot Correlation are additional alternative methods for fitting a distribution function.
The new techniques to fit the minima series are yet to be identified despite the above stated
drawbacks of MOM, LN, and LP3, which are still fitted using MOM. Both Tasker [20] and
Vogel and Kroll [21] recommended LP3/MOM, and according to Griffis et al. [22], USGS
bulletin 17 proposes the use of the LP3 with a conditional probability adjustment. The ease
of computing the parameters and conceptual simplicity are the primary advantages of the
MOM estimators technique [17]. Furthermore, low flow frequency analyses for Scott Creek
catchment in SA showed that all four models LN/MOM, LP3/MOM, GEV/L, and GEV/L2
performed equally at low to medium ARIs, while GEV/L2 values were more conservative
when compared with those from the other models [10]. Accordingly, this study extends the
work performed by the authors of [10] to the remaining SA catchments for the purpose of
identifying a model which performs better for the majority of the catchments in the region.

The aim of this study is to identify the most suitable distribution function for estimat-
ing low flow quantiles at six selected ARIs for extreme low flow series of three durations
(7-day, 15-day, and 30-day) at 27 selected South Australian catchments. The best distribu-
tion function for SA catchments was identified from four plausible models: LN/MOM,
LP3/MOM, GEV/L, and GEV/L2. Suitability of these models for describing the selected
annual minima series of the selected study catchments was assessed by using probability
plots, while the reliability of the estimated low flow quantiles was assessed using RMSE
values estimated through Monte Carlo simulation studies.
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2. Materials and Methods
2.1. Study Area

The study catchments were selected from four regions of South Australia, namely,
Adelaide and Mt Lofty, Northern and York, SA Murray–Darling Basin, and Kangaroo Island.
The geographical distributions of the candidate catchments of the study area are shown in
Figure 1. Table 1 provides basic information about the selected gauge stations/catchments.
The selection of these catchments was primarily based on the degree of urbanization
assessed using data from land use surveys published by Data SA in 2008, 2014, and 2016,
in addition to, the amount of regulation, the length, and the quality of the observed stream
flow data series. Small to medium unregulated catchments (A < 1000 km2) with less than
10% urbanization and over ten years of high-quality daily flow data were selected for
the investigation.

Table 1. Details of the study catchments.

Station No Station Name Record
Length (Years)

Catchment
Area (km2) Major River Basin Region Region

Reference

4260504 4 KM East of Yundi 37 191.0

Lower Murray river
SA Murray–

Darling
Basin

A

4260529 U/S Cambrai 15 239.0
4260533 Near Hartley 14 473.0
4260536 Worlds end 30 704.0
4260557 D/S Mt. Barker 18 88.0
4260558 Dawesley 28 43.0

5020502 U/S Dam and Rd Br 10 76.5 Myponga

Adelaide and
Mt. Lofty B

5030502 Scott Bottom 37 26.8

Onkaparinga

5030503 4.5 KM Wnw
Kangarilla 18 48.7

5030506 U/S Mt Bold Res. 17 34.2
5030507 Lenswood 15 16.5
5030508 Craig bank 30 8.4
5030509 Aldgate Rly Station 15 7.8
5030526 Uraidla 11 4.3

5040512 Mt Pleasant 33 26.0

Torrens River

5040517 Waterfall Gully 13 5.0

5040518 U/S Minno Ck
Junction 13 19.0

5040523 Castambul 15 44.0
5040525 U/S Millbrook Res 12 23.0

5050502 Yaldara 18 384.0
Gawler River5050504 Turretfield 34 708.0

5050517 Penrice 16 118.0

5060500 Near Rhynie 27 417.0 Wakefield River
Northern
and York

C
5070500 Near Andrews 29 235.0 Broughten River
5070501 Near Spalding 31 280.0
5090503 Old Kanyaka Ruins 21 180.0 Willochra Creek

5130501 U/S Gorge
Falls (K.I.) 33 190.0 Kangaroo Island Kangaroo

Island D

The selected catchments cover a diverse climatic and physiographic conditions. Mean
annual rainfall over the study area varies from 300 mm to 1000 mm while mean annual
class A pan evaporation varies from 1200 mm to 3200 mm (Bureau of Meteorology, 2010).
Elevation of the selected catchments varies from 0 m AHD to 450 m AHD.
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2.2. Data Collection

Daily stream flow data recorded based on the calendar year of the selected catchments
were obtained from the Department for Environment and Water in SA. Available stream
flow data for the majority of the catchments were impaired by various quality issues
including missing records and unknown or not collected data. Therefore, the stream
flow data of each catchment was subjected to an initial screening to remove all doubtful
information. Consequently, 27 catchments with good quality streamflow data were retained
for the initial study (Table 1). For this investigation, three annual minima series were
extracted: 7-day, 15-day, and 30-day.

2.3. Fitting Distribution Functions to the Observed Minima Series

As stated in Section 1, the aim of this study is to investigate the performance of four
models: LN/MOM, LP3/MOM, GEV/L, and GEV/L2, in analyzing three annual minima
series of the 27 selected catchments in SA (Table 1). However, due to the lack of sufficient
nonzero annual minima in the extracted series, only 15 catchments were considered in
the final investigation. At the start, probability plots of the minima series were ranked in
ascending order and constructed using Cunnane’s plotting position formula. Subsequently,
low flow quantiles at six selected recurrence intervals were estimated and plotted on the
probability plot in order to view how best each model type describes the observed minima
series of the study catchment. In order to understand the reliability of the model estimates,
the RMSE of each flow quantile was estimated using the Monte Carlo simulation process
(Figure 2). As the actual distribution of where data has come from is usually unknown, the
Monte Carlo simulation was repeated by taking each model type as the parent distribution
at a given time and estimating low flow quantiles using the remaining model types as well
as estimating the RMSE (Equation (1)) of the low flow quantiles at each selected ARI.

RMSE =

√
∑N

1

(
Qi −Q

)2 (1)

where;

Qi = Low flow quantile
Q = Mean quantile
N = Random sample number
RMSE = Root mean square error
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The specific details of this two-stage investigation process are discussed next.
For each of the selected study catchments, low flow quantiles at six ARIs (ARI = 2, 5,

10, 20, 50, 100) were estimated for the three selected annual minima series (7-day, 15-day,
and 30-day) using LN, LP3, and GEV distributions. The LN and LP3 were fitted by using
MOM with conditional probability adjustment, which is a methodology that has been
well documented in many studies [10,23]. GEV distribution function was fitted to the
annual minima series by using both L moments and L2 moments; the methodology is well
documented in Hewa et al. [18]. Consequently, a total of four model types: LN/MOM,
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LP3/MOM, GEV/L, and GEV/L2 were fitted to the data series. In the second stage, Monte
Carlo simulations were performed as discussed next.

2.4. Monte Carlo Simulations

Monte Carlo simulations were carried out to investigate how each model performs
when the data are derived from another model. The Monte Carlo method is the practical
alternative framework proposed by the International Organization for Standardization
(ISO) guide 98–3 for the evaluation of uncertainty in measurement [24]. As discussed by
Hewa [10], when presented with a selected parent model (e.g., LN/MOM), a Monte Carlo
Simulation was conducted as described in the flow chart (Figure 2).

3. Results

The 7-day 10-year low flow quantile (Q 7,10) is one of the most widely used low flow
indexes worldwide; therefore, the results are mainly demonstrated by using this low flow
index. Of the 27 selected catchments, one (A5040525) had no nonzero flows and was
subsequently excluded from the analyses. Three other catchments (A4260533, A5030508,
and A5040512) had only 1 or 2 nonzero observations and were not able to fit any of the
models; they were thus excluded from the analyses. Furthermore, of the 23 remaining
catchments, GEV (L or L2) fitting failed at another 8 catchments due to insufficient nonzero
flow observations. Therefore, model performance is compared using only 15 catchments to
which all four models can be fitted. Table 2 provides the quantile estimates made by each
of the four models for these catchments.

Table 2. Estimated Q 7, 10 by the four models.

Station No LN/MOM (Ml) LP3/MOM (Ml) GEV/L (Ml) GEV/L2 (Ml)

A4260504 0.36 0.35 0.00 0.00
A4260536 6.96 6.70 7.32 6.59
A4260557 0.23 0.23 0.00 0.00
A5020502 0.11 0.11 0.00 0.00
A5030502 0.25 0.25 0.07 0.06
A5030503 0.28 0.28 0.02 0.00
A5030506 0.39 0.39 0.40 0.39
A5030509 0.13 0.13 0.00 0.03
A5030526 0.27 0.27 0.33 0.30
A5040517 1.61 1.59 1.58 1.54
A5040518 0.73 0.74 0.64 0.65
A5040523 3.23 3.70 1.41 2.07
A5050517 0.34 0.36 0.06 0.00
A5060500 4.03 4.36 2.45 4.08
A5070500 2.48 2.40 0.01 0.01

It is observed from Table 2 that GEV/L and GEV/L2 estimates of 7-day 10-year low
flow quantiles are greatly different to those of LN/MOM and LP3/MOM models for a
majority of the catchments except for A4260536, A5030506, A5030526, A5040517, A5040518,
and A5060500. These six catchments are wet or fairly wet catchments. For all the other
catchments, LN/MOM and LP3/MOM means are higher compared to GEV/L and GEV/L2
models. A5070500 is the driest catchment out of all other dry catchments—having 83% of
zero observations. This catchment is located in the Northern and York region, which has
had more hot days over 38 ◦C in the past 30 years (1989–2018) [25].

Figure 3 compares the 7-day mean quantile of a wet catchment when the data is
generated from another model. It is clearly observed from Figure 3b,c that, when the
data is derived from LP3/MOM or GEV/L, other models make equally close estimates at
every ARI considered. However, when LN/MOM is considered as the parent, both GEV/L
and GEV/L2 models overestimate the risk (i.e., underestimate the low flow quantile).
On the other hand, when GEV/L2 is considered as the parent, every other model makes



Hydrology 2022, 9, 152 7 of 12

underestimations of the risk (i.e., overestimates the low flow quantile) and, importantly,
the deviation from the parent is greater at higher ARIs for wet catchments.
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Figure 3. Comparison of the 7-day mean quantile estimate (Qm) of catchment A5030526 (wet
catchment) at Uraidla when data generated from another model. Error bars indicate standard error.

In contrast, Figure 4 compares the 7-day mean quantile of a dry catchment when
the data is generated from another model. It is observed from Figure 4a,b,d that when
data are generated by taking LN/MOM, LP3/MOM, or GEV/L2 as parent models, other
models perform equally or in a similar pattern for high ARIs. However, when GEV/L or
GEV/L2 are considered as the parent model, every other model underestimates the risk
(i.e., overestimates the low flow quantile) and the deviation from the parent is greater at
lower ARIs. This means, if the data are coming from GEV, then other models underperform.
On the other hand, even when data come from other distributions, GEV/L performs well.

Figure 5 compares the models using RMSE of the 7-day low flow quantiles estimates
at six selected ARIs for the 15 catchments. The model with the least RMSE was given rank
one while equal rank was given when RMSE of two models are the same. At higher ARIs,
estimation of RMSE was not possible as the quantile estimates become zero; consequently,
no ranking was performed at those quantiles (e.g., GEV/L2 → LN/MOM at ARI over
10 years). The maximum height that a column in Figure 5 can reach is up to 100%. It
is noted that, when data is derived from either LN/MOM or LP3/MOM, both GEV/L
and GEV/L2 are suitable to make quantile estimates at higher ARIs. However, no model
consistently performs better for the region at low ARIs. The low quality data and zero
flows may have contributed to inconsistent analysis.
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Figure 4. Comparison of the 7-day mean quantile estimate (Qm) of catchment A4260557 (dry catchment)
at D/S Mt. Barker when data were generated from another model. Error bars indicate standard error.
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Figure 5. Comparison of the models using RMSE of 7-day minima series of the study catchments.

Figure 6 presents the overall results when the performance of the four models over
all three selected series is considered. It compares how each model performs when a data
series is drawn from the other models. The Y axis of Figure 6 indicates the percentage of
occurrences that each model made for the quantiles with the least RMSE. It is observed
from Figure 6 that GEV/L was consistently the best performer with ARIs over 10 years
while LP3/MOM outperforms with low ARIs.
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Figure 6. Comparison of the performance of four selected models in analyzing three selected series
(7-day, 15-day, and 30-day).

4. Discussion

There are different definitions for low flow in the literature. Many studies describe
it as the actual streamflow during the dry period while others consider the changes to
streamflow between consecutive flood events [26]. The study of low streamflow and return
periods associated with extreme events is highly significant for effective water supply and
sustainable management of water in a given region or country. The low flow condition is
mainly linked with climatic conditions and catchment characteristics. It may vary daily,
seasonally, and annually. Accordingly, there are different measures and indices used to
characterize the low flow, for instance: mean daily flow, median flow, mean annual runoff,
and absolute minimum flow [27]. As the low flow condition is linked with climatic and
geophysical conditions, a model developed for one region may not perform equally for
estimating the low streamflow statistics of another region. Therefore, choosing the best
fitting frequency distribution model to evaluate the extreme low flow events in a region
is a common problem in hydrology. Accordingly, this study was conducted using four
models—namely, LN/MOM, LP3/MOM, GEV/L, and GEV/L2—to estimate the low flow
quantiles of SA catchments.

We noticed that when the catchments are wet or fairly wet, any of the four models
(LN/MOM, LP3/MOM, GEV/L, and GEV/L2) make fairly equal quantile estimates. For
dry catchments, LN/MOM and LP3/MOM models overestimate when compared to GEV/L
and GEV/L2 models. As low flows are more important in dry catchments than wet
catchments, it is very important to know which model makes the most accurate estimates
of low flow quantiles in dry catchments. The results were further investigated using 7-day
mean quantiles of six selected ARIs: 2, 5, 10, 20, 50, and 100, when data are generated from
another model as in Figures 3 and 4. It is clearly evident that there is no single model that
consistently performs better. The models perform differently for wet and dry catchments.
This may be due to unavoidable data quality issues in the obtained data, for instance,
missing stream flow observations for a varying length, short record length, limited number
of gauge catchments, and unrealistically high recorded values. It could even be due to
the fact that high frequency and low frequency flows have different trends. Of the initial
27 catchments, twelve catchments had no or insufficient nonzero flow observations to fit
with one or more distribution functions; therefore, they were excluded from the study. The
analysis continued with only 15 catchments.

The performance of each model was further compared using the RMSE value of the
7-day low flow quantiles. Figure 5 shows that GEV/L and GEV/L2 are the most suitable
models for evaluating the low flow quantiles of higher ARIs while Figure 6 confirmed
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the use of GEV/L model for medium to high ARIs. Moreover, LP3/MOM can be a good
candidate for estimating low flow quantiles at low ARIs. However, the results of this study
emphasize the significant importance of developing new techniques for estimating low
flow quantiles of catchments given several data restrictions. Ouarda et al. [28] outlined that
flood frequency analysis methods, such as neighbourhood regionalization approach, can
be extended to estimate low-flow quantiles. In a recent study [29], the canonical correlation
and neural network based regional frequency analysis method were used to estimate low
flow in South Korean river basins. Jung et al. [29] highlighted that the machine learning-
based nonlinear model could estimate relatively reliable low-flow quantiles compared
to a linear model. The most commonly used methods in low flow analysis are: Weibull,
Gumbel, Log–Normal, Gamma, Pearson Type III, and Log–Pearson Type III [2,28]. This
study confirmed that the Method of Moment (which is used in this study) or other methods,
such as the probability weighted moment method, could be used for estimating parameters
of the selected distribution functions. Furthermore, due to the absence of stream flow
data or the short length of records, there is a high level of uncertainty in selecting the
best fit distribution function for estimating low flow quantiles. In such cases regional
frequency analysis is the most commonly used method for estimating extreme events (flood
or droughts)—where no or little flow data is available [28,30].

Furthermore, there is an increasing demand for a reliable estimate of low flow quantiles
for many economic and environmental applications. As such, improving the existing
developed methods or developing efficient techniques for the accurate estimation of low
flow quantiles is important.

5. Conclusions

South Australia is considered the driest state in Australia, and its streamflow patterns
are highly variable and ephemeral. Moreover, permanent baseflow reduces year by year
depending on the preceding seasons’ rainfall. Climate variability greatly affects the fre-
quency and severity of extreme flow events; thereby stressing the importance of increasing
the frequency of hydrological drought alarms; developing best fit models for the projection
of extreme low flow events; mitigating uncertainty in function selection; and synthesizing
existing knowledge [31,32]. Consequently, the development of methodologies to estimate
low flow regimes in SA streams is fundamental to efficient water allocation.

Low flow frequency analyses of three annual minima series from SA catchments
were conducted using four models: LN/MOM, LP3/MOM, GEV/L, and GEV/L2. The
performance of each model was compared against the other by using RMSE values. Monte
Carlo simulations were conducted to compute the RMSE of the quantile estimates made
from each model when the data series were derived from another model. It was noted that
no single model consistently outperforms the others for the entire range of the selected
ARIs in SA catchments. The results support the use of GEV/L for estimating low flow
quantiles at medium to high ARIs, while LP3/MOM outperforms at low ARIs.

Poor quality records, unavailability of long-term stream flow records, and having a lim-
ited number of gauge catchments have restricted the comparative analyses to 15 catchments.
Therefore, in order to obtain a reliable relationship between catchment characteristics and
low flow index further research should be carried out. As the second stage of the study,
the authors are planning to develop a regional regression model for ungauged catchment
predictions in SA. The success of the regional regression model for low flow regimes de-
pends on the data availability. An absence of high-quality records or missing data will
greatly affect the final outcome. The identified data quality issues in the study area are:
unrealistically high values, short record length, and varying lengths of missing data for a
period of one day to several years. Therefore, the compilation of a good, quality database
for SA is necessary if reliable low flow predictions are to be made. Increasing the length of
available gauge flow data by filling the gaps/missing data would be an alternative measure
that could be taken to improve the reliability of the estimates of low flow quantiles.
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Moreover, this study emphasizes the importance of developing alternate methodolo-
gies or techniques for quantifying the low flow regimes of catchments with short records or
no flow records.
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