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Abstract: Protein hydrolysates (PHs) derived from waste materials are promising for sustainable
practices in agricultural production. This study evaluated the effects of PH enzymatically derived
from anchovy by-products on the root system architecture (RSA) and aboveground development of
potted primrose. The plants were treated with 0.5, 1.0, and 1.5 g/L concentrations of PH by drenching
with 100 mL/pot at two-week intervals and irrigated once a week with 100 mL/pot during winter and
twice weekly during spring. The results revealed that the 1.5 g/L treatment statistically significantly
improved dry weight and leaf area, while the highest leaf chlorophyll content was observed with
the 1.0 g/L treatment. The treatments did not influence leaf and flower numbers. Treatment with
1.0 g/L produced the most substantial improvement in root surface area, projected area, volume,
length, tips, and forks. Additionally, the study employed machine learning (ML) algorithms, includ-
ing GP, RF, XGBoost, and an ANN-based MLP. The input variables (root surface area, projected area,
volume, length, tips, and forks) were assessed to model and predict the root traits. The ML and ANN
algorithms’ R-squared rates were noted in the following order: MLP > GP > RF > XGBoost. These
outcomes hold significant implications for enhancing primrose growth.

Keywords: amino acids; image analysis; machine learning; ornamental plant; root development; fish
waste; sustainability

1. Introduction

Primula, or primrose, refers to early flowering and plant growth in spring and the
genus belongs to the Primulaceae family. Primula acaulis, English primrose or acaulis
primrose, is one of the most important species commercially produced for ornamental plant
markets [1]. Primroses are herbaceous perennial plants with attractive flowers and rosette
leaves and are cultivated as pot plants or bedding plants [2]. During the cultivation period,
optimal environments and nutrition are required for primrose production. Achieving this
goal involves cultivating plants in substrates and applying specific chemical fertilizers
to meet the plants’ distinct requirements at various stages of development [3]. However,
the use of pesticides and fertilizers for primrose production in greenhouses contributes
significantly to both aquatic and terrestrial ecotoxicity impact categories [4].

Over the last three decades, various technological innovations have been developed
to reduce synthetic agricultural chemicals such as pesticides and fertilizers and increase
the sustainability of agricultural production systems. Efforts have been made to develop
promising and environmentally friendly natural products that can increase flowering, plant
growth, fruit set, crop productivity, and nutrient use efficiency and improve tolerance
to a wide range of abiotic stress factors [5]. In this context, there has been a notable
increase in enthusiasm for incorporating plant biostimulants into agricultural practices [6].
Biostimulants encompass various categories of compounds distinguished by their main
modes of action and chemical composition. Among these, protein hydrolysates have
become the subject of numerous studies. Hydrolysates are derived from various vegetal
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or animal sources, including by-products and agricultural waste [7]. Various agricultural
practices generate organic waste, which holds the potential for additional processing to
produce biostimulants. In this context, fish waste has great potential because almost
50% of the waste is generated during fish processing and is not processed into food [8].
Additionally, fish waste with a crude protein content ranging from 8 to 35% has the
potential to be a source of essential amino acids [9]. Therefore, utilizing fish protein
to produce protein hydrolysate and bioactive peptides can enhance the economic value
and mitigate the potential negative environmental impact [10]. Various techniques are
employed for fish protein hydrolysate (FPH) production, such as chemical hydrolysis
(acid and alkaline hydrolysis), autolysis, bacterial fermentation, and enzymatic hydrolysis.
Enzymatic hydrolysis and chemical hydrolysis are the most utilized methods to produce
FPH. Notably, enzymatic hydrolysis avoids the generation of residual organic solvents
and toxic chemicals in the final products [11]. Given these benefits, this study primarily
emphasizes the enzymatic processes for FPH production [12,13].

FPH can be applied to plants as drenching or foliar spray. FPH is proven to improve
plant performance, including yield and quality in lettuce [14,15], spinach [16,17], wheat [18],
and melon [19]. Moreover, FPH has been demonstrated to enhance plant nutrient utiliza-
tion and root development [20]. In traditional soil farming, such vigorous root growth is
also correlated with heightened drought tolerance [21]. However, examining root morpho-
logical traits is challenging due to the labor-intensive process and difficulties in obtaining
valid root samples without causing excessive damage [22]. Therefore, image analysis
softwares such as RootNav 1.8.1, RootSystemAnalyzer 2, RootTrace 0.8.1, SmartRoot 4.1,
and WhinRhizo 2013 were used to determine root morphological traits [23]. WinRhizo
was developed specifically for root image analysis, allowing automatic and interactive
root measurements [22]. Additionally, image analysis software integrated with machine
learning algorithms provides promising statistical tools for variable selection and group
classification [24].

The application of machine learning (ML) is prevalent in solving complex problems
across diverse scientific disciplines [25]. Despite its widespread use in various fields, the
adoption of ML methodologies in plant and agricultural science is comparatively lim-
ited [26]. Nevertheless, researchers have showcased notable success in leveraging ML in
plant science, particularly in areas such as plant breeding [27], cell biology [28], or root
system architecture (RSA) [24]. Artificial neural networks (ANNs) are a class of nonlinear
computational methods utilized for diverse tasks, such as data clustering, predictions, and
the categorization of complex systems [29,30]. Artificial neural networks (ANNs) could
reveal relationships between input and output variables, extracting underlying insights
from datasets without relying on pre-existing physical assumptions or considerations [31].
In this study, four distinct machine learning models were employed—multilayer percep-
tron (MLP), random forest (RF), Gaussian process (GP), and extreme gradient boosting
(XGBoost). Each model possesses unique strengths and capabilities for capturing complex
relationships within the data. The MLP utilizes a supervised training process with input
and output variables provided in the training set. RF calculates the Euclidean distance
between each neuron’s center and the input as the primary input to the neuron’s transfer
function. GP assesses the likelihood that input samples belong to a specific class, serving
as a nonparametric classifier for binary datasets, particularly effective with small datasets
due to its consistency, precision, and ease of calculation [26]. XGBoost excels in learning
from errors and progressively decreasing the error rate over multiple rounds [32]. The de-
liberate combination of these models enhances the study’s ability to comprehend intricate
relationships within the dataset, encompassing primrose cultivars, plant growth, and root
system architecture.

The primary goal of the current study is to determine the effects of anchovy waste
protein hydrolysate on the overall quality of cultivated plants and promote sustainable
cultivation methods. The study pursues multiple objectives to achieve this, including
examining different primrose cultivars, protein hydrolysate from waste material, evaluating
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plant growth parameters, and image analysis of the root system. In order to expand the
breadth of the research, the study incorporates advanced methods such as artificial neural
network analysis and machine learning. By utilizing these computational techniques, the
study strives to model and accurately predict the effects of fish protein hydrolysate on the
quality of potted primrose cultivation.

2. Materials and Methods
2.1. Production Protein Hydrolysate from Fish By-Product

Protein hydrolysate was produced enzymatically from by-products (head and viscera)
of anchovy (Engraulis encrasicolus), a common species in the Black Sea region in Türkiye.
The optimized protocols for FPH production from anchovy waste by Korkmaz et al. [33]
and Korkmaz and Tokur [34,35] were used. The anchovy waste materials were collected
from commercial fisheries and brought immediately to the laboratory in a cold chain. In the
first stage, the wastes were crushed by a mincing machine (Empero, EMP.12.01.P, Konya,
Türkiye) and then kept in a water bath at 90 ◦C for 20 min to inhibit endogenous enzymes.
Then, the samples were cooled and homogenized by adding distilled water (1:1 v/v). The
samples were hydrolyzed by applying flavourzym (Novozymes A/S, Bagsvaerd, Denmark)
(1.0%) at 50 ◦C for 1.5 h, and the pH was adjusted to 7.0 during the process. The inactivation
time and temperature of flavourzym were applied in line with the recommendation of the
company from which the enzymes were purchased. After cooling, the hydrolysis solution
was centrifuged (Sigma 3-30KS, Sigma Laborzentrifugen GMH, Osterode, Germany) at
2067× g for 20 min to achieve phase separation. Subsequently, the liquid phase was freeze-
dried. The FPH powder was stored in sterile 50 mL centrifuge tubes at 4 ◦C prior to analysis
and applications.

Amino Acid Composition of FPH

Amino acid quantification was conducted using LC-MS/MS (Thermo Fisher Scien-
tific Inc., Waltham, MA, USA), with modifications to the methods employed by Lee and
Hwang [36] and Chan and Matanjun [37]. After necessary adjustments to the equipment
outlined by Kıvrak [38], analyses were carried out. Considering the content of essential
amino acids, the chemical scores of the protein hydrolysate were specified according to the
essential amino acid content of the standard protein determined by the FAO/WHO [39].
Table 1 shows the total amino acid contents of the FPH.

Table 1. Total amino acid contents of FPH obtained from anchovy by-product.

Amino Acids Amount of Total Amino Acids
(g/100 g Dried Samples)

Arginine 0.67 ± 0.13
Aspartic acid 6.98 ± 0.42

Cystine 0.56 ± 0.04
Glutamic acid 8.72 ± 0.06

Histidine 0.67 ± 0.08
Isoleucine leucine 1.35 ± 0.05

Lysine 1.42 ± 0.07
Methionine 0.97 ± 0.02

Phenylalanine 0.65 ± 0.03
Proline 1.31 ± 0.02
Serine 4.03 ± 0.03

Threonine 3.45 ± 0.05
Tyrosine 0.61 ± 0.02

Valine 1.33 ± 0.012

2.2. Plant Material and Growing Conditions

Light violet and pink varieties of Primula acaulis cv. Danova F1 were used as plant
material. Seedlings with four true leaves were obtained from a local company and trans-
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ferred into a 1.5 L plastic pot containing peat: perlite (2:1 v/v) substrate. Seedlings were
grown in an unheated plastic greenhouse between 1 December 2019 and 4 April 2020. The
highest, lowest, and average temperature (◦C) and relative humidity (%) in the greenhouse
were measured with a portable datalogger (Kimo KT100, Sauermann Industries, Montpon,
France) throughout the growing period (Table 2). During the cultivation period, no addi-
tional nutrients or chemicals were applied. The plants were irrigated once a week with
100 mL/pot during winter and twice weekly during spring.

Table 2. Climatic conditions in the greenhouse during cultivation.

Parameter for Greenhouse Average Highest Lowest

Temperature (◦C) 12.63 25.01 3.64
Humidity (%) 61.98 89.10 29.07

2.3. Application of Protein Hydrolysate

Protein hydrolysate treatments started through root drenching two weeks after trans-
planting (1 December). The FPH powder was dissolved in distilled water and applied at
two-week intervals for five times, 100 mL/pot, at 0.5, 1.0, and 1.5 g/L concentrations until
flower bud differentiation. We watered the plants in the control group with 100 mL of
distilled water instead of FPH treatment.

Experiments were conducted in a randomized plot design with 12 replications and
a seedling in each replication. JMP 8.0 statistical software analyzed experimental results
using two-way ANOVA (variety × applications). Differences between treatment means
were tested with the least significant difference (LSD) test.

2.4. Plant Growth Characteristics and Assessment of Root System Architecture

Days from the transfer of seedlings into the pots till the flowering period (DAFT) were
recorded, and flower numbers per plant were counted during the flowering period. The
chlorophyll content in leaves (SPAD index) was measured using a chlorophyll content meter
(CCM-200, Opti-Sciences, Hudson, NH, USA). The plants were brought to the laboratory at
the end of the flowering period for further analysis. The plants were removed from pots
and then washed under tap water. The plants’ organs were separated using a scalpel, and
leaf numbers per plant were recorded. Whole leaves from each plant were scanned using
a scanner (HP Deskjet 2720) and a ruler. Then, images were processed using Digimizer
image analysis software (ver. 5.4.1, MedCalc Software Ltd, Ostend, Belgium), and leaf
area (cm2) was calculated. The roots were carefully washed under tap water and scanned
with a scanner (Epson Expression 10000XL, Epson America Inc., Long Beach, CA, USA).
Images were used to measure root length (cm), root volume (cm3), root diameter (mm),
root tips, root forks (where the parent root tips produce the new roots), root crossing (the
point where the roots cross each other), projected area (cm2), and surface area (cm2) using
WinRhizo software (ver. 2013, Regent Instruments, QC, Canada) [40]. Whole plant parts
were dried in an oven (Ecocell, MMM Medcenter Einrichtungen GmbH, Munich, Germany)
at 80 ◦C for 48 h, and dried samples were weighed with an analytical balance [41].

2.5. Modeling Procedure

In order to model and predict the root traits of different primrose genotypes after
FPH treatment, this study employed three machine learning (ML) algorithms, Gaussian
process (GP), random forest (RF), and extreme gradient boost (XGBoost), in addition to
a well-known ANN-based multilayer perceptron (MLP). To fully assess the predicted
performances of the MLP and ML models, we used a 10-fold cross-validation method to
split the dataset into training and testing subsets.

The input variables comprised two distinct genotypes and four distinct treatments.
Conversely, the target (output) variables included projected area, surface area, length,
average diameter, root volume, tips, forks, and crossings of roots. The caret package was
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utilized together with R programming (ver. 3.0.3) to implement coding. The accuracy and
precision of MLP and ML models were evaluated and contrasted using several criteria.
Among these metrics were the mean absolute error (MAE), which computes the average
error between the predicted and observed values (Equation (1)), the root mean square
error (RMSE), which indicates how closely the regression line matches the observed data
points (Equation (2)), and the coefficient of determination (R2), which indicates the degree
of relationship between the model and dependent variable (Equation (3)).

MAE =
1
n

n

∑
i=1

|Yi − Ŷi| (1)

RMSE =

√(
∑n

i=1 (Yi − Ŷi)2
)

n
(2)

R2 = 1 − ∑n
i=1(Y i − Ŷi)

2

∑n
i=1(Y i −

∼
Y)2

(3)

2.5.1. Multilayer Perceptron

One widely recognized artificial neural network (ANN) is the multilayer perceptron
(MLP), which is structured with an input layer, an output layer, and one or more hidden
layers. We trained the MLP using the input and output variables from the training set by
employing a supervised training method. We repeated the training process until the target
value in Equation (4) was achieved:

E =
1
n

n

∑
n=1

(ys − ŷs) (4)

n = number of observations, ys is the s-th observation variable, ŷs is the s-th of the
predicted variable.

To calculate the predicted value ŷ in the multilayer perceptron (MLP), which has a
hidden layer with p neurons and k output variables, the following equation is applied:

ŷ = f

[
p

∑
j=1

wji. g (
k

∑
i=1

wjixi + wj0) + wo

]
(5)

xi represents the i-th output variable, wj corresponds to the weighted input data
entering the j-th hidden neuron, f is the activation function applied to the output neuron,
wji signifies the weight associated with the direct connection from input neuron i to hidden
neuron j, wj0 represents the bias specific to the j-th neuron, wo represents the bias linked to
the output neuron, and g is the activation function utilized for the hidden neuron.

2.5.2. Gaussian Process

The Gaussian process (GP) model is an effective tool for supervised learning, extending
the Gaussian probability distribution to better understand the spread of random variables.
This model is particularly well-suited for addressing classification and regression problems.
As a nonparametric classifier, it estimates the probability that input samples belong to
specific classes, especially for binary datasets. One of its key advantages is its ability to
perform well with small datasets, providing consistent, accurate, and computationally
efficient results [42]. Equation (6) presents the mathematical derivation for each input (x)
and corresponding output (y)

yi = f (xi) + ε (6)
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2.5.3. Random Forest

The random forest (RF) method, which is essentially an ensemble of unpruned trees,
was developed by Breiman [43]. The RF technique has been successful in both regression
and classification tasks and is well-known for its efficiency and ease of use. Previous re-
search has shown that the RF model possesses several prominent characteristics, including
its ability to prevent overfitting, its proficiency in handling noise, and its efficient manage-
ment of a large number of features [34]. The RF method employs bagging, also known as
bootstrap aggregation, and the final outcome is determined by the decision of the trained
tree. Equation (7) illustrates the fundamental concept behind the RF model.

y =
n

∑
i=1

(ai − a∗i )k(x, xi) + b (7)

2.5.4. Extreme Gradient Boosting

The extreme gradient boosting (XGBoost) model, developed by Chen and Guestrin [44],
is a highly effective solution for addressing regression and classification problems. As
a member of the gradient boosting decision tree family, XGBoost is celebrated for its
exceptional performance and efficiency. By operating within a gradient boosting framework,
XGBoost is particularly skilled at learning from mistakes and continually reducing the error
rate through a series of iterations.

yi = F(xi) =
D

∑
(d=1)

fd(xi), fd ∈ F, i = 1, . . . , n (8)

Lj =
n

∑
i=1

l
(

yi, ŷ(j−1)
)
+ f j(xi) + Ω

(
f j
)

(9)

Equation (9) expresses the XGBoost iterative model, while Equation (8) provides its
objective function.

3. Results
3.1. Effects of FPH on Plant Growth and Root System

Plant growth characteristics, including leaf area, leaf number, SPAD index, flower
number, days from seedlings transferred to pot till first flower (DAFT), and plant dry
weight were evaluated in two primrose varieties subjected to different FPH concentrations.
The treatments significantly affected leaf area, leaf chlorophyll content, plant dry weight,
and DAFT; parameters including leaf number and flower number were not influenced by
FPH treatments (Table 3). All FPH treatments increased leaf areas and plant dry weight,
and the highest values were observed in 1.5 g/L FPH treatments with 39.87 cm2 and
4.85 g, respectively. The effects of FPH treatments on the SPAD index and DAFT were
similar and statistically grouped together. SPAD index ranged from 33.10 to 34.35 among
the treatments, and the highest index was recorded in 1.0 g/L FPH treatments, while
the lowest SPAD index of 27.45 was observed in the control group. Effects of variety on
flowering time were statistically significant. However, treatments promoted early flowering
of the plants for nearly four days (Table 3). The treatment of FPH did not influence the
flower number per plant.

The root system was evaluated using image analysis software, and treatments signifi-
cantly influenced evaluated parameters. However, the variety and interaction of variety
and treatment did not statistically affect the root system. Table 4 shows that 1.0 g/L FPH
treatment improved surface area, projected area, and root volume; the highest values
were observed in 1.0 g/L FPH treatment. The second highest surface area and projected
area values were obtained at the 1.5 g/L concentration, resulting in higher values than
0.5 g/L. The control group had the lowest surface and projected area values, with 207.93
and 68.28 cm2, respectively. The highest root volumes were obtained from treatments of
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0.5 and 1.0 g/L FPH, and the lowest values were recorded in the control group and 1.5 g/L
FPH treatment (Table 4).

Table 3. The effects of FPH treatments on leaf area, leaf number, SPAD index, flower number,
flowering time, and plant dry weight of primrose varieties.

Variety Treatments (g/L) Leaf Area (cm2) Leaf Number Flower
Number

Whole Plant
Dry Weight (g) SPAD Index DAFT

Light
violet

0.0 29.39 ± 1.4 12.08 ± 0.6 13.58 ± 1.4 3.53 ± 0.08 28.01 ± 0.81 90.66 ± 0.37
0.5 32.37 ± 1.2 13.75 ± 1.1 17.25 ± 1.0 4.70 ± 0.18 33.22 ± 0.88 86.33 ± 0.84
1.0 34.94 ± 3.0 12.58 ± 0.5 16.58 ± 1.2 4.20 ± 0.16 34.66 ± 0.71 84.83 ± 0.93
1.5 39.99 ± 2.2 14.25 ± 1.2 16.83 ± 1.8 5.05 ± 0.13 33.69 ± 0.24 87.08 ± 0.58

Pink

0.0 28.75 ± 2.9 11.58 ± 1.0 12.58 ± 1.0 3.39 ± 0.21 26.88 ± 1.68 92.66 ± 1.14
0.5 38.97 ± 3.8 13.83 ± 1.2 14.58 ± 0.7 4.83 ± 0.36 33.89 ± 2.39 88.25 ± 1.86
1.0 31.73 ± 1.8 12.75 ± 1.4 15.25 ± 1.3 4.15 ± 0.43 34.04 ± 3.30 90.33 ± 1.73
1.5 39.75 ± 3.0 14.00 ± 1.0 16.15 ± 1.3 4.64 ± 0.38 32.52 ± 1.73 88.08 ± 1.18

Main Effects

Variety Light violet 34.17 ± 1.19 13.16 ± 0.48 16.06 ± 0.70 4.37 ± 0.11 32.40 ± 0.51 87.22 ± 0.47 a
Pink 34.80 ± 1.64 13.04 ± 0.65 14.39 ± 0.60 4.25 ± 0.19 31.83 ± 1.25 89.83 ± 0.80 b

Treatments
(g/L)

0.0 29.07 ± 1.63 c 11.83 ± 0.60 13.08 ± 0.78 3.46 ± 0.11 c 27.45 ± 0.94 b 91.66 ± 0.63 b
0.5 35.67 ± 2.1 ab 13.79 ± 0.87 15.91 ± 0.69 4.77 ± 0.20 a 33.55 ± 1.27 a 87.29 ± 1.03 a
1.0 33.32 ± bc 12.66 ± 0.66 15.91 ± 0.91 4.18 ± 0.22 b 34.35 ± 1.69 a 87.58 ± 1.13 a
1.5 39.87 ± 1.91 a 14.12 ± 0.95 16.00 ± 1.16 4.85 ± 0.20 a 33.10 ± 0.88 a 87.580.66 a

LSD
Variety ns ns ns ns ns 1.740 *

Treatments 5.388 * ns ns 0.568 * 3.635 * 2.461 *
Variety × Treatments ns ns ns ns ns ns

* p < 0.01, ns: not statistically significant, DAFT: days from seedlings transferred to pot till the first flower bud
appeared, means in the same column with different letters are statistically significant, standard error is given after
each data point.

Table 4. The surface area, projected area, and root volume of primrose varieties in terms of the
concentration of fish protein hydrolysates.

Variety Treatments (g/L) Surface Area (cm2) Projected Area (cm2) Root Volume (cm3)

Light violet

0.0 208.45 ± 17.2 67.77 ± 6.69 20.09 ± 1.87
0.5 244.77 ± 20.8 83.37 ± 6.93 31.37 ± 2.54
1.0 309.81 ± 16.5 102.03 ± 6.01 31.49 ± 2.02
1.5 268.84 ± 21.6 87.36 ± 6.78 20.46 ± 1.47

Pink

0.0 207.41 ± 24.2 68.79 ± 7.94 21.04 ± 2.71
0.5 245.62 ± 21.1 81.47 ± 7.00 31.16 ± 3.08
1.0 327.19 ± 21.8 108.52 ± 7.23 33.94 ± 3.14
1.5 252.10 ± 15.6 83.62 ± 5.19 20.18 ± 1.94

Main Effects

Variety Light violet 257.97 ± 10.9 85.13 ± 3.74 25.85 ± 1.26
Pink 258.08 ± 11.5 85.60 ± 3.84 26.58 ± 1.47

Treatments

0.0 207.93 ± 11.7 c 68.28 ± 4.29 c 20.57 ± 1.36 b
0.5 245.20 ± 15.0 bc 82.42 ± 4.96 b 31.27 ± 2.03 a
1.0 318.50 ± 14.0 a 105.27 ± 4.84 a 32.74 ± 1.92 a
1.5 260.47 ± 13.2 b 85.49 ± 4.26 b 20.32 ± 1.24 b

LSD
Variety ns ns ns

Treatments 39.738 * 13.463 * 4.749 *
Variety × Treatments ns ns ns

* p < 0.01, ns: not statistically significant, means in the same column with different letters are statistically significant,
standard error is given after each data point.

The root length, tips, forks, and crossings were significantly affected by FPH treatments.
However, the effects of treatments on root diameter were not statistically significant. Among
the tested FPH treatments, the 1.0 g/L concentration resulted in the highest values, with
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259.59 cm for root length, 612.66 for root tips, and 1286.9 for root forks. In contrast, 0.5 and
1.5 g/L FPH treatments gave intermediate values compared to the control group. All the
FPH treatments improved root crossing significantly. The highest root crossing value was
observed in 1.5 g/L FPH treatment with 139.87, while the lowest was 71.68 in the control
group. The 0.5 and 1.0 g/L treatments gave intermediate values but clustered in the same
group with the 1.5 g/L FPH treatment (Table 5).

Table 5. The effects of FPH treatments on root parameters of primroses.

Variety Treatments (g/L) Total Root
Length (cm)

Average Root
Diameter (mm)

The Number of
Root Tips

The Number of
Root Forks

The Number of
Root Crossings

Light violet

0.0 174.36 ± 10.2 3.48 ± 0.16 445.54 ± 26.1 715.27 ± 59.2 68.36 ± 6.01
0.5 217.94 ± 14.4 3.62 ± 0.24 493.61 ± 34.4 982.15 ± 86.6 123.61 ± 9.72
1.0 253.59 ± 16.1 4.12 ± 0.17 596.41 ± 44.5 1262.08 ± 122.8 133.33 ± 7.37
1.5 230.46 ± 23.0 3.98 ± 0.17 512.33 ± 56.64 969.16 ± 148.0 142.83 ± 12.1

Pink

0.0 178.66 ± 9.9 3.53 ± 0.29 460.00 ± 38.2 785.00 ± 68.7 75.00 ± 5.10
0.5 221.60 ± 18.1 3.78 ± 0.35 498.50 ± 43.9 953.91 ± 91.1 120.41 ± 9.9
1.0 265.58 ± 16.1 4.50 ± 0.41 628.91 ± 43.5 1311.83 ± 95.7 140.91 ± 7.0
1.5 218.12 ± 20.1 3.91 ± 0.33 483.16 ± 39.3 898.41 ± 97.0 136.67 ± 10.8

Main Effects

Variety Light violet 219.09 ± 9.1 3.80 ± 0.10 511.97 ± 22.46 982.16 ± 60.6 117.03 ± 5.9
Pink 220.99 ± 9.4 3.93 ± 0.18 517.65 ± 22.71 987.29 ± 53.5 118.31 ± 5.8

Treatments

0.0 176.51 ± 7.00 c 3.51 ± 0.16 452.77 ± 23.25 b 750.13 ± 45.3 c 71.68 ± 3.9 b
0.5 219.77 ± 11.5 b 3.70 ± 0.21 496.05 ± 27.92 b 968.03 ± 63.0 b 122.01 ± 6.9 a
1.0 259.59 ± 11.4 a 4.31 ± 0.23 612.66 ± 31.3 a 1286.9 ± 78.0 a 137.12 ± 5.1 a
1.5 224.29 ± 15.3 b 3.95 ± 0.18 497.75 ± 34.6 b 933.79 ± 88.7 bc 139.87 ± 8.17 a

LSD
Variety ns ns ns ns ns

Treatments 34.503 * ns 86.789 * 207.87 * 18.405 *
Variety × Treatments ns ns ns ns ns

* p < 0.01, ns: not statistically significant, means in the same column with different letters are statistically significant,
standard error is given after each data point.

3.2. ML Modeling Analysis

The research findings underwent analysis using the artificial-neural-network-based
multilayer perceptron (MLP) and machine learning algorithms, including XGBoost, random
forest (RF), and the Gaussian process (GP).

The results were validated and forecasted using three performance measures, namely
root mean square error (RMSE), R-squared (R2), and mean absolute error (MAE). The R2

values for the MLP model ranged from 0.35 to 0.95 in the comparative evaluation of various
root system characteristics using these models and their performance metrics. The highest
R2 value was recorded for projected area and surface area, at 0.95 and 0.94, respectively,
while the lowest value was recorded for average diameter. The MAE values were generally
low, with the projected and surface areas displaying the lowest values at 0.03. The RMSE
values varied from 0.05 to 0.20, with the length recording the highest RMSE value and the
projected area and surface area recording the lowest. For the GP model, the R2 values were
very close to those of the MLP model, ranging from 0.35 to 0.95. The highest R2 value was
recorded for projected and surface areas, at 0.94 and 0.95, respectively, while the lowest
value was recorded for average diameter. The MAE values were generally low, with the
projected area displaying the lowest value at 0.02. The RMSE values varied from 0.03 to
0.19, with the length recording the highest RMSE value and the projected area recording
the lowest value. The random forest (RF) model demonstrated varying R2 values, ranging
from 0.22 to 0.91. The highest R2 value of 0.91 was observed in the projected and surface
areas, while the lowest value of 0.22 was recorded for the average diameter. The mean
absolute error (MAE) values were generally low, ranging from 0.04 to 0.15. The length rate
exhibited the highest root mean squared error (RMSE) value of 0.19, while the projected
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and surface areas displayed the lowest RMSE values. For the XGBoost model, the R2 values
ranged from 0.20 to 0.92, with the highest R2 value of 0.92 observed for the surface area
and the lowest value of 0.20 for the average diameter. The MAE values for the XGBoost
model were generally low, ranging from 0.04 to 0.15. The highest RMSE value of 0.15 was
attributed to the length, while the surface area and projected area displayed the minimum
RMSE value of 0.04 (as shown in Table 6). The ML and ANN algorithms’ R2 rates were
noted in the following order: MLP > GP > RF > XGBoost.

Table 6. Assessment metrics for ANN-based MLP and ML.

Parameters MLP and ML Models R2 RMSE MAE

Projected Area (cm2)

MLP 0.95 0.05 0.03
GP 0.94 0.03 0.02
RF 0.91 0.06 0.04
XGBoost 0.89 0.06 0.04

Surface Area (cm2)

MLP 0.94 0.05 0.03
GP 0.95 0.04 0.03
RF 0.92 0.06 0.04
XGBoost 0.91 0.06 0.04

Length (cm)

MLP 0.42 0.20 0.16
GP 0.43 0.19 0.15
RF 0.42 0.19 0.15
XGBoost 0.35 0.20 0.16

Average Diameter (mm)

MLP 0.35 0.16 0.13
GP 0.35 0.16 0.12
RF 0.22 0.17 0.14
XGBoost 0.20 0.17 0.12

Root Volume (cm3)

MLP 0.54 0.15 0.12
GP 0.52 0.15 0.12
RF 0.47 0.15 0.12
XGBoost 0.47 0.15 0.12

Root Tips

MLP 0.78 0.11 0.09
GP 0.79 0.11 0.09
RF 0.75 0.12 0.10
XGBoost 0.75 0.12 0.09

Root Forks

MLP 0.85 0.09 0.07
GP 0.81 0.09 0.07
RF 0.81 0.09 0.07
XGBoost 0.80 0.10 0.07

Root Crossing

MLP 0.46 0.19 0.15
GP 0.46 0.18 0.15
RF 0.55 0.17 0.13
XGBoost 0.45 0.18 0.15

The diagrams in Figures 1–4 depict the dissemination of actual and estimated values
across various models for examining plant-related metrics. These results offer valuable
insights into the predictive capabilities and overall performance of the utilized models
when evaluating diverse plant attributes.
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4. Discussion
4.1. Performances of Plant Growth and Root System Architecture

Protein hydrolysates are characterized as blends comprising polypeptides, oligopep-
tides, and amino acids derived from protein sources through partial hydrolysis [45]. They
have been widely demonstrated to enhance plant growth and development, effectively
regulating plant biomass and improving crop performance even under challenging en-
vironmental conditions [46]. The beneficial impacts of PHs on plant performance have
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sparked a growing interest in their utilization as a part of a more sustainable cropping
system. This interest, in turn, contributes to a promising solution for addressing the is-
sue of waste disposal [47–49]. Fish wastes can be transformed into protein hydrolysates
comprising small peptides containing 2–20 amino acids [50]. There are several methods,
such as alkali hydrolysis, acid hydrolysis, and enzymatic hydrolysis, to produce protein
hydrolysate derived from fish waste. Hence, enzymatic hydrolysis is the most promising
method commonly used to generate PH, renowned for its high functionality and nutritional
value [51,52].

To our knowledge, the impact of employing a fish-derived hydrolysate (FPH) on
primrose’s growth parameters and root system architecture has not been documented
previously. Additionally, assessing root system architecture integrated with machine
learning methods was rarely employed. Consequently, the discussion of the findings will
reference results from other plant species or plant-derived hydrolysates.

In our study, applying protein hydrolysate derived from anchovy waste through
enzymatic hydrolysis increased leaf area, plant dry weight, and SPAD index and promoted
early flowering (Table 3). The present study aligns with results reported by Zeljković
et al. [53] in potted primrose, who reported that applying Radifarm, a commercial bios-
timulant containing peptides, amino acids, betaines, saponins, vitamins, polysaccharides,
and microelements, increases fresh and dry weight of root mass and aboveground mass.
Carillo et al.’s study [54] tested two different plant-derived protein hydrolysates and one
animal-derived protein hydrolysate in chrysanthemum and reported that foliar application
of the PHs enhanced SPAD index, flower number, and stem diameter. Cristiano et al. [55]
indicated that total leaf area (+29%), total aboveground dry weight (+13%), and photosyn-
thetic rate (+52%) were significantly increased by animal-derived biostimulant application
compared to the control, regardless of the dose, in potted snapdragon. Similarly, Al-Malieky
and Jerry [56] reported that foliar application of fish-derived hydrolysate (FPH) promoted
growth parameters such as leaf area and dry matter in lettuce. Xu and Mou [15] observed
that drench application of FPH increased lettuce’s dry weight, leaf number, and chlorophyll
content. These results support the potential use of PH comprising short-chain peptides and
certain amino acids, such as phenylalanine, that have been reported to increase the produc-
tion of endogenous auxin by functioning as signaling molecules, showing favorable effects
on roots and improved vegetative growth [46,57,58]. In addition, enhancement of chloro-
phyll content by applying animal-derived PH has been found in corn, soybean, tomato [59],
petunia [60], and chrysanthemum [54]. The mechanisms responsible for increased chloro-
phyll content due to protein hydrolysates remain largely unexplored [59]. However, in this
study, FPH contained a high amount of glutamate (Table 1), which plays a crucial role in
providing the precursor 5-aminolevulinate, essential in chlorophyll biosynthesis [57,61].

The results of our research demonstrate that drenching applications of FPH, particu-
larly 1.0 g/L treatments, stimulate and significantly modify the root system architecture,
increasing surface area, projected area, root volume, root length, root tips, root forks, and
root crossing compared to the control group (Tables 4 and 5). The potential mechanism
driving induced root development may be attributed to the auxin-like activity exhibited
by FPHs [62]. Raguraj et al. [57] reported that soil-drenching chicken feather protein hy-
drolysates at the rate of 2 g/L have positive effects on root length and surface area in tea
plants. The application of biostimulants based on animal-derived protein hydrolysate at
doses of 0.1 and 0.2 g/L positively influences root length, projected area, surface area, and
the number of root tips, forks, and crossings in petunia. Similar results were also reported
regarding root length, average root diameter, root volume, root tips, crossings, and forks
per plant when applying an animal-derived PH biostimulant by Cristiano et al. [55] in
snapdragon plants. It has been shown that the root system serves as a comprehensive
indicator of the plant’s response to water and nutrient availability [63,64] and enhances
the development of the root system resulting from protein hydrolysate applications, which
may have also played a significant role in the quality of potted ornamental plants [55].
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4.2. Performance of Modeling of Root System Architecture

Assessment of RSA is as crucial as the evaluation of aboveground parts of the plants
since plant performance relies on its root architecture and functionality [65]. In the last
decade, combining the ML platform with root phenotyping has allowed scientists to under-
stand root development, its interaction with different environments, and the classification
of the RSA phenotypes for genomic breeding [66]. The present study employed MLP, GP,
RF, and XGBoost to predict RSA under the application of FPH, and all the models with the
R2 values between 0.75 to 0.95 showed high performance for the parameters, including
projected area, surface area, root tips, and root forks. While the models demonstrated good
performance across most of the parameters evaluated, the poorest performance was in root
diameter. It is possible that input variables could not explain the behavior of the mentioned
parameter [67]. Duarte et al. [67] studied machine learning applied to predict the root
architecture of soybean cultivars under two water availability conditions. They reported
that none of the models, including a linear model (LM), RF, MLP, and XGBoost, was efficient
in estimating the average diameter of soybean root, and the XGBoost model presented the
worst performance among the machine learning models. These results are consistent with
our results because MLP and GP models exhibited the best performance among the models
considering the results for all parameters. In contrast, XGBoost presented the poorest
performance compared to the other models with low R2 values (Table 6).

5. Conclusions

This study evaluated plant growth of primrose treated with different concentrations of
PH derived from anchovy by-products and applied machine learning methods (MLP, GP,
RF, and XGBoost) to predict RSA. The 1.0 g/L FPH treatment significantly improved plant
growth and modified the RSA of primrose. The results show that the PHs derived from
anchovy waste have valuable potential for primrose cultivation to enhance plant growth
and development.

In general, machine learning methods, particularly MLP and GP with better values
for R2, MAE, and RMSE, exhibited sufficient potential to predict the root architecture of
primrose varieties. Additionally, these algorithms allowed us to assess the input variables.
Among the input variables, projected area, surface area, root volume, root tips, and root
forks were the most important parameters when using machine learning algorithms. The
primary advantage of this approach was streamlining the predictive process, necessitating
only a single model to forecast examined root variables. Consequently, it is inferred that
machine learning models, particularly MLP and GP, can effectively predict RSA variables
of primrose varieties.
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