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Abstract: Aiming at effectively generating safe and reliable motion paths for quadruped robots, a
hierarchical path planning approach driven by dynamic 3D point clouds is proposed in this article.
The developed path planning model is essentially constituted of two layers: a global path planning
layer, and a local path planning layer. At the global path planning layer, a new method is proposed
for calculating the terrain potential field based on point cloud height segmentation. Variable step
size is employed to improve the path smoothness. At the local path planning layer, a real-time
prediction method for potential collision areas and a strategy for temporary target point selection are
developed. Quadruped robot experiments were carried out in an outdoor complex environment. The
experimental results verified that, for global path planning, the smoothness of the path is improved
and the complexity of the passing ground is reduced. The effective step size is increased by a
maximum of 13.4 times, and the number of iterations is decreased by up to 1/6, compared with the
traditional fixed step size planning algorithm. For local path planning, the path length is shortened by
20%, and more efficient dynamic obstacle avoidance and more stable velocity planning are achieved
by using the improved dynamic window approach (DWA).

Keywords: quadruped robots; 3D point cloud; complex terrain; dynamic obstacles; particle swarm
optimization (PSO); artificial potential field (APF); dynamic window approach (DWA)

1. Introduction

In recent years, quadruped robots, due to their excellent motion flexibility and terrain
adaptability, have been extensively developed to play important roles in many fields, such
as military, disaster relief, factory inspection, etc. [1,2]. Path planning is a crucial component
of the quadruped robot for accomplishing the above tasks. It is usually separated into two
steps: (1) global path planning using a known environment map, and (2) local path plan-
ning using real-time perception of the local environment. Currently, numerous algorithms
have been proposed to plan safe and reliable paths for wheeled robots and quadrotor
unmanned aerial vehicles (UAVs) [3–6]. However, the inherent limitations of these algo-
rithms include (1) the absence of performance validation in a real environment point cloud
map, (2) scale difficulties in path smoothness calculation, and (3) the lack of evaluation
of the velocity of dynamic obstacles and future trajectory for dynamic obstacle avoidance.
Furthermore, for the quadruped robot platform, the limitations of these algorithms are
apparent in the lack of terrain complexity evaluation, which results in a risk of unstable
robot motion. Therefore, a hierarchical path planning approach for quadruped robots
with a particle swarm optimization (PSO)-based 3D artificial potential field (APF) and
improved dynamic window approach (DWA) is proposed in this article to break through
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the inherent limitations of existing path planning methods for quadruped robots and boost
the autonomous adaptation of quadruped robots to complex environments.

1.1. Global Path Planning

The existing global path planning algorithms can be grouped into two classes: heuristic
algorithms (rapidly exploring random tree, D*, A*, APF, etc.) and intelligence algorithms
(artificial neural network, genetic algorithm, particle swarm optimization, reinforcement
learning, etc.). A search tree with the starting point as the root node is constructed by the
rapidly exploring random tree-based algorithms [7–9], and the feasible path is found by
the single-query algorithm. However, these algorithms are computationally expensive
and struggle to construct optimal smooth paths in a point cloud map. The D*-based
and A*-based algorithms [4,10–12] incorporate the heuristic function into the Dijkstra
algorithm [5] to plan optimal paths in 2D space. However, these algorithms suffer from the
“dimensional disaster” in 3D space, resulting in extremely inefficient planning. The artificial
neural network-based algorithms [13–17] explicitly render the configuration space and the
robot state-space into an array of locally connected neurons. This array is then trained with
various methods, resulting in a path that connects the present state of the robot with the
target state. However, these algorithms suffer from a challenging training process. The
genetic algorithms [18,19] and PSO-based algorithms [20,21] represent alternative solutions
of the optimization function as individuals of a population, and they evolve the population
according to the fitness value of the individuals to select a more suitable population.
However, the terrain complexity is not considered in the optimization objective function of
these algorithms, which makes them inapplicable to quadruped robots. The reinforcement
learning-based algorithms [22–25] utilize environmental spatiotemporal information and
set a reward structure to maximize the value function to plan optimal paths. However,
when the point cloud map is used as the input, the reward becomes sparse, which increases
the training times of these algorithms and decreases their planning efficiency.

The APF-based algorithms [26,27] simulate repulsive and attractive fields to plan the
direction of robot motion, as a general and easy-to-implement framework for global path
planning. However, traditional APF algorithms suffer from fixed repulsive and attractive
force coefficients, which cause robots to fail to reach the target point and stop when there
are obstacles near the target point, and even to oscillate when the robots fall into the
minimum trap of the local potential field. For upgrading the traditional APF, the PSO-
based APF algorithms [28,29] are proposed to optimize the repulsive and attractive force
coefficients. The fitness function of PSO includes two indicators: distance to the target,
and path smoothness. However, the efficiency of global planning is severely limited by
the fixed step size used in these methods. Moreover, the absence of a path complexity
indicator makes these algorithms limited in applications to quadruped robots. In [30],
obstacles are approximated as regular geometric shapes and projected onto a 2D plane.
The fitness function is calculated as the linear sum of the iteration number of particles and
the difference in steering angle of the neighboring path points. However, as the number
of optimization iterations rises, the significant of the difference in magnitude between
different optimization indicators will lead to a tendency to update the particle’s position
and velocity during the optimization process. In [31], opposition-based learning (OBL) is
introduced to improve the inertia weight and step size to prevent the precocity of PSO.
However, a problem arises with slow convergence or even non-convergence, resulting in
low planning efficiency. In [32], the tangent vector, which is based on the information about
obstacles, is added to the APF model as an auxiliary force in the obstacle avoidance process.
However, the tangent vector is challenging to estimate in real complex environments.

1.2. Local Path Planning

The existing local path planning algorithms mainly include behavior decomposition
(BD), cased learning (CL), and the dynamic window approach (DWA). The BD-based
algorithms [33] decompose the path planning into independent units, i.e., behavioral
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primitives, which collaborate to accomplish the entire movement task. However, due to the
limited weight and space of quadruped robots, it is difficult for them to carry numerous
sensors and actuators. An intelligent typical case-based reasoning for path planning
is proposed in the CL-based algorithms [34,35]. The path is planned based on current
empirical knowledge and road network information. The reliability of such algorithms is
difficult to assess, as they rely on empirical knowledge.

The DWA-based approaches [36,37] have attracted the attention of a wide range of
researchers. The DWA strategy aims to select the optimal combination of velocities in the
dynamic velocity window by minimizing the evaluation function. In [38,39], the evaluation
functions of these approaches are calculated based only on the static environmental infor-
mation, making them unsuitable for planning in dynamic environments. An improved
DWA approach for quadruped robots is proposed in [40], where the emergency obstacle
avoidance goal and the nearest obstacle are distinguished to achieve segmentation design
of collision probability coefficients for static and dynamic obstacles. However, dynamic
obstacles are only evaluated in terms of their positional impact, while the potential risk of
collision caused by the influence of dynamic obstacles in terms of impact velocity is ignored.
In [41], arc-shaped obstacles are gridded, and concave obstacles are made convex in order
to prevent the robot from becoming trapped in the obstacle. The evaluation function is
adaptively updated according to the robot’s safety threshold, obstacles, and environment
information. The influence of the dynamic obstacles’ state on the efficiency and stability of
planning is ignored in these algorithms. In addition, convex processing of the environment
is not applicable in complex real-world environments, and the tiny grid size reduces the
efficiency of local path planning.

In summary, traditional path planning algorithms for quadruped robots face the
following issues:

(1) The environment map, composed of idealized regular geometry, is used as the input
of the algorithm, which cannot effectively plan the path in real complex environments.

(2) The planning efficiency is limited due to the fixed step size used by PSO-based APF
algorithms. The terrain complexity is ignored in the evaluation function of the fitness
function, which poses a risk of planning an unreliable path. The calculation of the
terrain potential field is ignored in the 3D APF algorithms, resulting in the inability of
the quadruped robot’s torso to maintain an appropriate height from the ground.

(3) The influence of the velocity of dynamic obstacles is ignored in the local path planning
algorithm, which decreases the efficiency and stability of the local planning.

(4) The optimal velocity planning based on DWA algorithms is limited in solving velocity,
due to the vast size of the point cloud.

To solve the above problems, a hierarchical path planning method consisting of PSO-
based 3D APF and improved DWA is proposed in this article. The PSO-based 3D APF
algorithm is utilized for global path planning, while a point cloud height segmentation-
based calculation method for the terrain potential field and a DEM-based terrain complexity
calculation method are proposed. An improved DWA algorithm is employed for local path
planning. The velocity of dynamic obstacles is mapped to their distance from the robot,
which is used to predict the potential collision area. Then, a strategy for temporary target
point selection is proposed. Finally, CUDA is used to accelerate the solution velocity in
path planning.

The main contributions of our approach are as follows:

(1) The neighborhood points of the quadruped robot’s torso are segmented into obstacle
points and terrain points. Using a static environment point cloud map to plan the
global path, the spatial shape features and data distribution features are preserved
well, which helps the robot to choose the optimal path.

(2) The terrain potential field is introduced into the APF to restrict the distance between
the torso and the ground to ensure that the torso remains within a stable operating
altitude range, thereby guaranteeing the reliability of path planning.
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(3) The terrain complexity is integrated into the fitness function to enhance the reliability
of global path planning. The method of calculating path smoothness is improved to
overcome the scale problem.

(4) A method of predicting the potential collision area is proposed to enhance the ef-
ficiency and stability during dynamic obstacle avoidance. The calculation of the
optimal velocity combination is accelerated by CUDA.

The outline of this article is as follows: Section 2 presents the methodological frame-
work of the proposed hierarchical path planning method. Section 3 illustrates the map
pre-processing: (1) point cloud processing, and (2) point cloud height segmentation. The
approach proposed for global and local path planning is discussed in Sections 4 and 5, re-
spectively. In Section 6, the experimental details are illustrated and the results are analyzed.
Section 7 concludes the article and highlights future research directions.

2. Methodological Framework

The overall framework of the developed hierarchical path planning is illustrated in
Figure 1. Global path planning and local path planning are conducted separately. An offline
planning mode is adopted in the global path planning, and a static environment point
cloud map is utilized as the input. The point cloud is segmented into obstacle points and
terrain points based on height and distance to the robot. The terrain points are utilized to
calculate the terrain potential field. Thus, the total potential field is the sum of the obstacles,
the target point, and the terrain potential field. The global path points will be planned in
the direction of the fastest decreasing potential field gradient with the 3D APF algorithm.
In this case, the force parameters of the potential field and the step size will be optimized
by the PSO algorithm.Biomimetics 2024, 9, 259 5 of 27 
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An online planning mode with a real-time environment point cloud is utilized as
the input in the local path planning. The global path points are refined and selected as
temporary target points for local path planning based on the strategy for temporary target
point selection. A pedestrian tracking algorithm is utilized to predict the potential collision
area. The velocity of dynamic obstacles is mapped to their distance from the robot in the
evaluation function of the improved DWA algorithm. The optimal velocity combination,
whose solution is accelerated by CUDA, is planned by the improved DWA algorithm.

3. MAP Pre-Processing
3.1. Environment Point Cloud Processing

The environment point cloud map consists of the static environment point cloud map
generated by the algorithm [42] and the real-time local environment perception [43,44].
The static environment map is used in global path planning. The following sequence is
applied to crop the raw environment map and reduce noise:

• A voxel filter with leaf size ll is applied to reduce the size of points;
• A statistical outlier removal (SOR) filter with a neighborhood radius of lr and a

neighborhood point number of ln is utilized to reduce the number of outliers;
• A passthrough filter is used to crop the raw environment map along specified dimensions.

The real-time local environment perception is used in local path planning. The above
processing sequence is also applied to real-time local environment information first, and
then the scope of the point cloud of the local environment is cropped to reduce unnecessary
calculations in local path planning by the following sequence:

• The point cloud at the depth limit ld, representing the influence range of obstacles, is
cropped during local path planning;

• The point cloud at the height l f is cropped to remove the ceiling points;
• The algorithm in [43] is used to track the motion state of dynamic obstacles.

The motion state of dynamic obstacles is denoted by Xc
dyobsmot =

[
Xc

dyobs, Vc
dyobs

]
,

where Xc
dyobs ∈ R3 and Vc

dyobs ∈ R3 represent the position and velocity of the dynamic
obstacle c(c = 0, . . . , Ndyobs), respectively.

3.2. Height Segmentation of the Point Cloud

The purpose of the point cloud segmentation is to obtain the terrain and obstacle
points in the neighborhood point cloud. The schematic segmentation diagram is shown
in Figure 2. The neighborhood points of the robot are defined as points in a sphere with
a radius of lne. The sphere is concentric with the center of mass of the robot’s torso. The
obstacle points and terrain points are denoted by Cobs and Cter, respectively. The obstacle
points Cobs are defined as points within height from Hmin

obs to Hmax
obs in the sphere. The terrain

points Cter are defined as points within a cylinder with a radius of lter and a height from
Hmin

ter to Hmin
obs . Attractive and repulsive forces are exerted on the robot by the terrain points,

depending on the height of the point, to keep the robot’s body at a proper height. The
detailed calculation is described in Section 4.
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4. Global Path Planning with PSO-Based 3D APF

In this section, firstly, the basic forms of attractive and repulsive potential field calcula-
tion for the 3D APF are illustrated, and the corresponding potential fields are calculated.
Then, the parameters to be optimized in the 3D APF are illustrated. Finally, the fitness func-
tion, each indicator, and the proposed terrain complexity and improved path smoothness
calculation method are introduced. The framework of the designed PSO-based 3D APF is
shown in Figure 3.
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4.1. Three-Dimensional (3D) APF with Terrain Potential Field

Referring to the traditional APF algorithm, attractive and repulsive potential field
functions of the 3D APF can be expressed in the following form:

Uatt(X) =
Katt

2
d2(Xatt, X) (1)
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Urep(X) =


Krep

2

(
1

d(X,Xrep)
− 1

ρrep

)2
dn(Xatt, X) d

(
X, Xrep

)
⩽ ρrep

03×1 d
(
X, Xrep

)
> ρrep

(2)

where X ∈ R3 is the position of the center of mass of the quadruped robot’s torso. Xatt ∈ R3

and Xrep ∈ R3 are the positions of the objects exerting attractive and repulsive forces,

respectively. Katt =
[
Kx

att, Ky
att, Kz

att
]T and Krep =

[
Kx

rep, Ky
rep, Kz

rep

]T
are the distance gain

coefficient of the attractive and repulsive potential field in the x − y − z directions, re-
spectively. Uatt(X) =

[
Ux

att(X), Uy
att(X), Uz

att(X)
]T is defined as a three-dimensional vector.

Ux
att(X), Uy

att(X), and Uz
att(X) represent the attractive potential under the distance gain coef-

ficient in each direction. Urep(X) is similar to Uatt(X). The advantage of our method is that
the attractive and repulsive forces in each direction can be controlled separately through
three distance gain coefficients. d(Xatt, X) represents the Euclidean distance between the
center of mass of the quadruped robot’s torso and the object exerting an attractive force.
ρrep is defined as the maximum distance at which the robot is affected by obstacles, while n
is the index factor of the repulsive potential field.

According to Equation (1), the attractive potential field of the target point can be
expressed as follows:

Utar
att(X) =

Ktar
att
2

d2(Xtar
att , X

)
(3)

where Ktar
att ∈ R3 is the distance gain coefficient of the attractive potential field of the target

point, while Xtar
att ∈ R3 is the position of the target point.

According to Equation (2), the repulsive potential field of the obstacle point cloud can
be expressed as follows:

UPi
rep(X) =

Kobs
rep

2

 1

d
(

X, XPi

) − 1
ρobs

2

dn(Xtar
att , X

)
(4)

where Kobs
rep ∈ R3 is the distance gain coefficient of the repulsive potential field of the

obstacle point. XPi
∈ R3 is the position of the obstacle point. Pi represents the obstacle

points in the neighborhood, and ρobs is defined as the maximum distance at which the
robot is affected by obstacles.

During the iterative planning process, the quadruped robot’s torso is subject to the
repulsive force exerted by each obstacle point in the neighborhood. This article superim-
poses the repulsive potential field of each obstacle point and takes the average value as the
repulsive potential field of obstacle points in the neighborhood. Therefore, the repulsive
potential field of the obstacle points can be expressed as follows:

Uobs
rep(X) =

[
Nobs

∑
i=1

UPi
rep(X)

]
/Nobs (5)

where Nobs is the number of obstacle points in the neighborhood.
During the motion of the quadruped robot, the height of the torso’s center of mass

from the ground should be kept within an appropriate range. The minimum and maximum
height thresholds are represented by Hmin

com and Hmax
com , respectively. Hcom is the height of

the center of mass of the robot’s torso. When Hcom> Hmax
com , the attractive terrain point will

attract the robot. Similarly, when Hcom< Hmin
com, the repulsive terrain point will repulse the

robot. According to the point cloud height segmentation, the terrain point cloud exerts
two forces on the robot’s torso at the same time. The attractive force is generated by the
attractive point Catt, while the repulsive force is generated by the repulsive force point
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Crep. The attractive potential field U
qj
att(X) and the repulsive potential field Uwk

rep(X) can be
expressed as follows:

Uqi
att(X) =

Kter
att
2 |Hcom − Hqj |·V

(
Xqi , X

)
Hcom > Hmax

com

Uwk
rep(X) = Kter

rep| 2
|Hcom−Hwk |

− 1
(Hmin

com−Hmax
com)

|·

|Hcom − Hwk |·V(X, Xwk) Hcom < Hmin
com

(6)

Similar to Equation (5), we superimpose the attractive potential field and the repulsive
potential field generated by the terrain points, taking the average value as the attractive
potential field and the repulsive potential field generated by the ground:

Uter
att(X) =

[
Nter

att
∑

j=1
U

qj
att(X)

]
/Nter

att

Uter
rep(X) =

[
Nter

rep

∑
k=1

Uwk
rep(X)

]
/Nter

rep

(7)

where Nter
att and Nter

rep are the size of attractive terrain points and repulsive terrain points,
respectively. qj is the jth, j = 1, . . . , Nter

att , point in attractive terrain points, and wk is the
kth, k = 1, . . . , Nter

rep, point in repulsive terrain points. Hqj and Hwk are the heights of the
jth attractive terrain point and the kth repulsive terrain point, respectively; their positions
are denoted by Xqj ∈ R3 and Xwk ∈ R3, respectively. V(·) ∈ R3 is the unit direction vector
of the center of mass of the robot’s torso and the terrain point. The direction is from the
terrain point to the center of mass of the robot’s torso when the terrain point is repulsive;
otherwise, the direction of V(·) is the opposite. Kter

att ∈ R3×3 is a diagonal matrix. The
elements on the diagonal are the distance gain coefficients of the potential field of attractive
terrain points in the x − y − z directions. Kter

rep ∈ R3×3 is similar to Kter
att ∈ R3×3. Therefore,

the total potential field generated by the static environment point cloud can be expressed
as follows:

U = Utar
att(X) + Uobs

rep(X) + Uter
att(X) + Uter

rep(X) (8)

According to the classical APF principle, the robot moves in the direction of downward
potential energy. The direction of movement can be represented by a unit vector, as follows:

F = −∇(U) (9)

The location update of global path planning can be expressed as follows:

Xt+1 = Xt + F · step (10)

where Xt and Xt+1 are the position of the center of mass of the quadruped robot’s torso at
the current iteration time and the next iteration time, respectively. Step is the planning step
size, that is, the Euclidean distance between Xt and Xt+1.

4.2. PSO-Based Optimization of APF

During global path planning, the potential field parameters and the steps planned need
to be updated dynamically. The PSO algorithm is utilized to optimize these parameters
adaptively. PSO is a population-based stochastic optimization algorithm whose particles
are represented as potentially optimal solutions in a D-dimensional search space. The ith
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particle’s position is defined as zi =
[
Ktar

att , Kter
att , Kter

rep, Kobs
rep , step, n

]T
∈ R14×1 and its velocity

is denoted by vi ∈ R14×1. The position and velocity of the particles are updated as follows:

vi = c0vi + c1r1

(
zpdi − zi

)
+ c2r2

(
zcgi − zi

)
zi = zi + vi

(11)

where c0 is the inertial weight; c1 and c2 are the individual and group learning factors that
satisfy the condition c1, c2 ∈ [0, 2], respectively; r1, r2 ∈ [0, 1] are random factors; zpdi is the
position with the best fitness for the ith particle so far; and zcgi is the position with the best
fitness for all particles in the current iteration.

4.3. Fitness Function

To overcome the limitations of the classical APF, the PSO algorithm is utilized to
optimize the attractive and repulsive parameters. In order to improve the effectiveness of
this method in quadruped robots, a new fitness function is proposed in this article, which
includes a terrain complexity evaluation.

The fitness function is composed of three evaluation indicators: the distance from the
robot to the target point, path smoothness, and terrain complexity, which can be expressed
as follows:

Fm
cost = α1 · Fm

1 (Xt, Xtar) + α2 · Fm
2 (Xt−1, Xt, Xt+1) + α3 · Fm

3 (Xt, stepm) (12)

where Fm
cost represents the fitness function of the mth particle. n is the number of iterations.

Fm
1 (Xt, Xtar), Fm

2 (Xt−1, Xt, Xt+1), and Fm
3 (Xt, stepm) are the distance indicator, path smooth-

ness indicator, and terrain complexity indicator, respectively. Xt−1, Xt, and Xt+1 are the
position of the robot in the t − 1th, tth, and t + 1th iteration, respectively. α1, α2, and α3 are
the weight coefficients of each indicator, respectively. stepm is the planning step in the m th
particle’s position information.

The distance indicator is calculated from the Euclidean distance between the robot’s
torso and the target point, which can be expressed as follows:

Fm
1 = ||Xt − Xtar||2 (13)

To improve the efficiency of global path planning, a dynamic step size is designed and
implemented in our method. In traditional methods, path smoothness is represented as the
angle between neighboring steps, easily resulting in scaling problems when using dynamic
programming steps. To solve this problem, we use the ratio of the valid move length to the
actual move length as the path smoothness. The improved path smoothness indicator can
be expressed as follows:

Fm
2 =

||Xt − Xt−1||2 + ||Xt+1 − Xt||2 − ||Xt+1 − Xt−1||2
||Xt+1 − Xt−1||2

(14)

The valid move length is defined as the sum of the Euclidean distance between Xt−1
and Xt and the Euclidean distance between Xt and Xt+1 minus the Euclidean distance
between Xt−1 and Xt+1. As shown in Figure 4, we can substitute Xt−1, X1

t , X1
t+1 and Xt−1,

X2
t , X2

t+1 into Equation (13) to compare the path smoothness of the red path and the blue
path, respectively. The smaller the calculation result of Equation (14), the smoother the path
will be. When three path points are on a straight line, Equation (14) obtains the minimum
value 0, and the path is the smoothest.
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The terrain complexity is determined by its roughness and undulation. For calculating
terrain complexity, the center of mass of the robot’s torso is taken as the starting point, and
the point cloud is cropped in a rectangular region with a vertical length of step, a horizontal
length of lw, and a height of Hh, in the F direction. The rectangular region is shown in
Figure 5a. In the rectangular area, the height difference between the point cloud (blue) and
the robot’s torso is distributed in [−0.3,−0.25] m. The raw point cloud is represented by
a digital elevation model (DEM) composed of regular grids. The DEM grids are shown
in Figure 5b. The terrain complexity is expressed as the average of the roughness and
undulation of the DEM grids. As shown in Figure 5c, a DEM grid denoted by e0 and its
neighboring DEM grids denoted by e1~e8 are selected. For convenience, the height of each
DEM grid is also denoted by ei. The roughness is defined as the sum of the absolute value
of the height difference between the grid e0 and its neighboring grids. The roughness can
be calculated by Equation (15):

R =
NDEM

∑
j=1

[
1
8

8

∑
i=1

abs
(

ej
i − e0

i

)]
(15)

where NDEM is the size of THE DEM in the rectangular region, and j = 1, . . . , NDEM is the
index of DEMs. The undulation is defined as the sum of the absolute value of maximum
height difference between the grid e0 and its neighboring grids. The undulation can be
calculated by Equation (16):

A =
NDEM

∑
j=1

max
i=1,...,8

(
|ej

i − ej
0|
)

(16)

Therefore, the terrain complexity can be calculated by Equation (17):

Fm
3 = β1 · R + β2 · A (17)

where β1 and β2 are the weighting coefficients of the roughness and undulation, respectively.
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Figure 5. The terrain complexity calculation: (a) the rectangular region (within the yellow area);
(b) the regular grid of the digital elevation model; (c) the 3 × 3 DEM grid; (d,e) the calculation results
of roughness and undulation, respectively, on the simulated point cloud.

5. Local Path Planning with Improved DWA

In this section, the method for predicting potential collision areas is first illustrated.
Then, the strategy for selecting temporary target points is introduced. Finally, the related
evaluation function is constructed, which takes the effect of the velocity of dynamic ob-
stacles into consideration. The overall framework of the improved DWA is shown in
Figure 6.
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5.1. Potential Collision Area Prediction

The schematic diagram of potential collision area prediction is shown in Figure 7.
Firstly, the safe range lsafe is utilized to determine whether a dynamic obstacle affects local
path planning. When the distance between the robot and a dynamic obstacle is less than the
safe range, the collection of future path points of the dynamic obstacle denoted by Cdyobs
in a prediction period Tp will be predicted according to the motion state of the dynamic
obstacle. The future path points are predicted dynamically in real time. This means that the
path points will be predicted at each moment based on the current position of the dynamic
obstacle, assuming that it moves at a constant velocity.
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Therefore, track point prediction can be expressed as follows:

Xi
dyobs = X0

dyobs + i · V0
dyobs i = 0, . . . ,

[
Tp

Ndyobs

]
(18)

where X0
dyobs ∈ R3 and V0

dyobs ∈ R3 are the position and velocity of the dynamic obstacle in
the world coordinate system at the current moment, respectively; the symbol [·] represents
rounding; Ndyobs is the number of future path points. The collection of future path points
of dynamic obstacle Cdyobs can be expressed as follows:

Cdyobs =
{

Xi
dyobs, . . .

}
i = 0, . . . ,

[
Tp

Ndyobs

]
(19)

where Xi
dyobs is the future path point of the dynamic obstacle.

The risk area is generated with the future path point of the dynamic obstacle as the
center, which means that when the robot is within the risk area, there will be a risk of
collision with the dynamic obstacle. The radius of the risk area is lcol. When the global
path point planned in the global path planning experiment is located in the risk area, it
is considered to be a potential collision point. Ccol is the index of all potential collision
points. A virtual obstacle with a radius rvirobs is added at each potential collision point.
The function of virtual obstacles is to help the robot avoid potential collision areas as much
as possible, but they cannot completely prevent the robot from entering.
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5.2. Strategy for Temporary Target Point Selection

An important concept of hierarchical path planning is that the local path planning
must be guided by global path points. Thus, in local path planning, the temporary target
points are points selected from the global path points to prevent the robot from colliding
with dynamic obstacles.

Firstly, the global path points outputted by the PSO-based 3D APF algorithm need to
be refined to reduce the distance between path points, which is beneficial to achieve more
reliable local planning. The refinement of global path points is achieved through linear
interpolation between neighboring path points, which can be expressed as follows:

Xi =
Xt+1−Xt

Np
· i + Xt i = 1, . . . , Np (20)

where Xt ∈ R3 and Xt+1 ∈ R3 are the positions of neighboring global path points. Xi ∈ R3

represents path points obtained by linear interpolation. Np represents the numbers of
interpolation points.

Due to the existence of dynamic obstacles, there are situations where temporary target
points can be potential collision points. Therefore, it is necessary to design a strategy for
temporary target point selection to guide the robot to avoid dynamic obstacles safely.

The temporary target points are selected as shown in Figure 8. Itar is the index of
the temporary target point in global path points. Ctar is the collection of refined global
path points.

Biomimetics 2024, 9, 259 14 of 27 
 

 

Due to the existence of dynamic obstacles, there are situations where temporary tar-
get points can be potential collision points. Therefore, it is necessary to design a strategy 
for temporary target point selection to guide the robot to avoid dynamic obstacles safely. 

The temporary target points are selected as shown in Figure 8.  is the index of the 

temporary target point in global path points.  is the collection of refined global path 
points. 

The process of the strategy for temporary target point selection is as follows: 

1. The initial position of the robot in the world coordinate system is recorded as . 

The path point closest to  among the global path points is selected as the initial 

temporary target point, and its index in the global path points is recorded as . 
2. The potential collision area prediction method proposed in Section 5.1 is used to de-

termine whether the current temporary target point is a potential collision point. 
3. If the current temporary target point is not a potential collision point, it is necessary 

to further determine whether the robot reaches the temporary target point. If the ro-
bot does not reach the current temporary target point, the index of the current tem-
porary target point will be returned; otherwise, the returned index can be expressed 
as follows: 

 (21)

where  is the number of refined global path points. 
If the temporary target point is a potential collision point, the point is abandoned and 

a global path point in the collection  is reselected as the temporary target point. The 

reselected temporary target point is recorded as , which should meet the following con-
ditions: 
(1) The index of the reselected temporary target point  is greater than the index of 

the abandoned temporary target point ; 
(2) The minimum distance from the reselected temporary target point to all potential 

collision areas is , which should be greater than the radius of the risk area ; 
(3) The reselected temporary target point is not a potential collision point; 
(4) The reselected temporary target point is the global path point in the collection  

with the smallest index that satisfies the above conditions. 

 
Figure 8. The selection strategy of temporary target points. Figure 8. The selection strategy of temporary target points.

The process of the strategy for temporary target point selection is as follows:

1. The initial position of the robot in the world coordinate system is recorded as Pinit
rob .

The path point closest to Pinit
rob among the global path points is selected as the initial

temporary target point, and its index in the global path points is recorded as Icur
tar .

2. The potential collision area prediction method proposed in Section 5.1 is used to
determine whether the current temporary target point is a potential collision point.

3. If the current temporary target point is not a potential collision point, it is necessary to
further determine whether the robot reaches the temporary target point. If the robot
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does not reach the current temporary target point, the index of the current tempo-
rary target point will be returned; otherwise, the returned index can be expressed
as follows:

Icur
tar = max

(
Icur
tar + 10, Npath

)
(21)

where Npath is the number of refined global path points.

If the temporary target point is a potential collision point, the point is abandoned and
a global path point in the collection Ctar is reselected as the temporary target point. The rese-
lected temporary target point is recorded as Itar, which should meet the following conditions:

(1) The index of the reselected temporary target point Itar is greater than the index of the
abandoned temporary target point Icur

tar ;
(2) The minimum distance from the reselected temporary target point to all potential

collision areas is ltar
risk, which should be greater than the radius of the risk area lcol;

(3) The reselected temporary target point is not a potential collision point;
(4) The reselected temporary target point is the global path point in the collection Ctar

with the smallest index that satisfies the above conditions.

5.3. Evaluation Function

Based on the robot’s current motion state and each set of speed combinations, the
future path points of the torso at time Tb are predicted. The set of future path points is
recorded as Cb. The average distance between the path points and the temporary target
point is calculated as the distance evaluation indicator; the calculation method of this index
can be expressed as follows:

Disttar =
1

NCb
·

NCb
∑

i=1
||XCi

b
− Xtar||2 i = 1, . . . , NCb

(22)

where NCb is the number of path points of the torso at time Tb, XCi
b

is the position of the
i th path point, and Xtar is the position of the temporary target point with index Itar.

According to the potential collision area prediction method in Section 5.1, it can be
seen that there are three types of obstacles in the environment, namely, static, dynamic, and
virtual obstacles. The DWA algorithm is improved by mapping the velocity of dynamic
obstacles to its distance from the robot. The evaluation function can be expressed as follows:

li
dyobs = exp

Vdyobs ·
(

XCi
b
− Xdyobs

)
||XCi

b
− Xdyobs||2

 · ||XCi
b
− Xdyobs||2 i = 1, . . . , NCb (23)

where Xdyobs is the position of the dynamic obstacle in the world coordinate system. Vdyobs
represents the velocity of the dynamic obstacle, which is the adjustment factor of the actual
distance between the robot and the dynamic obstacle. When the velocity of the dynamic
obstacle is greater, the distance score between the dynamic obstacle and the robot increases.
By minimizing the evaluation function, the robot can safely avoid dynamic obstacles. The
velocity of dynamic obstacles is included in the evaluation function, which is beneficial to
improving the stability of speed planning. The minimum distance between the robot and
dynamic obstacles can be expressed as follows:

Distdyobs = min
(

lidyobs

)
i = 1, . . . , NCb (24)

The impact of virtual obstacles on the evaluation calculation is similar to that of static
obstacles. The different is that the position of virtual obstacles changes with the motion
state of the dynamic obstacle. Virtual obstacles will not exclude the robot from entering the
potential collision area, but when the robot is close to the potential collision area they will
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increase the evaluation score of the distance between the robot and the static obstacle. The
distance between the robot and the static obstacle can be expressed as follows:

Distobs =


ln(e − min(||X − Xm

col||2)− rvirobs)·

min
(
||XCi

b
− XPj ||2

) Ncol ≥ 1

min
(
||XCi

b
− XPj ||2

)
Ncol = 0

i = 1, . . . , NCb , j = 1, . . . , Nobs, m = 1, . . . , Ncol

(25)

where Xm
col is the position of the mth potential collision point, and Ncol is the number of

potential collision points.
The DWA evaluation function is used to select the speed combination with the smallest

score in the dynamic window, that is, the optimal speed combination. The optimal speed
selected through the evaluation function is used to update the motion status of the fuselage,
including position, speed, and orientation. The score of the DWA evaluation function can
be expressed as follows:

G(v, ω) = w1 · Disttar(v, w) + w2 · Distdyobs(v, w) + w3 · Distobs(v, w) (26)

where w1, w2, and w3 are the weighting factor of each evaluation indicator. v and ω are
the linear and angular velocity, respectively, which are selected from the dynamic velocity
window Vr as expressed in Section 6.

6. Experimental Results and Discussion
6.1. Experimental Platform and Setup

A commercial quadruped robot (Y10, manufactured by YOBTICS from Shandong
Province, China) was utilized as the experimental platform, as shown in Figure 9. For envi-
ronment reconstruction and dynamic obstacle tracking, a 3D camera (ZED2, manufactured
by Stereolabs from San Francisco, CA, USA) with an IMU sensor was mounted on the front
of the robot. For real-time performance, a single-board computer (UP Squared Board, man-
ufactured by AAEON from Jiangsu Province, China) and an embedded system-on-module
(Nvidia Xavier NX, manufactured by Nvidia from Santa Clara, CA, USA) were mounted on
the back of the robot’s torso. The Nvidia Xavier NX was utilized to reconstruct the static en-
vironment, generate real-time point clouds, and track dynamic obstacles. The UP Squared
Board was utilized to plan both global and local paths. The communication method be-
tween the Nvidia Xavier NX and the UP Squared Board depends on ROS (Robot Operating
System). The desired control commands generated by local path planning are transformed
to the robot control board via LCM (Lightweight Communications and Marshalling).
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The experimental environment is shown in Figure 10. The shape of the experimental
environment was equivalent to a rectangle with a length of 10 m and a width of 7 m. The
rectangle-shaped experimental area is shown in Figure 10a. Bricks were used to augment
the complexity of the terrain. There were four brick piles stacked on the terrain, as shown
in Figure 10b. The maximum height of the brick piles was between 0.11 m and 0.17 m.
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Figure 10. Static environment setup: (a) the rectangle-shaped environmental area with 4 brick piles;
(b) the height of each brick pile.

This article utilizes the point cloud generated by the 3D camera to create a static
environment point cloud map. The process of constructing the static environment point
cloud map is shown in Figure 11. The raw static environment point cloud map with
259,162 points is shown in Figure 11a. The origin of the world coordinate system was
selected as the initial camera position when constructing the map.

As discussed in Section 3, the map needs to be filtered to reduce the noise and the
number of point clouds. The pre-processing flow is as follows:

• The passthrough filter is applied to crop the map in artificially set x − y − z direc-
tions and ranges; only the point cloud within the scope of the test site is kept. The
passthrough filter parameters are set as follows: lx ∈ [−2, 5] m, ly ∈ [−1, 10] m,
lz ∈ [−0.3, 2.5] m.

• A voxel filter with leaf size ll = 0.4 m is utilized to reduce the size of points;
• A statistical outlier removal filter with the number ln = 20 is utilized to reduce outliers

of neighborhood points within a radius lr = 0.4 m.

The number of point clouds contained in the pre-processed map reduced from 259,162
to 33,945, as shown in Figure 11b.



Biomimetics 2024, 9, 259 17 of 26

Biomimetics 2024, 9, 259 17 of 27 
 

 

 
Figure 10. Static environment setup: (a) the rectangle-shaped environmental area with 4 brick piles; 
(b) the height of each brick pile. 

This article utilizes the point cloud generated by the 3D camera to create a static en-
vironment point cloud map. The process of constructing the static environment point 
cloud map is shown in Figure 11. The raw static environment point cloud map with 
259,162 points is shown in Figure 11a. The origin of the world coordinate system was se-
lected as the initial camera position when constructing the map. 

 
Figure 11. Static environment point cloud map: (a) the raw point cloud map; (b) the filtered map; 
(c) the process of constructing the map. 
Figure 11. Static environment point cloud map: (a) the raw point cloud map; (b) the filtered map;
(c) the process of constructing the map.

6.2. Results and Discussion for PSO-Based 3D APF in Global Path Planning

The range of parameters to be optimized for the PSO-based 3D APF is shown in
Table 1. The fixed parameters of the PSO algorithm and global path planning are shown
in Table 2. The population size of PSO was 100. According to the characteristics of the
quadruped robot’s motion, the vertical distance from the torso to terrain points was set to
Hres

com = [0.25, 0.35] m.

Table 1. The range of parameters to be optimized for the PSO-based 3D APF.

Symbol Range Symbol Range

Ktar
att ∈ R3

1.0
1.0
1.0

100.0
100.0
10.0

 Kter
rep ∈ R3

1.0
1.0
1.0

100.0
100.0
10.0


Kobs

rep ∈ R3

1.0
1.0
1.0

100.0
100.0
10.0

 n [1.0, 2]

Kter
att ∈ R3

1.0
1.0
1.0

100.0
100.0
10.0

 step [0.1, 0.5]

Table 2. The fixed parameters of the PSO algorithm and global path planning.

Symbol Value Symbol Value

c0 0.6 Hmax
obs 1.2 m

c1 1.49455 Hmin
obs −0.12 m

c2 1.49455 Hmin
ter −0.5 m

lter 0.3 m Hmin
rep −0.25 m

lne 1.5 m Hmax
att −0.35 m
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The initial position of the robot in the world coordinate system was set to [−0.5, 1.5, 0.1].
Two target destinations in the world coordinate system were set in our experiment:
T1 = [0, 7.5, 0] and T2 = [2, 8, 0]. In the experiment for evaluating terrain complexity,
the weight factors of the roughness and undulation were set as β1 = β2 = 1. Four sets of
weight parameters α = [α1, α2, α3] of the fitness function were applied to each target point,
which were set to [1, 0, 0], [1, 5, 0], [1, 0, 50], and [1, 5, 50], respectively.

The path planning process was visualized by utilizing ROS and RViz (Robot Visual-
ization). The results of global path planning with the target points T1 and T2 are shown
in Figure 12.
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The average and maximum values of path smoothness and terrain complexity were
utilized as metrics to compare the performance of global path planning with different
parameter settings. The quantitative comparison of the PSO-based 3D APF’s performance
under different parameter settings is shown in Table 3. It is obvious that when the param-
eter is set to α2 = 5, the average and maximum values of the smoothness of the global
path are the smallest. Likewise, when the parameter is set to α3 = 50, the average and
maximum values of the terrain complexity are the smallest. Undeniably, setting the param-
eters simultaneously to α2 = 5 and α3 = 50 only achieves the best performance in path
smoothness with the target T1; otherwise, the performance is suboptimal, albeit still close to
the best performance. The biggest difference between the suboptimal and best performance
is within 5%. It is believed that the reason for this is that the designed fitness function needs
to adaptively balance each indicator. By comparing the performance of different parameter
settings, the path smoothness can be improved by the proposed fitness function to guide
the robot to pass over the low-complexity terrain.
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Table 3. Quantitative comparison of the PSO-based 3D APF’s performance under different
parameters settings.

Target [α1, α2, α3]
Path Smoothness Terrain Complexity Number of

IterationsMean Max Mean Max

T1

[1, 0, 0] 0.08286 0.31429 0.01125 0.02898 16
[1, 5, 0] 0.02225 0.08126 0.00915 0.02359 16

[1, 0, 50] 0.04948 0.29854 0.00612 0.01385 16
[1, 5, 50] 0.01696 0.06698 0.00627 0.01456 20

T2

[1, 0, 0] 0.08444 0.48541 0.0096 0.02268 17
[1, 5, 0] 0.00894 0.09857 0.01114 0.02531 19

[1, 0, 50] 0.05536 0.41764 0.00562 0.01366 21
[1, 5, 50] 0.00985 0.11690 0.00639 0.01646 21

To compare the results (planning efficiency and path smoothness) of our method with
those of the method in reference [29], the weight parameters of the fitness function were
set to α = [α1, α2, α3] = [1, 5, 50]. In reference [29], a fixed step was used for PSO. The
efficiency of planning is reflected in the number of PSO iterations, with fewer iterations
indicating higher efficiency. The effective step ratio is used as an overall gauge for the path
smoothness. The effective step ratio is calculated as follows:

σ =
L/step f

iter − L/step f
(27)

where iter is the number of iterations, L is the linear distance between the initial position
and the target point, and step f is the fixed step.

Obviously, a larger effective step ratio means that the global path is closer to a straight
line, which also represents a smoother global path. The step variation is shown in Figure 13.
The step was adaptively adjusted between 0.1 and 0.5 m. The effective step ratio was
calculated by using the average of steps in all iterations. The fixed step was set to five sets
of values from 0.1 to 0.5 m. The effective step ratio is shown in Table 4. As can be seen from
the table, our method obtains a higher effective step ratio, with a maximum improvement
of 9/0.67 ≈ 13.4 times and an average improvement of (9/0.67 + 3.2/0.43)/2 ≈ 10.4 times.
Furthermore, our method requires fewer iterations, resulting in a maximum improvement
of 121/21 ≈ 5.8 times and an average improvement of (121/21 + 103/20)/2 ≈ 5.5 times. The
experimental results illustrate that our method can improve both path planning efficiency
and path smoothness.
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Table 4. The effective step ratio.

Target Step iter σ

T1

Fixed step
(reference [29])

0.1 103 1.41
0.2 43 2.31
0.3 32 1.67
0.4 27 1.25
0.5 30 0.67

Dynamic step
(this article)

Varies in
[0.1~0.5] 20 9

T2

Fixed step
(reference [29])

0.1 121 1.36
0.2 51 2.19
0.3 37 1.64
0.4 32 1.21
0.5 47 0.43

Dynamic step
(this article)

Varies in
[0.1~0.5] 21 3.2

The height of global path points above the ground was used as the metric to evaluate
the path reliability. The ground height is represented by the average height of the terrain
point cloud in the neighborhood. The global path planning was repeated five times to
check the height difference. It can be seen from Figure 14 that the height of the robot’s torso
from the ground was maintained within the range Hres

com ∈ [0.24, 0.35] m, comparable to the
maximum height of the attractive point and the minimum height of the repulsive point.
Thus, the validity and rationality of the method for constraining the height of the torso
using the terrain point potential field were verified.
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6.3. Results and Discussion for Improved DWA in Local Path Planning

Firstly, on the basis of traditional DWA algorithms, this article proposes a method
of potential collision area prediction and a strategy for temporary target point selection.
In the evaluation function of the improved DWA, the velocity of the dynamic obstacle is
mapped to its distance from the robot to improve the efficiency and stability of the robot’s
dynamic obstacle avoidance. Then, our improved DWA is compared with the traditional
DWA algorithm described in reference [40]. Since our improved DWA algorithm focuses on
dynamic obstacle avoidance, we emphatically compare the efficiency of dynamic obstacle
avoidance and the stability of velocity planning between the two algorithms. Finally, the
computational scale of the optimal velocity solution is briefly introduced, and the solution
velocity is accelerated by CUDA.
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The velocity window is essentially a space of achievable velocities that are determined
by the robot’s current motion state and motion parameters within a given time interval.
According to the kinematic and dynamic constraints of our quadruped robot, the motion
parameters of the quadruped robot are listed in Table 5. In the following experiment, the
time interval was set to 0.1 s.

Table 5. The motion parameters of the quadruped robot.

Symbol Representation Value

s Minimum linear velocity (X-Y-Z) [−0.15,−0.15,−0.1] m/s
vmax ∈ R3×1 Maximum linear velocity (X-Y-Z) [0.3, 0.3, 0.15] m/s

amaxv Maximum linear acceleration (X-Y-Z) 0.3 m/s2

ωminz Minimum angular velocity (Z) −0.5235 rad/s
ωmaxz Maximum angular velocity (Z) 0.5235 rad/s
amaxω Maximum angular acceleration (Z) 0.5235 rad/s2

In the local velocity planning experiment, the dynamic obstacle tracking was applied
to detect the position and velocity of dynamic obstacles. Potential collision areas were
predicted, and temporary target points were selected by setting two dynamic obstacles,
obs-1 and obs-2. The effective range of the dynamic obstacles was set to lsafe = 3 m. At
each tracking output time, assuming that dynamic obstacles move in a straight line at a
constant velocity, the path points at the future time Tp = 3 s were predicted based on
the position and velocity of the dynamic obstacles. With the path points of the dynamic
obstacles as the center, a risk area with a radius lcol = 0.35 m was generated. The virtual
obstacles were added, with a radius rvirobs = 0.35 m. The predicted results of the potential
collision region are shown in Figure 15a. The potential collision area was applied to the
temporary target point selection and evaluation function. The local path planning results
of the improved DWA and traditional DWA algorithms are shown in Figure 15b. The
performance evaluation of the Z-axis linear velocity was ignored. The efficiency of dynamic
obstacle avoidance is expressed as the length of the locally planned path. The stability of
the velocity planning was determined by calculating the average of the velocity variance
across all iteration windows, each with a size set to 5.
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Figure 15. Dynamic obstacle avoidance: (a) potential collision area prediction; (b) the local path
planning results of the improved DWA and traditional DWA algorithms. The green paths represent
the refined global path points. The red and blue paths represent the planning results of the improved
DWA and traditional DWA algorithms, respectively. The paths in the cyan box are the dynamic
obstacle avoidance process.

The velocity planning results of the improved DWA method and the traditional DWA
method are shown in Figure 16. Based on the results of velocity planning, the stability
and efficiency of the two methods were compared in this study. The stability of dynamic
obstacle avoidance can be assessed by calculating the average variance in velocity within
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a given iteration window. The stability of velocity planning increases as the mean value
decreases. The size of the iteration window was set to 5, meaning that the variance within
the iteration window was calculated for every five adjacent combinations of iteration
velocity. The efficiency of dynamic obstacle avoidance is represented by the length of the
local path planning. The results of the local path planning are shown in Table 6. The
stability of the torso’s X- and Y-axis velocities, along with the planned angular velocities
around the Z-axis, is compared in this table. It can be observed from the table that the
variance of the improved DWA algorithm in each velocity component and the combined
velocity is smaller, with a minimum improvement ratio of 2.73 times. This suggests that
the improved algorithm can effectively improve the velocity stability during dynamic
obstacle avoidance. Similarly, the planned path length during dynamic obstacle avoidance
is effectively reduced, with a reduction ratio of more than 20%.
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Table 6. The comparative results of the improved DWA and traditional DWA algorithms.

Mean of Velocity Variance Path Length
(m)X-Axis Y-Axis Yaw

traditional-obs1 1.71 × 10−5 5.15 × 10−6 3.50 × 10−5 2.514
improved-obs1 4.66 × 10−6 8.22 × 10−7 1.28 × 10−5 2.021

traditional-obs2 5.95 × 10−6 1.67 × 10−5 1.21 × 10−5 2.327
improved-obs2 1.51 × 10−6 2.92 × 10−6 3.69 × 10−6 1.834

Taking the 3D point cloud of the actual environment as the input of the path planning
algorithm is the biggest difference between our work and most other path planning works.
When the 3D point cloud is combined with velocity information, millions of calculations are
generated. This makes it difficult for the algorithm to achieve good real-time performance
when calculating the expected velocity required for the robot to move at the next moment.
To this point, CUDA was employed instead of a traditional CPU to accelerate the calculation
velocity in our study. One velocity combination within the velocity window corresponds
to one CUDA thread running independently. Information on the point cloud, velocity
combinations, robot’s current position, target point position, and dynamic obstacles is
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utilized as input for each thread calculation. In each thread, a score is calculated for each
velocity combination, and an array of scores is returned with the evaluation function.
Finally, the score array is sorted to obtain the index of velocity combinations corresponding
to the highest score. In actual deployment, the block size of the CUDA kernel function is
set to 128, and the grid size is set to 6. The memory size occupied by the kernel function
during operation is about 300 MB. The calculation time of the evaluation function before
and after CUDA acceleration was compared by the experiment. The cost time of evaluation
function calculation with CUDA and CPU is shown in Figure 17.

Biomimetics 2024, 9, 259 24 of 27 
 

 

performance when calculating the expected velocity required for the robot to move at the 
next moment. To this point, CUDA was employed instead of a traditional CPU to acceler-
ate the calculation velocity in our study. One velocity combination within the velocity 
window corresponds to one CUDA thread running independently. Information on the 
point cloud, velocity combinations, robot’s current position, target point position, and dy-
namic obstacles is utilized as input for each thread calculation. In each thread, a score is 
calculated for each velocity combination, and an array of scores is returned with the eval-
uation function. Finally, the score array is sorted to obtain the index of velocity combina-
tions corresponding to the highest score. In actual deployment, the block size of the CUDA 
kernel function is set to 128, and the grid size is set to 6. The memory size occupied by the 
kernel function during operation is about 300 MB. The calculation time of the evaluation 
function before and after CUDA acceleration was compared by the experiment. The cost 
time of evaluation function calculation with CUDA and CPU is shown in Figure 17. 

 
Figure 17. The cost time of evaluation function calculation with CUDA and CPU. 

7. Conclusions 
Path planning is an essential procedure for robots to move autonomously in compli-

cated dynamic environments. For quadruped robots, most of the proposed global path 
planning methods lack terrain complexity assessment, while the local path planning 
methods do not fully consider practical factors like dynamic obstacles’ moving velocity. 
In this study, a 3D point-cloud-driven hierarchical path planning method was developed 
for quadruped robots, which consists of a PSO-based 3D APF for global path planning 
and improved DWA for local path planning. The main contributions of our results are as 
follows: 
(1) In global path planning, the authors improved the calculation method of path 

smoothness to make it suitable for variable step optimization. Compared with the 
traditional APF method using a fixed step size, the dynamic step planning method 
that we propose is more effective in terms of the number of iterations and the step 
rate to achieve the optimal performance, effectively enhancing the planning effi-
ciency. 

(2) In global path planning, a terrain complexity calculation method based on a digital 
elevation model is proposed, and the terrain complexity evaluation is designed in the 
PSO fitness function. Compared with the PSO evaluation function that does not eval-
uate terrain characteristics, the developed algorithm is more efficient in complex 

Figure 17. The cost time of evaluation function calculation with CUDA and CPU.

7. Conclusions

Path planning is an essential procedure for robots to move autonomously in compli-
cated dynamic environments. For quadruped robots, most of the proposed global path
planning methods lack terrain complexity assessment, while the local path planning meth-
ods do not fully consider practical factors like dynamic obstacles’ moving velocity. In
this study, a 3D point-cloud-driven hierarchical path planning method was developed
for quadruped robots, which consists of a PSO-based 3D APF for global path planning
and improved DWA for local path planning. The main contributions of our results are
as follows:

(1) In global path planning, the authors improved the calculation method of path smooth-
ness to make it suitable for variable step optimization. Compared with the traditional
APF method using a fixed step size, the dynamic step planning method that we
propose is more effective in terms of the number of iterations and the step rate to
achieve the optimal performance, effectively enhancing the planning efficiency.

(2) In global path planning, a terrain complexity calculation method based on a digital
elevation model is proposed, and the terrain complexity evaluation is designed in
the PSO fitness function. Compared with the PSO evaluation function that does not
evaluate terrain characteristics, the developed algorithm is more efficient in complex
environments. It is more advantageous for robots to plan movements on complex
terrain than on flat roads.

(3) In the local path planning, the authors introduced potential collision area prediction,
a temporary target point selection strategy, and the velocity mapping of dynamic
obstacles to the improved DWA algorithm. Compared with traditional DWA, the
improved DWA algorithm has higher planning efficiency and velocity stability.

(4) CUDA was applied to solve the optimal velocity. In edge computing devices, the
solution velocity is increased by 600 times compared to the traditional CPU solution,
meeting the requirements for real-time deployment.
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The limitations of this work include the following: (1) the environment map is created
by the binocular camera with a hole problem, which makes the algorithm treat the hole as
a passable area; (2) due to the low tracking accuracy and robustness of dynamic obstacles,
the potential collision area prediction accuracy is low, while the algorithm to determine
the location and velocity of dynamic obstacles is also affected; (3) the selection of optimal
velocity depends on the hardware solution, which increases the hardware requirements. In
the next step, multi-beam LIDAR will be used to construct static environment maps. In
addition, pedestrian trajectory intention analysis and velocity constraints will be added to
dynamic obstacle tracking to reduce the computational scale of velocity planning solutions.
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