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Abstract: In large-capacity energy storage systems, instructions are decomposed typically using
an equalized power distribution strategy, where clusters/modules operate at the same power and
durations. When dispatching shifts from stable single conditions to intricate coupled conditions, this
distribution strategy inevitably results in increased inconsistency and hastened system aging. This
paper presents a novel differentiated power distribution strategy comprising three control variables:
the rotation status, and the operating boundaries for both depth of discharge (DOD) and C-rates (C)
within a control period. The proposed strategy integrates an aging cost prediction model developed
to express the mapping relationship between these control variables and aging costs. Additionally, it
incorporates the multi-colony particle swarm optimization (Mc-PSO) algorithm into the optimization
model to minimize aging costs. The aging cost prediction model consists of three functions: predicting
health features (HFs) based on the cumulative charge/discharge throughput quantity and operating
boundaries, characterizing HFs as comprehensive scores, and calculating aging costs using both
comprehensive scores and residual equipment value. Further, we elaborated on the engineering
application process for the proposed control strategy. In the simulation scenarios, this strategy
prolonged the service life by 14.62%, reduced the overall aging cost by 6.61%, and improved module
consistency by 21.98%, compared with the traditional equalized distribution strategy. In summary,
the proposed strategy proves effective in elongating service life, reducing overall aging costs, and
increasing the benefit of energy storage systems in particular application scenarios.

Keywords: energy storage station; lithium-ion battery; differentiated control; health feature; aging cost

1. Introduction

Battery energy storage systems (BESSs) with varying capacities consist of several
battery modules or clusters, each made up of multiple modules that further comprise indi-
vidual cells [1]. Large-scale energy storage stations are usually equipped with numerous
battery cabins corresponding to the installed capacity, and each battery cabin is formed by
multiple clusters. The typical topology is illustrated in Figure 1.
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Ci et al. [10] proposed the dynamic reconfigurable battery energy storage technology. Han 
et al. [11] provides an overview of a next-generation battery management system (BMS) 
featuring dynamic reconfiguration. In comparison to the conventional norm of fixed se-
ries–parallel connections, the DRB networks use new program-controlled connections be-
tween battery cells/modules. 

Figure 1. Typical topology of energy storage station.

Battery cabins typically receive dispatching instructions individually. Inside a cabin,
control instructions are decomposed into clusters following the traditional control approach
of equalized distribution, where all cells operate at the same power and durations. This
dispatching method reduces the software and hardware configuration requirements of
the control system. However, due to inconsistencies among battery cells and modules [2],
maintaining the same operational intensity exacerbates their inconsistency [3]. To enhance
benefits, energy storage stations have evolved from traditional single-application scenarios
to new composite application scenarios, resulting in a transition from stable single operating
conditions—such as peak shaving, renewable energy consumption, and emergencies—to
more intricate coupled operating conditions [4]. The inconsistency trend becomes more
apparent in these new scenarios, due to the accelerated aging rate of “inferior batteries”,
thus adversely affecting the system’s overall aging and safety [5]. As energy storage stations
with inadequate integration during the early stages of the energy storage industry approach
and surpass the halfway point of their service lives, coupled with the rising number of
decommissioned batteries recycled for energy storage applications in recent years [6], the
traditional equalized power distribution strategy is likely to pose progressively significant
safety concerns [7].

Many scholars have studied control strategies for mitigating aging under power
system scenarios. Zhao et al. [8] established the semi-empirical life model of the battery
based on throughput, state of charge (SOC), and injected/output power of a BESS, applied
to an aging rate equalization strategy for microgrid-scale battery energy storage systems.
Xu et al. [9] developed a mapping relationship between system capacity losses and aging
costs to optimize and support dispatching in the service market, ultimately boosting profits
and prolonging battery longevity. However, energy storage systems were considered as a
whole in the majority of previous research, primarily due to the unavailability of separate
control over battery clusters/modules. In the traditional topological structure shown in
the cabin layer of Figure 1, one power conversion system (PCS) corresponds to one battery
cabin, where power is simply distributed to clusters and modules in an equalized manner.
Ci et al. [10] proposed the dynamic reconfigurable battery energy storage technology. Han
et al. [11] provides an overview of a next-generation battery management system (BMS)
featuring dynamic reconfiguration. In comparison to the conventional norm of fixed series–
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parallel connections, the DRB networks use new program-controlled connections between
battery cells/modules.

Limited literature have explored differentiated control modes in the context of batteries.
Yan et al. [12] primarily concentrated on investigating the impact of DOD, establishing a
control strategy for frequency regulation scenarios aimed at enhancing battery lifetimes.
Furthermore, Karunathilake et al. [13] developed a multi-objective optimization control
strategy that takes into account aging and is based on multiple features reflecting energy
and power performance. However, they focused on multiple independent cells as the
subjects of research. These studies emphasized the state of health (SOH) as the primary
optimization objective, rather than considering the enhancement of overall operational
performance. According to the findings of the literature [14], with the increasing complexity
of energy storage conditions in power system applications and the coupled and variable
aging mechanisms, additional health indicators are essential for assessing the performance
of energy storage systems.

In conclusion, implementing a differentiated control strategy for battery systems
that consider the combined influence of multiple HFs is crucial to efficiently address
inconsistency amplification and extend service life. In Section 2, the primary algorithm and
its application process are introduced. In Section 3, the experiment is detailed, and both the
multi-dimensional HFS extraction method and the prediction technique are introduced. In
Section 4, the mapping of aging costs is delineated, incorporating comprehensive scoring
and health status. Finally, a simulation comparison is presented for an industrial park
scenario in Section 5.

2. Control Strategy
2.1. Optimization Control Strategy to Minimize Aging Cost in a Single Operational Period

Theoretically, optimization control strategy can be applied to any level that integrates
circuitry that supports differentiated control, such as battery clusters, a single battery
cluster, a battery module, or multiple cells. Among the controllers in Figure 1, Battery
management units (BMU) are not yet available because the hardware cost of controlling
each cell individually is too high. For the BMS, it depends on whether it could control each
module separately. However, the batteries in one module undergo similar operating condi-
tions and are more consistent, so the benefits are not obvious. Therefore, to simplify the
discussion process, multiple clusters are considered as the independently controlled objects
to elucidate optimization control. The rotation status (RS) of all battery clusters and their
operating boundaries are determined within an operational period, aiming to minimize the
predicted aging cost through optimization. The framework of the optimization algorithm
is shown in Figure 2.

(a) A period of time with similar conditions is defined as a study period. (b) Input data
collected over this period across multiple years are utilized to create a typical dispatching
curve with the latest data gathered, through a fitting process. (c) By employing boundary
parameters that ensure effective responses to dispatching instructions, multiple HFs are
predicted at the end of an operational period. (d) Subsequently, a comprehensive score
is calculated to evaluate aging costs. (e) The Mc-PSO algorithm is then utilized to adjust
control variables until operating boundaries are identified that lead to the lowest aging cost.

The optimization model is described as follows:
Optimization objective: minimize predicted aging cost in current period.

min
M

∑
1

Cpre
aging,m (1)

where, m denotes the number of clusters within one battery cabin, taken as m = 1, 2, . . ., M;
Cpre

aging,m denotes the predicted aging cost of cluster m.
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The constraints are as follows:
The most important constraint is to ensure that performance does not fall below the

expectation. Specifically, the execution of dispatching instructions signals the realization of
anticipated performance. In simulation operations, the completion of the most rigorous
instructions serves as the benchmark, forming the verification module for simulation
operations as illustrated in Figure 2. In addition, it is assumed that no rigorous instructions
would remain unfulfilled in real dispatching, based on the principle of negotiating the
dispatchable range with the upper-level dispatching system by the energy management
system (EMS) of energy storage stations one day in advance: The State of Power (SOP)
upper limits reported by the EMS would be acknowledged by the upper-level dispatching
system, and dispatching curve instructions issued from the upper-level system would not
surpass the reported upper limits.

The accumulated maximum available power Pavail
m,t of all battery clusters at any given

time (t) is greater than or equal to the dispatching power required to be responded to by
the corresponding battery cabin.

M

∑
1

Pavail
m,t ≥ Pdemand

j,t , t ∈ N (2)

where j denotes the battery cabin number, taken as j = 1, 2, . . ., J, indicating the number of
battery cabins at an energy storage station.
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The maximum power does not exceed the C-rate boundary Climit
m obtained from a

solving process: ∣∣∣Pavail
m,t

∣∣∣ ≤ Climit
m ·Prated (3)

where Prated denotes the rated power at a C-rate of 1C.
SOCmin

m is constrained by DOD boundaries:

SOCmin
m ≥ SOCmax

m − DODlimit
m (4)

SOCmax
m denotes the maximum state of charge (SOC) value after charging, generally

taken as 100%, to ensure that the energy storage station can serve for emergencies in most
cases. SOC is subjected to correction using the ampere-hour integral method:

SOCt+1 = SOCt − It·∆t/Q0 (5)

where It denotes the effective value of current at a given time (t), with a positive value
indicating discharge and a negative value indicating charge. ∆t denotes the time interval
and Q0 denotes the rated capacity.

The simulation scenarios in this paper involve SOC calculations based on data with
high precision and granularity, to ensure the SOC is error free. However, the SOC may be
corrected in engineering applications.

The operational process fulfills the law of energy conservation:(
QRES − QRES

Load + Qcharge
Grid

)
·η = QBat

Load (6)

where QRES denotes the power generation from renewable energy sources (RESs); QRES
Load

denotes the power consumption of loads from a direct RES supply; Qcharge
Grid denotes the

power energy of the energy storage system by charge from the grid; η denotes the battery
discharge efficiency; and QBat

Load denotes the power supply from batteries to loads.
DODlimit and Climit operating boundaries are the variables to be optimized. However,

each battery cluster covers the whole optional range, resulting in an intricate solving
process. To reduce the solving difficulty and control complexity, the following two methods
are applied for simplification. The first method involves taking C-rate values as 0.25, 0.5,
. . ., 1.75 and 2, and the DOD as discrete points of 20%, 30%, . . ., 100%, to simplify the
solution domain space dimensionality. The second method is to introduce a new variable,
Rotation Status, in operation to preliminarily define the range of boundary parameters
and narrow the search scope. RS includes stable operation (S), dynamic operation (D), and
emergency operation (E). Each rotation status imposes specific constraints on the maximum
values of the operating boundaries, as outlined in Table 1.

Table 1. Correlation between rotation status and operating boundaries.

S D E

DODlimit
max D1 D2 D3

Climit
max C1 C2 C3

The correlation assumes D1 > D2 > D3, C1 < C2 < C3. For instance, when a high C-rate
value is used for emergency operation (E), it is crucial to limit the DOD to prevent the
undervoltage of certain cells at a low SOC.

Moreover, the rotation status influences the priority of power distribution. The priori-
ties, based on ∆C (absolute value of C-rate change between two scheduling time intervals),
are presented below:
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S1 > E > D > S0, ∆C ≥ Ca
S1 > D > S0 > E, ∆C ∈ (0, Ca]
E > D > S, ∆C < 0

(7)

where S1 represents the steady-state operating battery that has been started, and S0 repre-
sents those that have not been started. Ca indicates the threshold to determine significant
power changes, generally taken as Climit of E.

The general principle is to minimize the frequency of startups by preventing inactive
batteries from being enabled frequently. In the case of load increasing, S1 batteries are
raised first, up to the maximum permissible power. If the demand cannot be satisfied, D
batteries take precedence to respond if they remain in operation, before enabling other S
batteries. During load shedding, E and D batteries are successively reduced in priority for
transition into standby mode.

The following additional operating rules are followed:

(1) In the case of emergency batteries enabled, when other batteries are sufficient to take
the place of E batteries, they will be reduced in power at a rate of 2%/s for transition
into standby mode.

(2) If other batteries reach the lower limit of the DOD, D and E will be enabled to fill
the vacancy successively, to meet the requirements of charging and discharging
instructions.

Solving method:
The initial values of RS, DODlimit, and Climit generally follow the values in the previous

operational period to further speed up the solving process. The reasons include: (1) there
is not much difference between the dispatching curves in two consecutive periods, and
(2) aging costs arising from changes in HFs increase slowly under circumstances without
safety concerns.

It is required to solve multiple boundary parameters of multiple batteries, and the so-
lution domain is large. The traditional exhaustive method is time-consuming and resource-
intensive, so it is necessary to introduce a swarm intelligence algorithm for solving. Particle
swarm optimization (PSO) is a swarm intelligence algorithm, which has an obvious prema-
ture convergence phenomenon and tends to fall into a local optimum [15]. In this paper,
The Mc-PSO algorithm is used for solving, with the swarm divided into three sub-swarms
evenly, which are evolved according to PSO, ω Adjustment Particle Swarm Optimization,
and Cloud Adaptive Particle Swarm Optimization [16]. The particle richness is increased,
so that the computation speed is effectively increased, and the probability of falling into a
local optimum is reduced.

2.2. Rolling Optimization Process for Long-Time Operational Scenarios

Under the constraints of boundary parameters and adhering to actual dispatching
curves, the ultimate aging levels of battery packs typically do not match the predicted
values precisely. However, the relative magnitude relationship among the aging levels
closely mirrors the predictions. To eliminate the estimation errors of HFs after long-term
operation, a rolling optimization process is proposed. The EMS integrated with this strategy
at energy storage stations, performs periodic control based on boundaries derived from
the solving process. Following each period, the multi-dimensional HFs are updated using
actual operational data, serving as the algorithm’s initial input for the next period. Since
the operating conditions are generally one to two charge/discharge cycles per day, the HFs
usually change slowly. The length of each data collection period can be set to one month
or more. However, if the HF is strongly related to safety, daily monitoring is required.
It also depends on the battery life and the complexity of the operating conditions. The
proposed strategy contributes to minimizing the total aging cost of energy storage systems
after extended operational durations, as shown in Figure 3.
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At the end of each operational period, actual data are imported into the battery
fault diagnosis system (BFDS) specially developed for energy storage stations, as shown
in Figure 4. The author’s team spent over two years developing the platform, which
integrates multiple functional modules for energy storage stations such as operational
data preprocessing, fault diagnosis, health assessment, and inconsistency analysis. BFDS
extracts real HFs as input for a new period and identifies any safety concerns based on
these HFs. Any safety concerns identified lead to the suspension of control to initiate the
inspection and maintenance process.
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The key HFs to be considered include the “capacity diving” risk [17], temperature
rise rate [18], and internal short-circuit resistance [19], all of which are strongly linked to
the risk of thermal runaway. When safety risks escalate, batteries are prone to exhibiting
“capacity diving” [20]. Other common fault diagnosis studies, such as sensor fault [21],
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overcharge/discharge [22], actuator fault [23], external short circuit [24], overheat [25], et al.,
have also been studied by many scholars. If an HF deteriorates but is not yet sufficient
to cause safety accidents, the aging costs will sharply rise due to the significant decrease
in comprehensive scores, leading to stricter control constraints. This mechanism helps
to integrate safety into the control strategy to some extent. In the absence of any hidden
dangers identified, the solving process for optimization control in subsequent periods
is initiated.

3. Extraction and Prediction of Multi-Dimensional HFs
3.1. Aging Experiment

50 Ah NCM622 square pouch batteries, with a rated capacity of 50 Ah, and upper and
lower cut-off voltages of 2.75 V and 4.2 V, respectively, manufactured by China Aviation
Lithium Battery Technology Co., Ltd. (CALB, Changzhou, Jiangsu.) were selected for the
experiment, as shown in Figure 5a. The experimental instruments included the charge–
discharge instrument manufactured by Neware, as shown in Figure 5b, and the temperature
and humidity test chamber manufactured by Doaho, as shown in Figure 5c.
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There are many operating parameters that contribute to the difference in aging rates.
Among them, DOD, C-rate, and temperature have the greatest impact. However, almost all
energy storage battery compartments are already equipped with temperature management
systems, such as air conditioning, air cooling, and liquid cooling, which the result that the
uneven effect of temperature is no longer obvious and significant [26]. Therefore, combined
aging experiments were conducted using the chosen batteries at varying DODs and C-rates,
as shown in Table 2:

Table 2. Battery numbers for aging tests under different operating conditions.

DOD C 1 1.2 1.5 2

30 1, 2 9, 10 17, 18 25, 26

50 3, 4 11, 12 19, 20 27, 28

70 5, 6 13, 14 21, 22 29, 30

100 7, 8 15, 16 23, 24 31, 32

The batteries were charged and discharged based on the preset boundary conditions
and were evaluated for their performance and capacity every calendar month. Taking the
No. 1 battery as an example, partial cycles are shown in Figure 6:
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Figure 7. One experimental cycle of No. 1 battery.

The experimental procedure is described as follows:

1. Actual capacity test: Discharge the batteries at a constant current of 1/3C to the lower
cut-off voltage of 2.75 V. Charge them at a constant current of 1/3C to 4.2 V, and
subsequently charge at a constant voltage until the current drops below C/20. Next,
discharge them at a constant current of 1/3C to the lower cut-off voltage of 2.75 V.
Repeat this charge and discharge procedure two times. Refer to Figure 8a.

2. Low-current discharge curve: Charge the batteries at a current of 1/3C to the cut-off
voltage and discharge them at a current of C/20 to 2.75 V after standing, as shown in
Figure 8b.
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3. DST and FUDS conditions: Set the batteries according to the FreedomCAR test
manual [27], as shown in Figure 8c,d.

4. HPPC: Perform tests at varying SOC levels [28]. After the batteries are fully charged,
gradually discharge them to 80%, 60%, 50%, 40%, and 20% SOC for evaluations.
Specifically, discharge them at a current of 2C for 18 s, after setting them aside to
stand for 40 s, charge them at 1C for 10 s, and then set them aside again to stand for
40 s. Then charge the batteries with a current of 2C for 18 s, after setting them aside to
stand for 40 s, discharge them at a current of 1C for 10 s, and finally set them aside to
stand for 40 s. Refer to Figure 8e.

5. Cyclic aging: Cyclic aging is performed according to the set DOD and C. No. 1 and
No. 13 battery are plotted together to show the difference in performance between
different batteries. Refer to Figure 8f.

Batteries 2024, 10, x FOR PEER REVIEW 11 of 35 
 

 
Figure 8. Items within a test cycle for No. 1 and No. 13 battery: (a) capacity; (b) low-rate discharge; 
(c) DST; (d) FUDS; (e) HPPC; (f) aging cycles. 

The battery experiments are terminated when the battery capacity diminishes to 80% 
of the rated capacity, and the end of the battery life is recorded. Should any experimental 
battery exhibit significant bulging and leakage, the corresponding experiment should be 
halted promptly. The aging curves of all batteries are depicted in Figure 9a, and those 
derived from polynomial fitting are illustrated in Figure 9b. 

  
(a) (b) 

Figure 9. (a) Aging curves of all batteries between capacity and cumulative throughput quantity 
(Total Q); (b) aging curves of all batteries after polynomial fitting. 

Figure 8. Items within a test cycle for No. 1 and No. 13 battery: (a) capacity; (b) low-rate discharge;
(c) DST; (d) FUDS; (e) HPPC; (f) aging cycles.

The battery experiments are terminated when the battery capacity diminishes to 80%
of the rated capacity, and the end of the battery life is recorded. Should any experimental
battery exhibit significant bulging and leakage, the corresponding experiment should be
halted promptly. The aging curves of all batteries are depicted in Figure 9a, and those
derived from polynomial fitting are illustrated in Figure 9b.

The cycle life of No. 3 battery was more than 40% shorter than that of No. 4 battery
under the same conditions due to manufacturing defects. No. 30 battery experienced
bulging and leakage at an SOH of 0.844, leading to the termination of the experiment.
These two batteries were excluded from subsequent analysis.
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3.2. Extraction of HFs

A health feature system for battery cells adaptable to various conditions has been
developed from summarizing research findings over many years, as shown in Table 3.

Table 3. HF system.

Extraction Method HFs Description

Measured data (applicable for cells, modules,
and systems)

Self-discharge rate [29] To identify serious energy loss.

Heat generation, temperature rise rate [30]
To identify temperature-related performance,

such as serious self-heating and poor
heat dissipation.

Available charge/discharge capacity [31]
To diagnose failures such as energy response

absence, excessive attenuation rate, and
capacity diving.

Relaxation-related features, such as recovery
time, and recovery slope [32]

To diagnose reduced energy efficiency,
insufficient power, etc. if there is failure to
quickly return to normal after excitation.

Hysteresis voltage [33] To analyze whether the power
performance degrades.

Difference curves and associated features, such
as incremental capacity analysis (ICA) [34],

differential thermal voltammetry (DTV) [35]

To analyze performance details as a function of
voltage, temperature, or pressure, such as

power, energy, and heat production.

Resistance, such as ohmic resistance,
polarization resistance [36]

To analyze energy performance degradation
and power performance degradation.

Coulombic efficiency [37]

Description of the change in the charging
curve, such as capacity variance (VAR) [1,38]

A series of features based on the constant
current constant voltage (CCCV) curve [39]

Equivalent circuit model (applicable for cells
and modules)

Resistance (R) [40], capacitance (C) [23], and
constant phase element (CPE) [41] of

equivalent resistance

To evaluate attenuation by comparing with
relevant values of normal batteries of the

same specification.

Experimental data

HPPC resistance [42] (applicable for cells
and clusters) To analyze power performance degradation

Electrochemical impedance spectroscopy (EIS
parameters [43] (applicable for cells)

To reflect the physicochemical properties of
internal materials and detect underlying

failures from the perspective of impedances.

Algorithm-based state estimation (applicable
for cells, modules, and systems)

SOC [44], SOH [45], state of energy (SOE) [46],
SOP [47], state of temperature (SOT) [48], etc.

To comprehensively analyze energy
performance degradation and power
performance degradation as a mature
technique based on numerous studies.
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Table 3. Cont.

Extraction Method HFs Description

Statistics on stacking relationship [20]
(applicable for modules and systems)

Statistical analysis of extreme values and
variances of voltage/temperature in modules

To screen abnormal cells or evaluate
module consistency.

Statistical analysis of extreme values and
variances of inter-cluster current

Screen abnormal clusters or evaluate
cabin consistency.

Various types of measurable data or HFs may be used to statistically analyze battery systems at
different layers.

Electrochemical model (applicable for cells)

Physical and chemical parameters, such as
maximum available lithium-ion concentration

[49], solid electrolyte interface (SEI) film
resistance [50], overpotential [51], resistance of

components, and particle sizes of active
materials [52]

To analyze energy and power attenuation and
identify root causes based on electrochemical

mechanisms [53].

The extraction methods of features can be found in publications of relevant research
as cited in Table 3. It is important to note that calculating all features in the table is not
necessary; selections should be made based on actual data quality, operating conditions,
and computing power configuration. In Section 4, a comprehensive performance scoring
method is introduced to support analysis using available HFs. Comparative evaluation can
be achieved in parallel by ensuring the input of the same HFs and the same application
scenario, without specifying the number and type of HFs.

Taking the No. 1 battery in the above experiment as an example, several features are
described as follows:

1. Capacity variance (VAR). As shown in Figure 10, the available discharge capacity
at identical ∆V decreases with aging progression, resulting in steeper curves of dif-
ferences from the initial test. Figure 11 shows a strong correlation between VAR
and SOH.

2. Resistance. The ohmic and polarization internal resistances can be calculated through
the HPPC test according to the literature [54]. Refer to Figure 12a and Formula (8).
Figure 12b displays the HPPC curves for multiple tests of No. 1 battery, illustrating
that voltage changes intensify under the same current excitation with aging progression.
Figure 13 shows the change curves of ohmic and polarization internal resistances.
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ROhm = (U1 − U2)/I
RPol = (U2 − U3)/I

(8)

3. ICA. Figure 14a shows the original IC curve of a single test, subjected to smoothing.
Figure 14b shows the IC curves of multiple tests, indicating decreasing peak values,
rightward shifting peak positions, and narrowed peak areas with aging progression.
Figure 15 shows the variation curves of peak values and peak areas, respectively.
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4. Relaxation. Relaxation refers to the process in which voltage slowly returns to a
specific stationary stage upon the conclusion of excitation. The recovery to 3.91 V
upon the conclusion of excitation was considered for current calculations. Figure 16
illustrates the recovery process following the removal of excitation during multiple
HPPC tests. As shown, the recovery process is prolonged with aging progression.
Figure 17 shows the variation curves of relaxation time and slope.
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3.3. Prediction of HFs

A prediction method is proposed, which integrates modeling based on experimental
data to generate the aging rates of HFs along their respective paths, and incorporates the
projection of cumulative throughput quantity for predicting HF values in the end-of-period
phase. The main idea is shown in Figure 18.

Sets of mean HF curves under all conditions were plotted, as seen in Figure 19a, with
VAR taken as an example. The curves were then subjected to polynomial interpolation
fitting. Two rounds of tests were carried out for identical conditions, and the calculated
mean values of VAR represent the averages of a normal distribution, as shown in Figure 19b.
Experimental curves representing the 95% confidence interval were used to simulate
inconsistent changes during the simulation process, as illustrated in Section 5.2, rather
than being incorporated here. For the abnormal No. 3 and 30 batteries, average values
were derived from the data of normal cells from the same test, and rational confidence
intervals were chosen for them based on two rounds of tests with similar conditions. For
the convenience of illustration, several curves were taken for explanation, as shown in
Figure 19c.
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Subsequent aging paths vary depending on variations in the DOD and C and in
association with the current VAR. Calculations of slope changes in curves at a specific
VAR value yielded 16 slopes as a function of DOD and C. Three-dimensional scatter plots
were created and later integrated into Figure 20a using two-dimensional interpolation. It is
evident that with larger C and DOD values, the change in the slope of VAR will increase
accordingly. Change slopes beyond the scope of scatter points can be acquired through
interpolation using the map. As slope changes vary at different HFs, it is essential to
account for the current actual HF value in calculations. Figure 20b displays the map with
three VAR values. In this figure, as VAR increases, ∆VAR exhibits a greater increase under
identical charge/discharge capacities.
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With actual HFs at the period outset, the variation rate (k) corresponding to DODlimit

and Climit is derived through interpolation using the respective map. The alteration in Ah
throughput is projected based on typical curves of the next period. Subsequently, the HFs
following a period of operation are predicted using the formula below:

HFend = HFstart + Ahpre·k (9)

where HFend denotes HF at the closure of the specific timeframe for prediction, HFstart
denotes the current HF, and Ahpre denotes the approximated total charge/discharge.

This calculation method is applicable for predicting results for operation at constant
DOD and C values throughout the full lifetime, using the initial feature values as the
starting point. Nevertheless, there are varying DOD and C values in actual operation,
making it almost impossible to maintain consistent conditions. Hence, it is theoretically
appropriate to modify the DOD and C values after a specific aging phase before conducting
further experiments, and calculate slope changes using the experimental data acquired
in the subsequent phase. However, conducting such experiments involves numerous
combinations that may be impractical, not to mention the limited practical significance.
The following two assumptions are proposed, which are adequate to underpin the solving
process of the optimization model.

Hypothesis 1: The DOD and C values of the current operation predominantly influence the subse-
quent aging process, irrespective of the historical operating conditions’ contribution to underlying
failures. That is to say, attention should solely be focused on k values resulting from values of DOD
and C for subsequent phases.
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Hypothesis 2: All daily conditions in the next period are regarded as the most severe, and all
batteries function based on the maximum boundaries established through optimization. The predicted
results for operation under such circumstances serve as a reference for the optimization model.

In a majority of cases, the most severe conditions rarely occur in actual control. Con-
sequently, the actual aging status tends to be worse compared with the predicted values.
Nonetheless, multiple batteries at the same layer generate identical operating curves, and
performance differences emerge irrespective of whether they function at extremes. Ad-
ditionally, this simplified method significantly enhances calculation efficiency. Figure 21
shows exemplary maps for several HFs:
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4. Prediction Method of Aging Cost for Energy Storage System

In traditional energy application scenarios, regular charge and discharge processes
with constant currents were prevalent, where battery charge/discharge capacities were
considered as the primary performance indicator. As a result, conventional methods for
determining battery residual value often involve calculating the capacity SOH. SOH repre-
sents the lifetime value including cascade utilization subsequent to decommissioning [55].
However, as applications expand to encompass more intricate scenarios, integrating multi-
ple performance indicators crucial for energy and power applications becomes imperative.
Evaluating battery functionality can no longer rely solely on capacity SOH. Two batteries
with identical SOHs may exhibit varying performances despite following the same oper-
ating curve. From this standpoint, the authors established a comprehensive performance
scoring system based on multi-dimensional HFs. The calculation methods have been de-
tailed in our prior research [1]. This system primarily seeks to reveal distinctions in overall
operational performance among batteries at the same layer.

In that study, an unsupervised learning-based multi-appraiser model was proposed,
incorporating multiple clustering algorithms for categorization into “good” and “bad”,
subsequently converting these classification outcomes into scores via statistical methods.
Figure 22 illustrates a comparison of comprehensive performance scores utilizing data from
the initial 100 cycles and accumulations (numbers of cells have been reordered based on
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score, which is different from the experimental numbers in Table 2), showcasing an obvious
correlation between them, particularly for batteries that were prematurely terminated from
the experiments.
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This method not only effectively sidesteps the possible challenges associated with
excluding features in calculations but also eradicates the necessity for feature selection. The
exclusion of features in calculations due to conditions or data quality is consistent across
all batteries.

After multiple batteries have been operating under the same operating conditions for
a period of time, the degradation cost of each battery is different. This varied degradation
can be effectively quantified using the comprehensive performance scoring system. Lower
scores indicate higher aging costs due to inferior performance compared to other batteries
in one or more aspects. Without optimization in the control strategies, battery performance
is prone to continuous degradation, resulting in a continuous decline in actual commercial
value within current operating scenarios. In summary, SOH reflects the objective depre-
ciation of batteries over time and the scoring system incorporates variances from other
batteries under current operating scenarios. The strategy proposed in this paper still uti-
lizes SOH as the main criterion for residual value calculation, subjected to weighting using
comprehensive scoring. The resulting calculation formula for residual values Valueresidual
is expressed as follows:

Valueresidual = (Valueinitial − Valuerecycling )·SOH − SOHretired
100 − SOHretired

·Score (10)

where Valueinitial denotes the initial value, Valuerecycling denotes the recovery value, and
SOHretired denotes the SOH recommended for decommissioning. The initial cost is calcu-
lated by spreading out the total cost of integrated modules across individual cells through
amortization.

Taking into account the potential recovery of battery capacity, which can lead to in-
creasing scores due to optimization within the operational domain, it is possible to generate
higher residual values compared to the preceding operational period. The consequent
negative aging costs may introduce anomalies in the solving process aimed at minimizing
aging costs through optimization. A zero aging cost suggests that the battery’s operating
boundaries have been rationally optimized. The formula for calculating aging costs is
expressed as follows:

Costp
aging = max(Valuep−1

residual − Valuep
residual , 0 ) (11)

where Valuep−1
residual denotes the equipment residual value at the end of the preceding period

(or at the beginning of the current period), which is obtained by calculating the latest HFs
using actual operational data. Valuep

residual denotes the equipment residual value at the
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end of the current period. According to Section 3.3, Ahpre is approximated in accordance
with boundary parameters, and k is deduced accordingly, resulting in the prediction of
Valuep

residual . For example, the aging cost curve of the No. 1 experimental battery is not
linearly related to SOH variations in the prediction based on SOH and scoring, as shown in
Figure 23.
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The aging costs of battery clusters can be predicted by accumulation according to their
topological relationships. If inconsistencies escalate among cells within a cluster, the count
of cells with low scores rises, leading to elevated aging costs for the cluster. Consequently,
less power is assigned to the cluster to impede the advancement of these inconsistencies.

5. Case Study
5.1. Description of Application Scenario

At a “Source-Grid-Load-Storage park” including PV, industrial load, and citizen load,
factories within the park are supplied by a 10 kV medium-voltage line with a rated capacity
of 10 MW via a dedicated transformer, as shown in Figure 24a. The annual PV output of the
geographical region is shown in Figure 24b. Additionally, the surrounding residential areas
are supplied also by this line via a public transformer. Data concerning industrial loads
in this park were gathered and used to plot seasonal production load curves as shown in
Figure 25a and the typical output curves fitted for four seasons are shown in Figure 25b.

Batteries 2024, 10, x FOR PEER REVIEW 23 of 35 
 

 

 
(a) (b) 

Figure 24. (a) Schematic diagram of power supply and consumption structure in the park; (b) annual 
PV output. 

 
(a) (b) 

Figure 25. (a) Typical curves of PV output in four seasons; (b) typical curves of industrial loads in 
four seasons. 

The energy storage station follows the following operational rules: PV power is to be 
primarily consumed locally, with surplus power stored in cases where immediate con-
sumption is not feasible. To prevent overloading of the dedicated transformer within the 
park, any surplus loads should be served from the energy storage system. In addition, to 
prioritize ensuring power supply to residential loads during nighttime hours, the local 
power grid company enforces a time-of-day tariff system aimed at incentivizing the re-
duction of nighttime loads within the park. Consequently, every day from 19:30 to 21:30, 
the energy storage system discharges to maintain loads below 5000 kW for the dedicated 
transformer serving industrial loads. Figure 26 showcases the process of deriving energy 
storage operation curves during the summer months: PV power is first consumed by 
loads, and any excess is absorbed by the energy storage system, referred to as “ESS 
Charge”. The curve labeled “Load from Grid” represents loads obtained directly from the 
grid without involving the energy storage system. The curve labeled “ESS Discharge Part 
1” illustrates the energy storage system’s supply to prevent line overloading, while “ESS 
Discharge Part 2” denotes the capacity reserved for residential nighttime consumption. 

0 2 4 6 8 10 12 14 16 18 20 22 24
Time(h)

0

2000

4000

6000

8000
Spring
Summer
Autumn
Winter

0 2 4 6 8 10 12 14 16 18 20 22 24
Time(h)

2000

4000

6000

8000

10,000

Spring
Summer
Autumn
Winter

Figure 24. (a) Schematic diagram of power supply and consumption structure in the park; (b) annual
PV output.
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The energy storage station follows the following operational rules: PV power is to
be primarily consumed locally, with surplus power stored in cases where immediate con-
sumption is not feasible. To prevent overloading of the dedicated transformer within the
park, any surplus loads should be served from the energy storage system. In addition, to
prioritize ensuring power supply to residential loads during nighttime hours, the local
power grid company enforces a time-of-day tariff system aimed at incentivizing the re-
duction of nighttime loads within the park. Consequently, every day from 19:30 to 21:30,
the energy storage system discharges to maintain loads below 5000 kW for the dedicated
transformer serving industrial loads. Figure 26 showcases the process of deriving energy
storage operation curves during the summer months: PV power is first consumed by loads,
and any excess is absorbed by the energy storage system, referred to as “ESS Charge”. The
curve labeled “Load from Grid” represents loads obtained directly from the grid without
involving the energy storage system. The curve labeled “ESS Discharge Part 1” illustrates
the energy storage system’s supply to prevent line overloading, while “ESS Discharge
Part 2” denotes the capacity reserved for residential nighttime consumption.
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Similarly, the typical output curves in four seasons are plotted as shown in Figure 27:
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The resulting energy imbalance can be compensated by adjusting the nighttime charg-
ing power. Considering the plentiful wind power resources in the region, the energy
storage station leverages lower nighttime tariffs to charge to the desired SOC. To simplify
the processing, it was assumed that all energy storage units could be charged at a reduced
rate during nighttime, which is omitted in subsequent steps for the convenience of plotting.

5.2. Simulation Model of Energy Storage System

The energy storage system consists of a total of 20 cabins, and dispatching instructions
are first evenly distributed among them, as shown in Figure 27. Each cabin comprises
12 clusters, with each under independent control by PCS. As the energy storage station
was in the initial stage of the trial operation, it has not been verified for prolonged opera-
tional durations. Therefore, Simulink was used to simulate a battery cabin for algorithm
verification. The simplified electrochemical model, as outlined in our prior article [52], un-
derwent parameter identification through experimental data before being incorporated into
Simulink for operational simulation. The overall simulation model is shown in Figure 28.

It was challenging to simulate each cell individually, especially considering the exten-
sive computing power required. Each cluster within the energy storage system contained
162 cells distributed among nine modules, with each module being treated as a simulation
unit, assuming cells within a module are identical, as illustrated in Figure 29. Distinct initial
SOH values were assigned to these battery modules; the SOH of a cluster was determined
by selecting the lowest SOH among the modules within the cluster following the “buckets
effect” [56].

For aging evaluation, variations of HFs were calculated using the average DOD and C
values during real operation. To simulate inconsistencies linked to manufacturing level,
system integration, ambient temperature distribution within battery cabins, etc. under
actual operating environments, the simulated HFs were randomly updated according to
a normal distribution. As shown in Figure 30a, with point A assumed to represent the
calculated mean HF, and points B and C to delineate the upper and lower boundaries of
the 95% confidence interval, random updates were confined within the shaded area shown
in Figure 30b.

It is important to note that HFs can be calculated synchronously with real data without
introducing artificial inconsistencies in engineering applications.
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Figure 29. Simulation model within a cluster.
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5.3. Comparative Analysis of Results

For comparative analysis, simulations were conducted for the battery cabin utilizing
two strategies, which are, respectively, the traditional equalized dispatching strategy and
the differentiated dispatching strategy proposed in this paper. The simulations incorporated
the following conditions: any battery clusters with an SOH lower than 80% are suspended
from responding to dispatching instructions; the unit cost of the battery system is assumed
at 0.3667 USD/Wh and Valuerecycling is 0 after retirement; η is 95%; and [D1, D2, D3, C1,
C2, C3] = [100%, 70%, 50%, 1, 1.25, 1.5].

Under the differentiated dispatching strategy proposed in this paper, the operation
profile under typical conditions in summer is shown in Figure 31.
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Under the equalized distribution strategy, the operational profile at evenly distributed
power levels is shown in Figure 32:
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To avoid unexpected results stemming from operating procedures with random in-
consistencies, three rounds of operation simulations were conducted alongside solving for
optimization, using the same SOH initialization values of 0.94, 0.982, 0.981, 0.986, 0.983,
0.974, 0.973, 0.975, 0.977, 0.972, 0.997, and 0.998 for respective clusters. The following
typical integration defects were considered in initialization: abnormal cells in cluster 1,
slight aging in clusters 2 to 5, consistencies in clusters 6 to 10 along with slight aging, and
clusters 11 and 12 in good status. The nine groups of cells in each cluster are randomly
distributed according to the above assumptions. The SOH of each module is continuously
updated, and the worst SOH in all modules is set as the SOH of the cluster based on
the “bucket effect”. For comparison, under the differentiated scheduling strategy, we use
Linear decreasing weight-Particle Swarm Optimization (Ldw_PSO) [34] as the optimization
algorithm. The comparison of results is presented in Table 4:

Table 4. Comparison of results from three rounds of simulation calculations.

Simulation Round Service Life
(Quarterly)

Average Aging Cost
(USD/kWh)

Inconsistency
(Expressed as the Sum

of Variances)

Differentiated strategy
on Mc_PSO

1 58.0 0.0759 2.1821 × 10−4

2 54.0 0.0785 2.2413 × 10−4

3 60.0 0.0749 2.0047 × 10−4

Mean 57.3 0.0764 2.1427 × 10−4

Differentiated strategy
on Ldw_PSO

1 52.0 0.0806 2.6804 × 10−4

2 57.0 0.0776 2.3359 × 10−4

3 59.0 0.0754 2.2033 × 10−4

Mean 56.0 0.0779 2.4065 × 10−4

Equalized strategy

1 50.0 0.0819 2.8150 × 10−4

2 49.0 0.0824 2.7615 × 10−4

3 51.0 0.0812 2.6590 × 10−4

Mean 50.0 0.0818 2.7452 × 10−4
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Obviously, the proposed differentiated method is superior to the traditional equalized
strategy, with a longer life, lower aging cost, and better consistency. Because the particle
population of the Ldw_PSO is not diverse enough, it may sometimes be easy to fall into the
local optimal solution. In the subsequent analysis, we mainly compare differentiated dis-
patching strategy with Mc_PSO and equalized dispatching strategy. The first round of the
solving process is meticulously outlined. Figure 33 presents a comparison of aging curves
among the 12 clusters under the proposed method. These clusters using the proposed
method halt in responding in summer with peak demands, after a nine-and-a-half-year
operational duration, due to serious aging, as shown in Figure 34. With DOD and C con-
straints removed in summer, the clusters continue to operate with equalized distribution,
yielding identical operating curves as shown in Figure 32. Furthermore, the differentiated
dispatching strategy is sustained in other seasons, as exemplified in the winter operation
shown in Figure 35. In the first quarter of the 14th year, cluster 1 is decommissioned but the
remaining 11 clusters remain available in responding to instructions. In the next quarter,
with the decommissioning of cluster 6, the battery cabin becomes incapable of responding
to dispatching instructions, signaling its end-of-life stage.
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In this example, cluster 12 is initially defined as E and cluster 11 as D. There is an
exchange between clusters 12 and 11 in their rotation status in the third quarter of the
fourth year, and another exchange occurs in the first quarter of the eighth year. The rest
of the clusters retain their status as S throughout the operational timeframe, exhibiting
reductions in Climit and elevations in DODlimit. Figure 36 shows the boundary comparison
between the initial state (Parameters 1) and transition threshold towards the equalized
dispatching (Parameters 2):
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Figure 37 shows the aging curves of the 12 clusters under the equalized method.
When a cluster with inferior performance is disconnected upon reaching the cut-off voltage,
power is redistributed equally among the others. Cluster 1 is decommissioned after the
first quarter of the 12th year, followed by cluster 10 in the next quarter. Although the
other batteries remain in good health, the cabin can no longer respond to instructions,
as shown in Figure 38. Compared with the differential strategy in Figure 33, the life of
high-performance batteries in early operation is sacrificed, resulting in an increase in the
downward slope of their life curves. However, the overall result is that the aging rates are
not the same; nevertheless, the aim is to achieve the convergence of the aging curves, and
finally obtain balanced aging curves.
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Under the differentiated strategy, aging exhibited a slower rate and tended to con-
verge, whereas the equalized strategy led to contrasting trends. The former resulted in a
16% extension in service duration. Variances in SOH across clusters were calculated as an
inconsistency indicator, and Figure 39 shows a comparison of cluster SOHs after decom-
missioning. The sums of variances were 2.1821 × 10−4 and 2.8150 × 10−4, respectively,
amounting to a 22.48% decline.

The aging costs per kilowatt-hour of clusters resulting from the proposed method
is shown in Figure 40a, and those from the equalized method are shown in Figure 40b.
Significant differences emerge among clusters in the initial phases under the proposed
method. The aging progression of lower-quality batteries is decelerated by leveraging the
presence of high-quality batteries, leading to a convergence in aging costs during the later
stages. The total aging cost per kilowatt-hour is 0.0759 USD and 0.0819 USD, respectively,
with a reduction of 7.33%.
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In summary, the three rounds of simulation verification illustrated in Table 4 demon-
strated an average extension of service life by 14.62%, a decrease in aging costs by 6.61%,
and a reduction in inconsistencies by 21.98%.

6. Conclusions

To tackle the challenges posed by composite energy storage applications with esca-
lating complexities in operating conditions, this paper presents a novel control strategy
integrating an objective function to minimize aging costs, supplemented by the correspond-
ing application procedure. With a focus on enhancing consistency and extending service
life, this research accomplished the following tasks:

1. The optimization control strategy presented, along with its solving process, helps in
reducing aging costs and extending the service life of energy storage systems. Fur-
thermore, it improves module consistency, offering advantages for cascade utilization
following module recombination.

2. The periodic rolling optimization mode proposed for integrating this strategy into
engineering operation benefits not only from reducing the computational power
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needed for each optimization control but also from enabling iterative adjustments
based on the actual operational status.

3. The aging cost evaluation introduced incorporates multi-dimensional features, rather
than solely considering capacity SOH.

This study was conducted through experiments and simulations, and the findings
were verified to some extent. It is still essential to conduct further research and application
exploration from the following aspects in the future:

1. Due to time and equipment limitations, the comparative experiments were not suf-
ficient. Variable intervals may be refined in the future, to establish a more accurate
aging prediction model. Additionally, data collected during long-term operation
revealed that batteries with high SOC and low operating frequency exhibited notice-
able storage aging. In the subsequent strategy optimization, it may be beneficial to
optimize SOC points after charging instead of performing a full charge each time.

2. Utilizing the universality of the proposed approach, models can be developed with
a small amount of experimental data in scenarios involving other types of batteries.
These models can then be used for simulations of aging under multiple variables
to provide a reference. This approach can help in reducing the cost associated with
long-term aging experiments.

3. Shortening the time span of each period allows for more refined optimization control
in engineering applications. At the same time, we continue to explore other data-
driven models to improve the effectiveness of the solution.
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28. Białoń, T.; Niestrój, R.; Skarka, W.; Korski, W. HPPC Test Methodology Using LFP Battery Cell Identification Tests as an Example.
Energies 2023, 16, 6239. [CrossRef]

29. R-Smith, N.A.-Z.; Moertelmaier, M.; Gramse, G.; Kasper, M.; Ragulskis, M.; Groebmeyer, A.; Jurjovec, M.; Brorein, E.; Zollo, B.;
Kienberger, F. Fast Method for Calibrated Self-Discharge Measurement of Lithium-Ion Batteries Including Temperature Effects
and Comparison to Modelling. Energy Rep. 2023, 10, 3394–3401. [CrossRef]

30. Wu, L.; Liu, K.; Liu, J.; Pang, H. Evaluating the Heat Generation Characteristics of Cylindrical Lithium-Ion Battery Considering
the Discharge Rates and N/P Ratio. J. Energy Storage 2023, 64, 107182. [CrossRef]

31. Steger, F.; Krogh, J.T.; Meegahapola, L.G.; Schweiger, H.-G. Calculating Available Charge and Energy of Lithium-Ion Cells Based
on OCV and Internal Resistance. Energies 2022, 15, 7902. [CrossRef]

32. Messing, M.; Shoa, T.; Habibi, S. Lithium-Ion Battery Relaxation Effects. In Proceedings of the 2019 IEEE Transportation
Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019; pp. 1–6.

33. Yu, P.; Wang, S.; Yu, C.; Shi, W.; Li, B. Study of Hysteresis Voltage State Dependence in Lithium-Ion Battery and a Novel
Asymmetric Hysteresis Modeling. J. Energy Storage 2022, 51, 104492. [CrossRef]

34. Wu, Z.; Yin, L.; Xiong, R.; Wang, S.; Xiao, W.; Liu, Y.; Jia, J.; Liu, Y. A Novel State of Health Estimation of Lithium-Ion
Battery Energy Storage System Based on Linear Decreasing Weight-Particle Swarm Optimization Algorithm and Incremental
Capacity-Differential Voltage Method. Int. J. Electrochem. Sci. 2022, 17, 220754. [CrossRef]

https://doi.org/10.1109/TSG.2018.2867017
https://doi.org/10.1109/TSG.2023.3280226
https://doi.org/10.1109/TPWRS.2017.2733339
https://doi.org/10.3390/pr12010079
https://doi.org/10.1109/MIE.2020.3002486
https://doi.org/10.1186/s41601-018-0076-2
https://doi.org/10.3390/batteries9040217
https://doi.org/10.1016/j.est.2022.105634
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1088/1757-899X/793/1/012063
https://doi.org/10.1109/TEC.2021.3130600
https://doi.org/10.1016/j.rser.2021.110790
https://doi.org/10.1109/TIE.2020.2984441
https://doi.org/10.1109/TCNS.2020.3029165
https://doi.org/10.1109/TPEL.2021.3121701
https://doi.org/10.1109/TPS.2017.2706088
https://doi.org/10.1016/j.energy.2021.120072
https://doi.org/10.1016/j.est.2023.108032
https://doi.org/10.3390/en16176239
https://doi.org/10.1016/j.egyr.2023.10.031
https://doi.org/10.1016/j.est.2023.107182
https://doi.org/10.3390/en15217902
https://doi.org/10.1016/j.est.2022.104492
https://doi.org/10.20964/2022.07.41


Batteries 2024, 10, 143 32 of 32

35. Feng, X.; Merla, Y.; Weng, C.; Ouyang, M.; He, X.; Liaw, B.Y.; Santhanagopalan, S.; Li, X.; Liu, P.; Lu, L.; et al. A Reliable Approach
of Differentiating Discrete Sampled-Data for Battery Diagnosis. eTransportation 2020, 3, 100051. [CrossRef]

36. Noelle, D.J.; Wang, M.; Le, A.V.; Shi, Y.; Qiao, Y. Internal Resistance and Polarization Dynamics of Lithium-Ion Batteries upon
Internal Shorting. Appl. Energy 2018, 212, 796–808. [CrossRef]

37. Xiao, J.; Li, Q.; Bi, Y.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B.; et al. Understanding and Applying
Coulombic Efficiency in Lithium Metal Batteries. Nat. Energy 2020, 5, 561–568. [CrossRef]

38. Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al.
Data-Driven Prediction of Battery Cycle Life before Capacity Degradation. Nat. Energy 2019, 4, 383–391. [CrossRef]

39. Maity, J.; Dutta, S.; Khanra, M. Constant Voltage Charging Curve Based Features and State of Health Estimation of Li-Ion Batteries:
A Comprehensive Study. In Proceedings of the 2022 International Conference on Smart Generation Computing, Communication
and Networking (SMART GENCON), Bangalore, India, 23–25 December 2022; pp. 1–7.

40. Zheng, Y.; Han, X.; Lu, L.; Li, J.; Ouyang, M. Lithium Ion Battery Pack Power Fade Fault Identification Based on Shannon Entropy
in Electric Vehicles. J. Power Sources 2013, 223, 136–146. [CrossRef]

41. Gateman, S.M.; Gharbi, O.; Gomes de Melo, H.; Ngo, K.; Turmine, M.; Vivier, V. On the Use of a Constant Phase Element (CPE) in
Electrochemistry. Curr. Opin. Electrochem. 2022, 36, 101133. [CrossRef]

42. Xiong, R.; Sun, Y.; Wang, C.; Tian, J.; Chen, X.; Li, H.; Zhang, Q. A Data-Driven Method for Extracting Aging Features to
Accurately Predict the Battery Health. Energy Storage Mater. 2023, 57, 460–470. [CrossRef]

43. Zhang, K.; Xiong, R.; Qu, S.; Zhang, B.; Shen, W. Electrochemical Impedance Spectroscopy: A Novel High-Power Measurement
Technique for Onboard Batteries Using Full-Bridge Conversion. IEEE Trans. Transp. Electrif. 2024. early access. [CrossRef]

44. Tian, J.; Xiong, R.; Shen, W.; Lu, J. State-of-Charge Estimation of LiFePO4 Batteries in Electric Vehicles: A Deep-Learning Enabled
Approach. Appl. Energy 2021, 291, 116812. [CrossRef]

45. Mawonou, K.S.R.; Eddahech, A.; Dumur, D.; Beauvois, D.; Godoy, E. State-of-Health Estimators Coupled to a Random Forest
Approach for Lithium-Ion Battery Aging Factor Ranking. J. Power Sources 2021, 484, 229154. [CrossRef]

46. Jia, X.; Wang, S.; Cao, W.; Qiao, J.; Yang, X.; Li, Y.; Fernandez, C. A Novel Genetic Marginalized Particle Filter Method for State of
Charge and State of Energy Estimation Adaptive to Multi-Temperature Conditions of Lithium-Ion Batteries. J. Energy Storage
2023, 74, 109291. [CrossRef]

47. Lai, X.; Yuan, M.; Tang, X.; Zheng, Y.; Zhu, J.; Sun, Y.; Zhou, Y.; Gao, F. State-of-Power Estimation for Lithium-Ion Batteries Based
on a Frequency-Dependent Integer-Order Model. J. Power Sources 2024, 594, 234000. [CrossRef]

48. Liu, W.; Hu, X.; Lin, X.; Yang, X.-G.; Song, Z.; Foley, A.M.; Couture, J. Toward High-Accuracy and High-Efficiency Battery
Electrothermal Modeling: A General Approach to Tackling Modeling Errors. eTransportation 2022, 14, 100195. [CrossRef]

49. Zhou, H.; Gao, L.T.; Li, Y.; Lyu, Y.; Guo, Z.-S. Electrochemical Performance of Lithium-Ion Batteries with Two-Layer Gradient
Electrode Architectures. Electrochim. Acta 2024, 476, 143656. [CrossRef]

50. Jha, V.; Krishnamurthy, B. Modeling the SEI Layer Formation and Its Growth in Lithium-Ion Batteries (LiB) during
Charge–Discharge Cycling. Ionics 2022, 28, 3661–3670. [CrossRef]

51. Liu, D.; He, Y.; Chen, Y.; Cao, J.; Zhu, F. Electrochemical Modeling, Li Plating Onsets and Performance Analysis of Thick Graphite
Electrodes Considering the Solid Electrolyte Interface Formed from the First Cycle. Electrochim. Acta 2023, 439, 141651. [CrossRef]

52. Gu, Y.; Wang, J.; Chen, Y.; Xiao, W.; Deng, Z.; Chen, Q. A Simplified Electro-Chemical Lithium-Ion Battery Model Applicable for
in Situ Monitoring and Online Control. Energy 2023, 264, 126192. [CrossRef]

53. Luo, G.; Zhang, Y.; Tang, A. Capacity Degradation and Aging Mechanisms Evolution of Lithium-Ion Batteries under Different
Operation Conditions. Energies 2023, 16, 4232. [CrossRef]

54. Naylor Marlow, M.; Chen, J.; Wu, B. Degradation in Parallel-Connected Lithium-Ion Battery Packs under Thermal Gradients.
Commun. Eng. 2024, 3, 2. [CrossRef]

55. Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W. A Data-Driven Approach with Uncertainty Quantification for Predicting Future
Capacities and Remaining Useful Life of Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2021, 68, 3170–3180. [CrossRef]

56. Fan, T.-E.; Liu, S.-M.; Yang, H.; Li, P.-H.; Qu, B. A Fast Active Balancing Strategy Based on Model Predictive Control for
Lithium-Ion Battery Packs. Energy 2023, 279, 128028. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.etran.2020.100051
https://doi.org/10.1016/j.apenergy.2017.12.086
https://doi.org/10.1038/s41560-020-0648-z
https://doi.org/10.1038/s41560-019-0356-8
https://doi.org/10.1016/j.jpowsour.2012.09.015
https://doi.org/10.1016/j.coelec.2022.101133
https://doi.org/10.1016/j.ensm.2023.02.034
https://doi.org/10.1109/TTE.2024.3362992
https://doi.org/10.1016/j.apenergy.2021.116812
https://doi.org/10.1016/j.jpowsour.2020.229154
https://doi.org/10.1016/j.est.2023.109291
https://doi.org/10.1016/j.jpowsour.2023.234000
https://doi.org/10.1016/j.etran.2022.100195
https://doi.org/10.1016/j.electacta.2023.143656
https://doi.org/10.1007/s11581-022-04617-0
https://doi.org/10.1016/j.electacta.2022.141651
https://doi.org/10.1016/j.energy.2022.126192
https://doi.org/10.3390/en16104232
https://doi.org/10.1038/s44172-023-00153-5
https://doi.org/10.1109/TIE.2020.2973876
https://doi.org/10.1016/j.energy.2023.128028

	Introduction 
	Control Strategy 
	Optimization Control Strategy to Minimize Aging Cost in a Single Operational Period 
	Rolling Optimization Process for Long-Time Operational Scenarios 

	Extraction and Prediction of Multi-Dimensional HFs 
	Aging Experiment 
	Extraction of HFs 
	Prediction of HFs 

	Prediction Method of Aging Cost for Energy Storage System 
	Case Study 
	Description of Application Scenario 
	Simulation Model of Energy Storage System 
	Comparative Analysis of Results 

	Conclusions 
	References

